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The Potential of the Maximum Cross-Correlation

Technique to Estimate Surface Currents From
Thermal AVHRR Global Area Coverage Data

Steffen Dransfeld, Gilles Larnicol, and Pierre-Yves Le Traon

Abstract—Having already shown its potential of deriving the
vector fields representing the ocean-surface advection from se-
quential 1.1-km-resolution local area coverage (LAC) Advanced
Very High Resolution Radiometer (AVHRR) images, the maxi-
mum cross-correlation (MCC) technique here is applied to four
4.4-km-resolution global area coverage (GAC) AVHRR images.
The resulting three vector fields are compared to the vector fields
obtained from the LAC imagery corresponding to the same satel-
lite passages. To quantify the reduction in accuracy inevitable
when applying the method to the lower resolution imagery, the
LAC vector fields were assumed to be error free. The deviation of
the GAC vectors from the LAC vectors is expressed as percentage
errors of the signal variance of meridional v and zonal v velocity
components, and they are 16 %/30 %, respectively, for the best case
and 62%/117% and 92%/111% for the other two cases. These
results indicate that, in its present state, the GAC data do not allow
the MCC technique to extract reliable current-vector information
from it.

Index Terms—Image motion, infrared imaging, marine technol-
ogy, remote sensing.

I. INTRODUCTION

HE FREQUENT global coverage of the National Oceanic

and Atmospheric Administration’s (NOAA) polar or-
biters carrying the Advanced Very High Resolution Radiome-
ter (AVHRR) instrument regularly provides the ocean science
community with the thermal state of the ocean surface. For
many years now this information has also been used to observe
and quantify surface advective motion. The capacity of the
instrument to fly over the same spot within relatively short time
scales allows the observation and tracking of the same thermal
features between satellite passes. Various feature-tracking and
pattern-recognition techniques have been applied to follow the
propagation of these features [1], [2], [4], [6], in which the
maximum cross-correlation (MCC) method has singled itself
out as a convenient and robust method for a routine processing
of AVHRR local area coverage (LAC) imagery. The most
comprehensive recent study of the method has been carried out
by Bowen et al. [1] who analyzed a seven-year archive of LAC
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Fig. 1. Division of the first image into templates (solid lines) and search area
(dashed line) corresponding to the central template.

imagery from the east Australian current system and estimated
a method precision between 0.08 and 0.2 m/s rms.

While the current estimates derived from the LAC images
may be accurate, they are generally limited to regional scales
caused by the high resolution of the images. The offshore and
shipping industries, however, are more concerned about larger
scale current products, in which global area coverage (GAC)
images are a more appropriate dataset in terms of developing
an operational current product. In this letter, we have thus
attempted to quantify the loss in accuracy resulting from the
application of the MCC technique to GAC images as opposed
to the corresponding LAC images.

II. MCC TECHNIQUE DESCRIPTION

The method is based on identifying a maximum cross corre-
lation between the features of the individual subscenes of the
two sequential thermal images. For a full description see [5].
The first image is divided into a number of template tiles (see
Fig. 1) whose size depends on the oceanic flow structures that
need to be resolved. Each template window will be searched
for in the second image by using a search window (dashed line
in Figs. 1 and 2), whose size depends on the maximum current
speed that is expected between two sequential images. Because
the search window is much larger than its corresponding tem-
plate window, the neighboring search windows overlap.
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Fig. 2. Vector indicating where in the second image the center of the window
(dotted line) closest to the original template (solid line) lies.

The pixel values of the template window are A(z,y), and the
corresponding pixels in the second window are B(z,y) at no
lag and B(x + p,y + q) for alag (p, ¢). The normalized spatial
cross-correlation function between the template and the search
window at lag (p, ¢) is defined as

1

T(P,Q):UAT
B

< SN {[Alx,y) — Az, )]
Bz +p,y+q) — Bz +p,y+0q)}

_ COV(pl, Q) 0
oA0R

The summation is performed over all the x and y values of
the template window. A(z,y) and B(z + p,y + q) correspond
to the mean values of each window. Cov(p, ¢) is the covariance
of A and B at lag (p,q), and 04 and op are the standard
deviations of the template and lagged window entering the cor-
relation calculation. The displacement (p, ¢) at the maximum
value of the cross correlation determines the advective velocity

¢, as given by the following:

[(pmaxAx)2 + (qmaXAy)z] 1/2
€= At @
0 = arctan (qmaxAy/pmaxAx) . (3)

Ax and Ay represent the spatial interval and the pixel size,
respectively, p max and ¢ max represent the lag values for the
MCC, and At represents the time interval between both images.
The direction of the motion of the displacement is given by 6,
as shown in (3).

