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Abstract:  
 
We successfully tested a Dynamic Energy Budget (DEB) model of the oyster Crassostrea gigas using 
published environmental data and growth data collected in Thau lagoon (France). Estimates of most 
DEB parameters were based on independent datasets and only two parameters were calibrated using 
our datasets: the shape parameter, which was used to convert body volume into shell length, and the 
half-saturation coefficient, which controlled the functional response of assimilation to food 
concentration, represented by chlorophyll-a concentration. The DEB model proved to be robust and 
generic: it was able to reproduce oyster growth in Thau lagoon and other ecosystems. We also 
assessed population dynamics by coupling DEB equations and an Individual Based Model (IBM) of 
cultivated oyster populations. The results were compared with previously published simulations of 
harvested production and standing stock based on an empirical growth equation and a partial 
differential equation of population dynamics. Differences between the two studies were explained by 
the difference between the predictions of oyster growth with the empirical and the DEB models. We 
also accounted for growth variability between individuals and showed that IBM offers a powerful 
alternative to continuous equations when several physiological variables are involved.  
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1 Introduction 

 

Individual growth is the main process accounted for by mathematical models of living 

organisms and an abundant literature deals with the simulation of individuals mass or size and 

focus on energy budget. This is also true for marine filter feeders and effort has been put for many 

years on the mathematical formulation and parameterisation of energy gain and expenditure in 

order to predict individual growth in a varying environment (Ross and Nisbet, 1990; Van Haren and 

Kooijman, 1993; Barillé et al., 1997; Pastres et al., 2001; Rueda et al., 2005). In this context, 

models based on Dynamic Energy Budget (DEB) concepts (Kooijman, 2000) aim at deriving a 

generic set of equations from general properties of living organisms and represent a promising tool 

(Beadman et al., 2002). When population dynamics of filter feeders is concerned several strategies 

can be applied. Age distribution is commonly used to describe the survival of individuals (Savina, 

2004). Size and mass distributions have also been considered by several authors who assessed 

the relationship between biomass and environmental factors or management strategies (Barbeau 

and Caswell (1999) for Placopecten magellanicus, Dekshenieks et al. (2000) for Crassostrea 

virginica, Pastres et al. (2001) for Tapes philippinarum, Borja and Bald (2002) for Ruditapes 

decussatus, Duarte et al. (2003) for Chlamys farreri, Gangnery et al. (2004a,b) for Crassostrea 

gigas and Mytilus galloprovincialis). In these models, the transition between classes is derived from 

the equation of individual growth and it is generally assumed that individuals who belong to the 

same class have the same growth – though inter-individual variability has been superimposed by 

Gangnery et al. (2004a,b). One difference between these models concerns the number of 

size/mass classes but all models use a single variable to represent individual growth. For instance 

Gangnery et al. (2004a) simulate individual total mass and compute the number of individuals in 

ca. 90 mass classes with a partial differential equation (referred as PDE in the text) in which an 

empirical growth equation is used to compute the transition between classes. In more complex 

growth model like DEB, individuals can not be represented by a single variable – e.g. total mass. 

As explained in this volume, the utilisation of energy by an individual for growth, maintenance and 

reproduction involves at least 3 compartments: storage, body volume and reproduction. Shell 

length is directly related to body volume whose dynamics results from energy flows between all 3 

compartments. The use of DEB models to reproduce population dynamics would therefore imply to 

replace the transition between adjacent mass classes by transitions between storage, body volume 

and reproduction classes in a way similar to Gangnery et al. (2001) and it would require solving a 

PDE with partial derivatives with respect to these 3 variables. Numerical integration of such an 

equation is less straightforward than the PDE used by Gangnery et al. (2001). Alternative methods 

presented in DeAngelis and Gross (1992) are called Individual Based Models (IBM). The 

population is divided into cohorts and its dynamics is reproduced by simulating the growth 

trajectories of numerous individuals. Standing stock is obtained by summing up individual mass 

and the size distribution of individuals approximates the real size distribution. Since the recruitment 

of new individuals in the population is linked to individual reproduction and is sensitive to the 
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approximation of the true size distribution, special algorithms have been applied to ascertain that 

this approximation is acceptable (De Roos, 1988; Hallam et al., 1988). Since IBMs are easier to 

implement than PDE, especially in the case where several physiological variables are needed to 

represent the population structure, they are applied in various fields (De Roos et al., 1997; 

Wyszomirski et al., 1999; McDermot and Rose, 2000; De Roos and Persson, 2001; Batchelder et 

al., 2002). They allow tracking individual history and accounting for interactions between 

individuals when they exist. On the other hand, such methods often require intensive computations 

due to the large number of cohorts needed to account for temporal and spatial variability and/or 

populations interactions (Batchelder et al., 2002). 

In this paper we present a population model based on an IBM method using DEB model to 

simulate individual growth and reproduction. We applied this population model to the case of 

cultivated oyster populations in Thau lagoon documented by Gangnery et al. (2003, 2004a). 

