The potential of the maximum cross-correlation technique to estimate surface currents from thermal AVHRR global area coverage data

Type Article
Date 2006-10
Language English
Author(s) Dransfeld Steffen1, Larnicol Gilles2, Le Traon Pierre-Yves3
Affiliation(s) 1 : Univ Hamburg, Inst Meereskunde, D-20146 Hamburg, Germany.
2 : Direct Oceanog Spatiale, Collect Localisat Satellite, F-31526 Ramonville St Agne, France.
3 : IFREMER, Ctr Brest, F-29280 Plouzane, France.
Source IEEE Geoscience and Remote Sensing Letters (1545-598X) (IEEE Geoscience and Remote Sensing Society), 2006-10 , Vol. 3 , N. 4 , P. 508-511
DOI 10.1109/LGRS.2006.878439
WOS© Times Cited 11
Keyword(s) Remote sensing, Marine technology, Infrared imaging, Image motion
Abstract Having already shown its potential of deriving the vector fields representing the ocean-surface advection from sequential 1.1-km-resolution local area coverage (LAC) Advanced Very High Resolution Radiometer (AVHRR) images, the maximum cross-correlation (MCC) technique here is applied to four 4.4-km-resolution global area coverage (GAC) AVHRR images. The resulting three vector fields are compared to the vector fields obtained from the LAC imagery corresponding to the same satellite passages. To quantify the reduction in accuracy inevitable when applying the method to the lower resolution imagery, the LAC vector fields were assumed to be error free. The deviation of the GAC vectors from the LAC vectors is expressed as percentage errors of the signal variance of meridional u and zonal v velocity components, and they are 16%/30%, respectively, for the best case and 62%/117% and 92%/111% for the other two cases. These results indicate that, in its present state, the GAC data do not allow the MCC technique to extract reliable current-vector information from it.
Full Text
File Pages Size Access
publication-2319.pdf 4 173 KB Open access
Top of the page