III. PREPROCESSING PERFORMED ON IMAGES

To be able to apply the MCC technique to the AVHRR LAC
and GAC images, these had to undergo a reprojection of the
satellite swath radiances onto a geographic grid and a correction
of the attitude errors, which minimized geographical offsets
between the successive images. Any offsets may introduce spu-
rious current vectors that are not caused by natural advections.
To correct for attitude errors, an algorithm developed at the
Colorado Center for Astrodynamical Research (CCAR) was

TABLE 1
ACQUISITION TIME AND SATELLITE FOR EACH IMAGE
Satellite NOAA17 |NOAAL6 | NOAAIL7 | NOAAI6
Date/Time | 07/08/04 | 07/08/04 | 08/08/04 | 08/08/04
[(SH®) 18:43:39  [22:05:55 ]06:04:23 | 10:30:30

used that geolocates the images to an estimated accuracy of
about 1 km for all the coastal oceans. The images used in
this letter are from four sequential satellite passes of a part
of the Californian coastline. For each passage, we have the
corresponding LAC and GAC image, thus allowing us to apply
the MCC method to a sequence of LAC and GAC images that
are from the same instant in time and the same area. Table I
shows the acquisition time and satellite for each LAC/GAC
image pair. The images were obtained from NOAA’s Satellite
Active Archive.

Rather than using the sea-surface temperature values that
are based on the radiances of several channels of the AVHRR
instrument and thus combine the noise contained in each
channel, channel 4 (10.6 pm) brightness temperatures, only
containing the noise of that channel, were used. Both the GAC
and LAC images consist of 512 x 512 pixels and have a
resolution of 1.1 km. The images were sampled in a 1.1-km
grid using an indirect navigation algorithm that combines a
geographical grid with an orbital model to associate a scan
element (line-spot value) from the field of vision with the
correct pixel in the geographical grid. The algorithm computes
a line-spot value for every eighth pixel in both the lat/long
directions, and bilinear interpolation is used to calculate the
remaining line-spot values that are used to index the field of
vision and retrieve the data values. All images were cloud
filtered, and cloudy as well as land-masked pixels were set
to zero. According to Emery et al. [3], the correlations were
computed for the windows containing at least 60% of the pixels
with a brightness temperature value, to maintain the statistical
significance of the correlations.

IV. RESULT AND DISCUSSION

In order to quantify the degradation of the MCC GAC
vector fields relative to the LAC fields, the errors of each u
and v velocity components (u = meridional velocity and v =
zonal velocity) were expressed as percentages of LAC signal
variances. The following expressions explain how these are
computed:

uy, rms =

1 n
~>[ui] (4)
k=1

Uy, — UG rMs =

1 n
- > (up —ug)®  (5)
k=1

(6)

2
ur, — umms)

% error of signal variance =
urTms

where the subscripts L and G correspond to the LAC and
GAC values, respectively, and n is the number of vectors
originating at identical coordinates. Errors were calculated for
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Fig. 3. (a) LAC vector field 18:43-22:05. (b) GAC vector field 18:43-22:05.
(c) LAC vector field 22:05-06:04. (d) GAC vector field 22:05-06:04. (e) LAC
vector field 06:04-10:30. (f) GAC vector field 06:04—-10:30.

both vector magnitudes and directions. Fig. 3(a)—(f) shows the
LAC and GAC vector fields obtained by applying the MCC
algorithm to the image sequences. The parameters specific to
the MCC are a 22-pixel initial template box, and the range
that this template is searched for in the second image is also
22 pixels. This means that there is a 22-pixel zone all around
the template box, where the template is searched for. After
each search, the template box is moved 11 pixels further along,
so that a vector is calculated every 11 pixels. A filter was
applied to remove the vectors that correspond to a low cross
correlation (lower than 0.75), and only the vectors that have
three or more neighboring vectors, indicating similar feature
propagations within two pixels in both directions, were kept
(a vector based on a 15-pixel propagation was only kept
if at least three vectors around it showed propagations of
13-17 pixels). This assured a spatial homogeneity of the vector
field. Some vectors appear to be alone, as they have neighboring
vectors that do not survive the filtering restrictions.

Table II shows the u and v error statistics of the GAC vectors
relative to the LAC vectors obtained from expressions (4)—(6).