Briefly, Thau lagoon is an important shellfish culture area of Pacific oysters (Crassostrea gigas) 

and Mediterranean mussels (Mytilus galloprovincialis). The total standing stock varies between 

14,000 and 20,000 tons (1 ton = 1000 kg) a year (Gangnery et al., 2001) and oysters account for 

about three quarters of the total cultured biomass. The population dynamics model developed by 

Gangnery et al. (2004a) is based on a PDE of oyster abundance accounting for individual growth 

rate, inter-individual growth variability, seeding, harvesting and natural mortality rates. Growth is 

simulated with an empirical equation in which growth rate is a function of water temperature, 

particulate organic matter concentration and individual total mass. The model took into account two 

culture methods and rearing strategies of oyster farmers by using timetables of seeding and 

harvesting and was calibrated on observed distributions of standing stocks. The model was used to 

evaluate the effects of different environmental conditions - e.g. a decrease in the oyster growth 

rate, a harvesting closure due a toxic algae bloom, a massive summer mortality due to an anoxic 

crisis, on short- and long-term variations in the standing stock and harvested production. By 

construction, the empirical growth equation was unable to compute the amount of food used by the 

oyster population and only a mechanistic model based on energy budget would allow to fully 

addressing the interactions between oyster population and ecosystem.  

Our objectives were therefore: i) to reproduce the observed growth of Pacific oysters in Thau 

lagoon with a generic model already calibrated and validated on other data sets (Pouvreau et al., 

2006; Van der Veer et al., 2006), ii) to switch from a PDE-based model to an IBM incorporating the 

DEB physiological variables in the simulation of the population dynamics and oyster production 

assessment, iii) to enable to link the ecosystem functioning and the oyster population dynamics in 

a way that will allow to assess the effect of ecosystem changes on oyster production. 

2 Methods 

2.1 Dataset 

 

Environmental and oyster growth data were published by Gangnery et al. (2003). In order to 
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estimate trophic resources potentially available for oysters, suspended particulate matter (total, 

organic and inorganic fractions) and phytoplankton biomass (total and size-fractionated chlorophyll 

a) were estimated. Samples were taken every two weeks at 4 sites from March 2000 until October 

2001 (Fig.1). Other environmental data, temperature and salinity, were also sampled with the same 

frequency. Food was expressed as total chlorophyll a concentration. Temperature and chlorophyll 

a concentration were therefore the 2 variables used in the model as driving functions (see DEB 

model below and Fig. 2). Oysters were set on ropes used for culture on two occasions (i.e. two 

seeding dates) in late March 2000 and late September 2000 and using two different cultivation 

techniques (called ‘categories’ in the following; see Gangnery et al., 2003 for details about the 

culture techniques) at the same four sites. Ultimately, 16 experimental growth curves were 

obtained (2 seeding dates, 4 sites, 2 categories). Growth was monitored monthly during spring and 

summer and every two months during fall and winter during 1 year. On each occasion, one rope of 

oysters was sampled and a sub-sample of 30 individuals was randomly chosen in order to assess 

growth average as well as variability. Shell length (L, mm), individual total mass (WT, g) and fresh 

tissue mass (W, g) were measured on every individual. In the following the 16 time series of 

environmental and growth data will be referred as datasets combining 2 seeding dates, 4 sites and 

2 categories.  

Since oysters are cultured populations, seeding is not directly linked to oyster abundance or 

reproduction. Small oysters are usually imported from other cultivated areas or produced by 

hatcheries. The main seeding occurs between January to April and to a lesser extent in fall 

(Gangnery et al., 2004a). Seeding is avoided in summer (July and August) when high 

temperatures implied stressful conditions and seeding rates are also low in December when the 

farmers activity turns to the Christmas sale season. For our modelling issue, seeding refers to the 

number of seeded animals set up every month. Harvest depends on both individual mass and 

season. Information on monthly frequencies of harvest shows that peak periods are December, 

July and August. Similar as in Gangnery et al. (2001, 2004a) dependency upon mass has been 

taken into account with a sigmoid function and harvest was introduced in the model as a daily 

fraction of the number of individuals which have a mass above a given value. Seeding and 

harvesting timetables were obtained from information given by farmers while the numbers of 

seeded animals per month were obtained through calibration with the PDE-based model 

(Gangnery et al., 2004a). 

 

2.2 DEB model 

 

We kept most of the equations and parameters similar to those listed and estimated by 

Pouvreau et al. (2006), Van der Meer (2006) and Van der Veer et al. (2006). They are based on 

Kooijman (2000) DEB theory and have already been applied by Van Haren and Kooijman (1993) to 

Mytilus edulis, Van der Veer et al. (2001) to flatfishes and Cardoso et al. (2001) to several benthic 

bivlave species. Parameters are listed in Table 1 and equations are briefly described below. The 
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notation and symbols follow those in Kooijman (2000) whereby the following main rules apply: 

1. variables are indicated by symbols and lower case symbols frequently relate to upper case 

ones via scaling; 

2. quantities are expressed per unit of volume with square brackets []; per unit of biosurface 

area with braces {}; and per unit of mass with angles<>; 

3. rates have dots, indicating the dimension per time. 

The dynamics of growth and reproduction were represented by differential equations of three state 

variables: structural body volume V (cm3), energy reserves E (J) and energy allocated to 

development and reproduction R (J).  

For a single food source, assimilation energy rate is a function of food density ([X], mg.l-1) 

and is proportional to surface area of the structural body volume, which corresponds to the part of 

tissue without gonads and reserves. It is equal to: 

{ } 3/2Vfpp AmA ⋅⋅= &&    (J.d-1)          [1a] 

with 
KXX

Xf += ][
][    (-)         [1b] 

where f is the functional response of assimilation to food concentration (dimensionless), XK is the 

half saturation coefficient (μg chlorophyll a.l-1) and { }Amp&  is the maximum surface area-specific 

assimilation rate (J. cm-2 d-1). Assimilation contributes to the dynamics of the energy reserves 

which are given by the equation: 

CA ppdt
dE && −=    (J.d-1)         [2]  

where Cp& (J.d-1) denotes the energy utilisation rate. For the change of the structural volume it is 

assumed that a fraction of the utilisation rate is used for maintenance and structural growth and 

that maintenance rate is proportional to the volume. Therefore: 

[ ]
][ G

MC
E

Vpp
dt
dV ⋅−⋅= &&κ   (cm3.d-1)        [3] 

where [ ]Mp& is the maintenance cost (J.cm-3.d-1), [ ]GE is the volume-specific cost for structure (J.cm-

3), and κ (-) is the fraction of energy utilisation rate spent on maintenance plus growth. Kooijman 

(2000) derived the following equation of energy utilisation from theoretical considerations: 
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where [ ]E  represents energy density ( [ ] V
EE = , J.cm-3) and [ ]mE  is the maximum energy density in 

the reserve compartment. Substituting Cp&  in differential equations of V and E allows to simulate 

these two state variables as a function of food concentration.  

Assimilation and maintenance rates depend on temperature with an Arrhenius-type 

equation extended to include a species-specific tolerance range for low and high temperatures 

(Kooijman, 2000; Van der Veer et al., 2006). Assimilation and maintenance rates at temperature T 
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(K) are derived from the rates at the reference temperature T1 using the following formulations: 

( )[ ] ( )[ ] ( )TfTpTp MM ⋅=
1

&&  (J.d-1)         [5] 

{ } { } ( )TfTpTp AmAm ⋅= )()(
1

&&  (J.d-1)         [6] 
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where TA is the Arrhenius temperature (K), TL is the lower boundary of tolerance range, TH is the 

upper boundary of tolerance range and TAL and TAH are Arrhenius temperatures (K) for the rate of 

decrease at both boundaries. 

Juvenile development (i.e. increase in state of maturity) and adult reproduction (i.e. gamete 

production and spawning) correspond to 2 different stages in the individual life history. The 

transition between juveniles and adults implies a change in the maintenance rate. Kooijman (2000) 

introduced a threshold value of the structural volume VP which marks the transition between 

development and gamete production and showed that: 

[ ]
Mp pVV

κ
κpκ

dt
dR

C
&& ⋅⋅⎟

⎠
⎞

⎜
⎝
⎛ −

−⋅−= ),min(1)1(  (J.d-1)      [8] 

According to Pouvreau et al. (2006), spawning was triggered when the ratio between gonad and 

total tissue mass and water temperature were above 0.35 and 20°C, respectively. Then, in these 

occasions, compartment R was totally emptied. 

Shell length L (cm) was obtained from body volume using an allometric function: 

mδ
VL

3/1

=   (cm)          [9]  

where δm is the shape coefficient, estimated by Van der Veer et al. (2006) from independent 

datasets, however we also estimated δm from our simulations to test the assumption that this 

parameter is specific to species and not to sites.  

 

2.3 Simulation of growth surveys 

 

In order to apply DEB model to datasets, first the half saturation coefficient Xk (Eq. 1b) and 

the shape coefficient δm (Eq. 9) were calibrated for each dataset using observed shell length and 

fresh tissue mass and measurements of temperature and chlorophyll a (see 2.1) as forcing 

functions. For all datasets, also a single Xk and a separate δm was estimated in order to test if the 

goodness of fit was sensitive to this parameter. Calibration procedure was carried out by 

minimising the mean relative difference between simulated and observed fresh tissue mass and 

shell length with the Nelder-Mead simplex method implemented in Matlab®. Fresh tissue mass W 

(g) was obtained by summing the 3 variables E (J), V (cm3) and R (J) after conversion into fresh 
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mass. As in Pouvreau et al. (2006), E was converted using the parameter µE. R was firstly 

transferred into gametes with an efficiency κR (Pouvreau et al., 2006) and then converted into 

mass using the parameter µE. A specific mass ρ of 1 g.cm-3 was used to convert volume V into 

mass: 

ρμ
κ

μ ⋅+⋅+= VREW
E

R
E

  (g)        [10] 

When comparing simulated and observed growth data, one difficulty was to determine the 

initial values of the 3 state variables. Since growth surveys always started with small individuals 

with a total mass less than 8 g, we assumed that R was equal to 0. Initial tissue mass had 

therefore to be split between structural volume and storage, and estimations were obtained after 

several calibration trials – but no automatic procedure was applied. The repartition used in the 

simulations is presented in Table 2. 