TABLE 1I
ERROR STATISTICS OF THE u AND v GAC VALUES RELATIVE
TO THE LAC VALUES

Component and|{LAC rms|GAC rms |LAC-GAC rms| LAC-GAC rms

number of vectors as % of LAC

entering statistics signal variance
Image pair 18:43-22:05

U (em/s) (115) 28.72 37.89 22.73 62.65

V (em/s) (111) 20.23 28.18 21.85 116.60
Image pair 22:05-06:04

U (cm/s) (64) 22.28 21.77 9.05 16.48

V (cm/s) (65) 27.97 20.72 1543 30.43
Image pair 06:04-10:30

U (em/s) (110) 29.93 42.13 28.71 92.0

V (cm/s) (95) 15.55 19.90 16.37 110.84

Fig. 4(a) and (b) shows the scatter plots of both the u and
v components of the best case (the second image pair) and
helps illustrate the values in Table II, which shows that, for
the meridional v components, the discrepancy between the
LAC and GAC fields is larger at 30.43% than for the zonal u
components at 16.48%. This is evident from Fig. 4(a) and (b),
showing that the LAC and GAC u components are a closer es-
timate of each other, looking at the y intercept of the trendline.
The v components might be more closely correlated, which is
indicated by the slightly higher determination coefficient, but
the higher y intercept of the trendline suggests a shifted origin,
resulting in an overestimation of the LAC components by the
GAC components. Fig. 4(a) and (b) shows 64 and 65 vector
components, respectively, in which not all are visible as some
of the dots are superimposed, indicating identical LAC/GAC
value pairs for both u and v.

The likely reason for the lower errors between the zonal
u LAC and GAC components compared to the meridional v
components for all three image pairs is that GAC data are
computed from a sample averaging of the LAC data. Four
out of every five samples along the scan line are used to
compute one average value, and the data from only every
third scan line are processed, thus giving a real resolution of
4.4 x 1.1 km. This procedure means that, in the meridional
direction, the GAC data have gaps. Even though these are filled
during the navigational interpolation algorithm, they still affect
the feature tracking of the MCC, as it creates an uncertainty
in the location of the original and final location of the feature.
While the results of the second-image pair are encouraging, the
two other cases do not demonstrate the same potential to re-
trieve current information from GAC images, as the LAC/GAC
rms vector differences that should be low for accurate retrieval
are too high and, in some cases, are actually higher than the
LAC rms values, resulting in a 116% and 110% degradation of
the v component of the first and third image pairs, respectively.

As stated in Section III, the method precision also depends
heavily on the accurate navigation of the images and on a
precise attitude error correction. GAC images were attitude
corrected using the correction parameters obtained for the LAC
images, because it was not possible to correct these images
independently with sufficient precision. This means that routine
MCC processing of GAC images is problematic since it would
involve the attitude error correction of the LAC images that
would then be applied to the GAC images. Furthermore, current
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Fig. 4.

navigation and attitude error correction algorithms tend to rely
on ground control points whose latitudes and longitudes are
known to “anchor” the images to these points. This limits any
accurately registered images of the coastal zones, i.e., the zones
containing a landmass. The open ocean areas therefore tend to
be less accurately registered and may introduce the spurious
vectors if used in an MCC run.

V. CONCLUSION

‘We have shown that, in its current format, GAC data do not
allow the retrieval of valid current information for all cases and,
thus, on a routine basis. Averaging LAC data in a complete
way to produce the “real” 4.4 x 4.4 km GAC data may be a
valid future step, as it should show whether the performance
issues are related to the sampling of the field of vision. Other
steps may include the use of larger template windows and
also smoothing the final vector fields to reduce random noise.
Streamfunctions may be fitted to the fields for smoothing the
vector fields, but they also eliminate the ageostrophic flow
components. An alternative to using the MCC method is the
inversion of a heat-advection equation, as shown by Kelly [7],
which may be less impacted by the more coarse GAC data.
If it is demonstrated that the current vectors can be reliably
retrieved from GAC data, it could be successfully applied to
the sea-surface temperature fields from geostationary satellites
that typically have 30-min time separations and may thus be
easily composited to reduce cloud cover. Until it is shown that

V (LAC)cm/s

(b)

(a) Scatterplot for the zonal-flow u component. (b) Scatterplot for the meridional-flow v component.

GAC resolution images produce accurate vector fields, this is,
however, not a viable objective.
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