For the simulation of standing stock and harvested production (see explanations below), the 

individual total mass WT (shell + fresh tissue, g) needed to be estimated. It was derived from shell 

length by an empirical relationship based on data from Gangnery et al. (2003): 

30934.0 LWT ⋅=   (g)         [11] 

 

2.4 Sensitivity analysis 

 

A sensitivity analysis was conducted on several parameters to assess their impact on the 

model results. Each parameter was modified by +10% and the results of each run were analysed 

using a sensitivity index (SI) to calculate the resulting percentage change in the fresh tissue mass: 

100
1

1 0

01

⋅
−

= ∑
=

n

t
t

tt

W

WW

n
SI   (%)         [12] 

where n is the number of simulated days, 0
tW is the fresh tissue mass predicted with the standard 

simulation at time t, and 1
tW is the fresh tissue mass predicted with a new parameter value at time t. 

A mean value of SI was calculated over the 4 sites for each combination survey x category. 

 

2.5 Model of individual variability 

 

Since measurement of growth variability showed that variability between individuals played 

an important role in the population dynamics (Gangnery et al., 2001, 2004a), a random effect was 

incorporated in the DEB model. It was assumed that variability would mainly affect the half 

saturation coefficient Xk (Eq. 1b) for two reasons: Xk was already a parameter calibrated for the 

different surveys, categories and sites in order to account for differences between growth time 

series, and it was also more straightforward to consider a single parameter – and probably efficient 

enough with regards to the prediction of variability. We therefore estimated by trial and error which 
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random noise of the calibrated Xk would reproduce the observed standard deviations of shell length 

and fresh tissue mass. Assuming a normal distribution of Xk, 100 simulations of individual growth 

were run with randomly drawn Xk values for each growth time series. Predicted standard errors 

were plotted against observed standard errors. The standard deviation parameter of the normal 

distribution was changed by trial and error until a satisfactory correlation between predicted and 

observed standard errors was obtained. 

 

2.6 Population model 

 

Several cohorts were defined to simulate the population dynamics. Denoting Ni the number 

of individuals in cohort i, we solved the following differential equation: 

iiiii NmNhdt
dN ⋅−⋅−=  (ind.d-1)        [13] 

where hi is the harvest rate coefficient and mi is the natural mortality rate coefficient. The harvest 

rate was a function of time and individual mass (see above) and mortality rate was defined as a 

constant (0.1 yr-1, Gangnery et al., 2004a). Initial values of Ni were given by the seeding timetable 

(see 2.1) according to a seeding time interval tΔ . Physiological variables Vi, Ei, Ri, Li and WTi were 

associated to cohort i and simulated with the DEB equations explained above. As Gangnery et al. 

(2004a), spatial variability of environmental conditions and growth was neglected and temperature 

and chlorophyll a time series were averaged. Also the value of the shape parameter was kept 

similar to Van der Veer et al. (2006) and the half saturation coefficient used in the functional 

response of assimilation to food concentration was averaged. Initial values of physiological 

variables were the same as for the simulations of the growth surveys (see 2.3). Li and WTi were 

derived from the previous variables using the shape parameter (conversion from body volume to 

shell length – Eq. 9) and length to total mass conversion coefficient (Eq. 11). 

All differential equations were integrated simultaneously using an Euler algorithm with a 

time step of one day. At every time step all cohorts were summed up to estimate standing stock as 

a function of time with the following equation: 

∑ ⋅=
i

ii WTNS   (t)         [14] 

Harvested production was defined as the cumulative harvest of cohorts:  

∑ ⋅⋅=
i

iii WTNhP   (t)         [15] 

and the total number of oysters was equal to: 

∑=
i

iNN    (ind.)        [16] 

Initial numbers of individuals, cohorts and standing stock were set to 0. Simulations were therefore 

run during several years in order to reach stable standing stock and harvested production 

variations. For that purpose, environmental forcing (see 2.1 and 2.3) of individual growth and 
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seeding/harvest timetables (see 2.1) were repeated during several years. Due to rapid oyster 

growth, oysters reach the marketable mass after roughly one year (Gangnery et al., 2004a) which 

means that a cohort lifespan was ca. 1 year and simulated standing stock and harvested 

production were stable after ca. 3 years.  

Simulating the population dynamics with a finite number of cohorts is an approximation of 

the real dynamics and approximations of mass distribution, standing stock and harvested 

production depend on the seeding time interval – e.g. number of cohorts. Several seeding time 

intervals were tested before satisfactory results were obtained that were assessed in two different 

ways. To check IBM consistency, we first implemented Gangnery’s empirical growth equation 

(Gangnery et al., 2004a) instead of the DEB model into the IBM and compared standing stocks 

and harvested production yielded by Gangnery’s PDE-based model and our IBM with different 

seeding time intervals. Also DEB-IBM simulations with different seeding time intervals were 

compared to assess below which values simulations would show a difference lower than 1% - an 

arbitrary value that we judged small enough for the accuracy we aimed at in our estimation of 

harvested production. In all cases, it was found that a seeding time interval of one day was small 

enough. Around 1000 growth trajectories were therefore simulated to reproduce the population 

dynamics during 3 years. 

By combining the variability of Xk derived from the estimation on the 16 datasets as well as 

inter-individual growth variability, inter-individual variability was introduced in the population model. 

Each cohort had a random Xk and standing stock and harvested production were calculated as 

above. 50 simulations were run and statistics of stock and harvested production were derived from 

the model outputs.  

3 Results 

 

3.1 Simulation of growth surveys 

 

The calibration of a single parameter Xk for the whole datasets led to a poor fit between 

simulated and observed values of the fresh tissue mass (Fig. 3). The optimised value obtained for 

Xk is 2.97. After calibration of Xk and δm on each of 16 growth datasets, simulations fitted well to 

observed fresh tissue mass, shell length and total mass with an average relative error lower than 

10% (Figs 4 -7). Xk ranged from 2.01 to 3.91 and δm from 0.158 to 0.206 with average values equal 

to 2.96 and 0.19 for the 2 parameters, respectively (Table 3). The functional response (Eq. 1b) of 

assimilation rate to food concentration (measured chlorophyll a) was comprised between 0.1 and 

0.56 which showed that growth was food-limited. 

For fresh tissue mass during survey 1, the general features were well captured by the 

calibration of the 2 DEB parameters. For category 1 for instance mass grew from less than 1 g up 

to between 8 and 14 g depending on the sites (Fig. 4a) and, for the second category, mass varied 

from ca. 0.3 g in May to 4-7 g after one year (Fig. 5a). Differences between sites were important 
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and comparable for both categories. The functional response of assimilation to food concentration 

captured partly these differences, which were also reflected by the different values of Xk obtained 

for each site. The general trend of mass variation was marked by a seasonal effect related to 

temperature, with low growth during winter and maximum growth between July and September. 

The model estimated one spawning event for category 1 only, which occurred in mid-September. 

For survey 2, observed tissue masses were correctly predicted except for category 1 where the 

mass was overestimated at the end of the growth experiment (Fig. 6a). The model estimated one 

or two spawning events depending on the site and for category 1 only. The first one occurred in 

May-June and the second one in July-August. 

For all surveys and categories, observed shell lengths displayed a plateau from November to 

January and maximum changes occurred during spring and summer (Figs 4b-7b). This was 

generally well reproduced by the simulations in all surveys but some differences were noticed for 

small individuals in survey 1 and category 2 (e.g. the model overestimated the length) and in 

survey 2 and category 1 (e.g. the model overestimated length of large individuals). 

As opposed to shell length, predicted total mass was correct for all surveys and categories 

except for survey 2 and category 1 where mass of individuals was generally underestimated (Figs 

4c-7c). Despite these occasional differences between simulations and observations, correlations 

between predicted and observed values were very close to 1 (0.98 for fresh tissue mass, 0.97 for 

shell length and 0.95 for total mass). The slope of the fitted regression between simulated and 

observed values was not different from 1, which showed that the model was not biased (Fig. 8). 

Sensitivity analyses showed that the parameters governing food consumption, i.e. { }Amp&  and 

in a lesser extent Xk, and parameter κ, had the most important effect on the growth in fresh tissue 

mass. An increase of 10% in { }Amp&  and κ yielded a mean variation of 11 to 22% depending on the 

combination survey x category, in the fresh tissue mass (Fig. 9). An increase of 10% in the 

parameter Xk yielded a variation of ca. 10% in the fresh tissue mass. On the contrary, 

parameters [ ]GE , Vp and initial conditions of mass repartition between structural volume, reserves 

and gonad had small effects (ca. 1%) on the predicted fresh tissue mass. 

 

3.2 Model of individual variability 

 

Taking into account the variability between individual growth resulted in an estimation of Xk 

standard deviation of ca. 24%, all sites and surveys combined. Simulating variable growth 

trajectories with randomly drawn Xk values reproduced well observed standard deviations of fresh 

tissue mass (Fig. 10). 

 

3.3 Simulation of the population 

 

For the DEB-IBM, the average values of Xk and δm were used first, whereby stock and 
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harvested production was plotted after simulations reached an equilibrium. Simulation started with 

no oyster at all, and it was checked that the simulation of standing stock and harvested production 

did not depend on the initial condition by running and comparing several simulations. At 

equilibrium, simulated standing stock varied between ca. 3,800 tons and 7,000 tons, with a 

maximum value at the end of summer and an average of 4,623 tons (Fig. 11). Harvest started very 

slowly and had a sharp increase when the stock started to decrease. The maximum harvested 

production was equal to 5,561 tons at the end of the year. The values can be compared to the 

simulation of the PDE-based model under the same conditions (Gangnery et al., 2004a) with and 

without inter-individual variability. In the first case, we kept the numerical diffusion as well as the 

diffusion coefficient to reproduce the variability between individual growth. In the second case, the 

diffusion coefficient was set to 0 and the numerical diffusion was set to a minimum by decreasing 

the size of the mass classes (see Gangnery et al., 2001, 2004a for more information on the 

method used to solve the PDE). While the annual harvested production was about the same (e.g. 

5,820 tons with diffusion, 5,753 tons without diffusion), the curves of harvested cumulated 

production over one year were quite different – e.g. harvested production predicted with the 2 

PDE-based models grew more regularly than in the DEB-IBM. The difference was even stronger 

for the standing stocks. Average values were equal to 3,517 and 3,244 tons for the 2 PDE-based 

models and the dynamics were not at all comparable to DEB-IBM. Since it was checked that PDE-

based and IBM gave the same results when a simple empirical growth model was used, the 

difference was related to the use of the DEB equations instead of the empirical equation. 

Introducing variability in the DEB-IBM yielded several estimations of standing stock and harvested 

production due to the repeated simulations (Fig. 11). On the whole, they confirmed that individual 

variability attenuated the dramatic changes of stock and harvested production curves due to rapid 

oyster growth during spring, but did not modify the shift between the harvested productions 

simulated with PDE-based model and DEB-IBM. 

4 Discussion 

 

4.1 DEB model 

 

In this paper, we applied an existing DEB model to several existing datasets of 

environmental parameters (chlorophyll a, temperature) and oyster growth in Thau lagoon 

corresponding to 4 sites, 2 years and 2 cultivation techniques. Most of DEB parameters were 

estimated from independent datasets using comprehensive studies of oyster growth and 

ecophysiology under controlled food and temperature conditions (Pouvreau et al., 2006) and 

literature (Van der Veer et al., 2006). Only two parameters were calibrated: the shape parameter 

which was used to convert fresh tissue mass into shell length, and the half saturation coefficient 

which controlled the functional response of assimilation to food concentration. A better prediction of 

mass and length was obtained when these 2 parameters were fitted on each dataset separately. 
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 The shape parameter was slightly different from the expected value for the datasets related 

to the second year growth experiment. The existence of a single value for all individuals of the 

same species may be questioned, since populations (as here) have different origins. However, the 

differences we found between datasets are much lower than the differences between species. Van 

der Veer et al. (2006) reported a value of 0.381 for cockles and 0.287 for mussels. Besides, the 

shape parameter is only used as a conversion coefficient and is not essential for the DEB model, 

however it is needed for the population dynamics model since the harvesting rule is dealing with 

individual total mass which is strongly correlated to shell length. As for the half saturation 

coefficient Xk, there were some differences between surveys, sites and categories - without a clear 

effect of one of these factors. Using a unique Xk therefore yielded a lower goodness-of-fit but it was 

comparable to the empirical equation used by Gangnery et al. (2003). We found a correlation 

between Xk and chlorophyll a averaged on each site and year (not shown), which shows that the 

functional response did not capture all the influence of food concentration on oyster growth. It may 

be due to the existence of other food sources like detritus which are often introduced in growth 

model (Barillé et al., 1997; Grant and Bacher, 1998; Scholten and Smaal, 1998; Duarte et al., 

2003) and it was the explanatory variable retained by Gangnery et al. (2003). Several trials were 

made to consider POM as a single food source or to combine chlorophyll a and POM into a more 

elaborate functional response but none attempt was conclusive. Other authors also make the same 

assumption of a single food source (Pastres et al., 2001; Ren and Ross, 2001) or a simple Holling 

type II function as a generic response of filter feeders similar to ours (Dowd, 1997). In Thau lagoon, 

POM concentrations are usually low compared to other coastal areas where oyster are cultured, 

and chlorophyll a is probably the main food source even though no direct measurement or 

comparison of assimilation of chlorophyll a and POM are available to support this assumption. 

Compared to other ecosystems however, the dynamics of Thau lagoon shows a low temporal 

variability and the simplification of functional response would therefore remain acceptable. 

Our results showed that the DEB model was a powerful tool to simulate oyster growth in a 

natural environment because 1) parameters were estimated on independent datasets (Van der 

Veer et al., 2006) and 2) validation was achieved for different experimental and in situ conditions 

(Pouvreau et al., 2006). To our knowledge its application to a comprehensive dataset in a real 

ecosystem was not achieved before. DEB model relies upon some general principles – e.g. energy 

is allocated to storage, reproduction and growth, assimilation is function of a surface, energy costs 

are functions of body volume, temperature effects are the same for all physiological rates - which 

are consistent with general observations and decrease the number of parameters. All other models 

applied to shellfish appear more empirical to some extent. Ren and Ross (2001) developed a 

model of oyster growth based on scope for growth and applied it successfully to different 

ecosystems but in most studies growth predictions are generally not fully validated on experimental 

or detailed field datasets (Kobayashi et al., 1997) or are restricted to a single ecosystem (Barillé et 

al., 1997; Grant and Bacher, 1998; Scholten and Smaal, 1998; Gangnery et al., 2004a, b). DEB 

has therefore several advantages compared to other models: a small number of parameters is 
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needed, it is generic and can be applied to different species and ecosystems with minor changes 

and it is robust and consistent. Only 16 parameters were used but 4 were added to modulate the 

potential influence of low or high temperature on physiological rates. With their empirical equation 

Gangnery et al. (2003) used 12 parameters to predict dry tissue mass, shell length and total mass. 

However, one advantage of their model was that they only needed one equation with 4 parameters 

to predict total mass in the PDE-based model. On the other hand, even though the modelling 

methodology could be successfully repeated, parameters had to be estimated again for mussel 

using the same field survey (Gangnery et al., 2004b). Due to its genericity, application of DEB 

model would require less effort in the field and need only to identify and monitor food sources. DEB 

predictions are also consistent with general features of individual growth. In a steady environment, 

it is proven that growth is equivalent to von Bertalanffy’s equation and that the growth rate constant 

can be estimated from DEB parameters (Kooijman, 2000; Van der Veer et al., 2006). This result 

guarantees that individual mass or size will not go beyond a maximum value. This property is not 

met by Gangnery et al. (2003, 2004b) whose model predicts an infinite growth – which would not 

affect the relevance of their harvested production forecast, but represents a methodological 

limitation of such an approach. The last advantage of the new model compared to Gangnery et al. 

(2004a) is that it is a step towards the assessment of interactions between oyster population and 

phytoplankton concentration in the ecosystem. The effect of oysters on the ecosystem dynamics 

could therefore be assessed by deriving biodeposition and excretion from the existing equations of 

ingestion, assimilation and maintenance. This would bridge the gap between existing ecosystem 

(Chapelle et al., 2000) and oyster growth models. 

 

4.2 Population model 

 

The development of a population model using IBM technique was straightforward and the 

only parameter we had to choose carefully was the seeding time interval to which the number of 

cohorts is related. With a limited number of cohorts, the dynamics of the standing stock and the 

harvested production that were obtained before with the PDE-based model could be reproduced. 

The coupling between IBM and either the empirical growth equation or the DEB model proves that 

IBM is much more flexible than the PDE-based model. We are aware that much more trajectories 

would be necessary if we wanted to assess accurate size distributions in order to calibrate the 

DEB-IBM predictions like Gangnery et al. (2004a), but the management of ten times the actual 

number of cohorts would still be feasible. The other advantage is that any type of growth equation 

can be implemented in an IBM. It would therefore be very easy to apply to mussel populations in 

Thau lagoon using the same DEB model with the appropriate set of parameters (Van der Veer et 

al., 2006). 

We checked that IBM and PDE-based model coupled to the same empirical growth equation 

would give the same results in the case of no variability between individuals. This was achieved by 

decreasing the numerical diffusion in the PDE-based model (see Gangnery et al. (2001, 2004a) for 
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further explanation), ana accounting for inter-individual variability. Computations showed that it has 

an effect on estimations of standing stock and harvested production of about 10%. Growth 

variability is a key issue for ecological reason (it plays a role in the evolution of the population and 

the trophic interactions with other species) and practical reasons related to marketable size and 

efficiency of rearing techniques. It has been reported for mussel culture on “bouchot” 

(Boromthanarat et al., 1988) and most often neglected in population models of filter feeders. Use of 

a PDE was an advantage for including variability in the population dynamics, since numerical 

diffusion completed by a diffusion coefficient allowed to reproduce the observed growth variance 

(Gangnery et al., 2004a). With a DEB-IBM, two strategies can be examined. In a simple IBM of 

mussel population dynamics, Thomas (2004) derived a statistical relationship between size 

variance and mean from growth measurements and computed the variance for each cohort. Size 

distribution of the total population was constructed by superimposing the size distributions of all the 

cohorts, assuming normal distributions. Wyszomirski et al. (1999) related variability to assimilation 

and respiration rates in a simple model of competition between individuals and randomly drew 

parameters to simulate a lot of individual trajectories. The first solution is easy to apply and is 

generally appropriate when growth rate is constant – e.g. variance and growth are simple functions 

of time. The second solution is attractive because it is related to the variability of physiological 

responses, but is limited by the small amount of information on such variability. We assumed that 

most of the variability was related to feeding. Introducing Xk normal distribution in the functional 

response of assimilation to food concentration allowed to reproduce observed growth variability. 

Simulations with growth variability therefore confirmed that variability plays a role in the population 

dynamics and has to be taken into account to assess standing stock and harvested production. 

Comparison between PDE-based model and DEB-IBM showed that the population dynamics 

was very sensitive to the growth equation. Both empirical and DEB growth models reproduced 

observed growth but small differences between the 2 models resulted in a large difference of 

population dynamics - assessed in our study through standing stock and harvested production. In 

the DEB model, shell length and total mass remained constant during winter, as opposed to a 

slight increase in the empirical growth. This difference would explain why the harvested production 

predicted by the IBM was delayed compared to the PDE-based model. As a consequence, more 

oysters would stay in the population and the standing stock would keep on growing with the arrival 

of seeded animals. As long as estimation of annual harvested production is the primary objective of 

the population model, model prediction would still be acceptable but the sensitivity of the 

population dynamics to individual growth is problematic. Including growth variability compensated 

only partly the null winter growth and changed the harvest timing – see the comparison made with 

the PDE-based model and DEB-BM with/without variability. As a consequence, production data 

would be useful to validate the population model. 
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Table 1. List of DEB parameters 

 

Parameters Symbol Unit Value Reference 

Half saturation coefficient XK μg.l-1 - This study 

Max. surf. area-specific assimilation rate { }Amp&  J.cm-2.d-1 560 Van der Veer et al. 

(2006) 

Volume-specific maintenance costs [ ]Mp&  J.cm-3.d-1 24 Van der Veer et al. 

(2006) 

Maximum storage density [ ]ME  J.cm-3 2295 Van der Veer et al. 

(2006) 

Volume-specific cost for structure [ ]GE  J.cm-3 1900 Van der Veer et al. 

(2006) 

Structural volume at puberty Vp cm-3 0.4 Pouvreau et al. (2006) 

Fraction of energy utilisation rate spent 

on maintenance plus growth 
κ - 0.45 Van der Veer et al. 

(2006) 

Shape coefficient δm - 0.175 Van der Veer et al. 

(2006) 

Arrhenius temperature  TA K 5800 Van der Veer et al. 

(2006) 

Reference temperature  T1 K 293 Van der Veer et al. 

(2006) 

Lower boundary temperature of the 

tolerance range 

TL K 281 Van der Veer et al. 

(2006) 

Upper boundary temperature of the 

tolerance range 

TH K 305 Van der Veer et al. 

(2006) 

Arrhenius temperature for the rate of 

decrease at lower boundary   

TAL K 75000 Van der Veer et al. 

(2006) 

Arrhenius temperature for the rate of 

decrease at upper boundary   

TAH K 30000 Van der Veer et al. 

(2006) 

Fraction of reproduction energy fixed in 

eggs 
κR - 0.6 Pouvreau (personal 

communication) 

Energy content of reserves (in ash-free 

dry mass) 

µE J.mg-1 17.5 Brody (1945) 

Gonado-somatic threshold for triggering 

spawning 

RGS % 35 Pouvreau et al. (2006) 
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Table 2. Initial repartition (%) of the fresh tissue mass into structural volume, reserve and gonad 

used for simulations of the DEB model. 

 

 Structural volume Reserves Reproduction 

Survey 1 – Category 1 100 0 0 

Survey 1 – Category 2 30 70 0 

Survey 2 – Category 1 70 30 0 

Survey 2 – Category 2 70 30 0 
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Table 3. Optimised values of Xk and δm given by the model for each simulation. 

 

 Site 2 Site 3 Site 4 Site 6 

 XK δm XK δm XK δm XK δm 

Survey 1 – 

Category 1 

2.94 0.181 2.36 0.186 2.23 0.194 2.01 0.194 

Survey 1 – 

Category 2 

3.02 0.172 3.1 0.174 2.9 0.158 2.72 0.177 

Survey 2 – 

Category 1 

3.38 0.205 2.51 0.204 3.55 0.198 2.60 0.199 

Survey 2 – 

Category 2 

3.27 0.201 3.58 0.200 3.91 0.206 3.24 0.196 
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Figure 1. Map of Thau lagoon and study sites 
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Figure 2. Temperature and chlorophyll a time series for the 4 sites in Thau lagoon. The solid line 

represents the mean over sites (from Gangnery et al., 2003). 
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Figure 3. Comparison of fresh tissue mass obtained through DEB simulations (lines) and growth 

data for a single parameter Xk : a) survey 1 x category 1, b) survey 1 x category 2, c) survey 

2 x category 1, d) survey 2 x category 2. Mean observed values are presented with their 

standard error. 
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Figure 4. Comparison of DEB simulations (lines) and growth data (symbols) for 16 parameter sets 

of Xk and δm: survey 1 x category 1; a) fresh tissue mass (g), b) shell length (cm), c) 

individual total mass (g). Mean observed values are presented with their standard error. 



 25

 
Figure 5. Comparison of DEB simulations (lines) and growth data (symbols) for 16 parameter sets 

of Xk and δm: survey 1 x category 2; a) fresh tissue mass (g), b) shell length (cm), c) 

individual total mass (g). Mean observed values are presented with their standard error. 
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Figure 6. Comparison of DEB simulations (lines) and growth data (symbols) for 16 parameter sets 

of Xk and δm: survey 2 x category 1; a) fresh tissue mass (g), b) shell length (cm), c) 

individual total mass (g). Mean observed values are presented with their standard error. 
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Figure 7. Comparison of DEB simulations (lines) and growth data (symbols) for 16 parameter sets 

of Xk and δm: survey 2 x category 2; a) fresh tissue mass (g), b) shell length (cm), c) 

individual total mass (g). Mean observed values are presented with their standard error. 
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Figure 8. Comparison of correlations between predicted and observed a) fresh tissue mass (g), b) 

shell length (mm), c) individual total mass (g). 
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Figure 9. Sensitivity index computed for DEB parameters for each survey and category (see text 

for details, Eq. 12 and Table 1 for parameter meaning). 

 

 
Figure 10. Predicted vs. observed standard deviations of fresh tissue mass (g) for all growth time 

series. 
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Figure 11. Comparison of PDE-based model and DEB-IBM outputs; a) cumulated harvest (tons), b) 

standing stock (tons). … : PDE without diffusion, -.- : PDE with diffusion, --- : DEB-IBM 

without variability, - : DEB-IBM with variability. 
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