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Monotonicity properties for the viable control

of discrete time systems

Michel De Lara∗, Luc Doyen†, Thérèse Guilbaud‡, Marie-Joëlle Rochet‡

April 24, 2007

Abstract

This paper deals with the control of nonlinear systems in the presence of state and control
constraints for discrete time dynamics in finite dimensional spaces. The viability kernel is known
to play a basic role for the analysis of such problems and the design of viable control feedbacks.
Unfortunately, this kernel may display very non regular geometry and its computation is not
an easy task in general. In the present paper, we show how monotonicity properties of both
dynamics and constraints allow for relevant analytical upper and lower approximations of the
viability kernel through weakly and strongly invariant sets. An example on fish harvesting
management illustrates some of the assertions.

Key words: control, state constraints, viability, invariance, monotonicity.

1 Introduction

Let us consider a nonlinear control system described in discrete time by the difference equation

{
xt+1 = f(xt, ut), ∀t ∈ N,

x0 given,
(1)

where the state variable xt belongs to the finite dimensional state space X = R
nX , the control

variable ut is an element of the control set U = R
nU while the dynamics f maps X × U into X.

A controller or a decision maker describes “desirable configurations of the system” through a
set D ⊂ X × U termed the desirable set

(xt, ut) ∈ D, ∀t ∈ N, (2)

where D includes both system states and controls constraints. Typical instances of such a desirable
set are given by inequalities requirements: D = {(x, u) ∈ X × U | ∀i = 1, . . . , p , gi(x, u) ≥ 0}.
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Cedex 2 - France. Corresponding author: delara@cermics.enpc.fr, fax +33164153586
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Paris, France
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France
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The state constraints set associated with D is obtained by projecting the desirable set D onto
the state space X:

V
0 := ProjX(D) = {x ∈ X | ∃u ∈ U , (x, u) ∈ D}. (3)

Such problems of dynamic control under constraints refers to viability [1] or invariance [11]
framework. Basically, such an approach focuses on inter-temporal feasible paths. It has been
applied for instance to models related to the sustainable management of resource and bio-economic
modeling as in [3, 4, 5, 12, 15, 16, 19]. From the mathematical viewpoint, most of viability and weak
invariance results are addressed in the continuous time case. However, some mathematical works
deal with the discrete-time case. This includes the study of numerical schemes for the approximation
of the viability problems of the continuous dynamics as in [1, 17]. Important contributions for the
discrete time case are also captured by the study of the positivity for linear systems as in [6], or
by the hybrid control as in [2, 20]. In the control theory literature, problems of constrained control
lead to the study of positively invariant sets, particularly ellipsoidal and polyhedral ones for linear
systems (see [9, 13, 14] and the survey paper [10]); reachability of target sets or tubes for nonlinear
discrete time dynamics is examined in [7].

Viability is defined as the ability to choose, at each time step t ∈ N, a control ut ∈ U such that
the system configuration remains desirable. More precisely, the system is viable if the following
feasible set is not empty:

V(f, D) :=

{
x0 ∈ X

∣∣∣∣
∃ (u0, u1, . . .) and (x0, x1, . . .)
satisfying (1) and (2)

}
. (4)

The set V(f, D) is called the viability kernel associated with the dynamics f and the desirable
set D. By definition, we have V(f, D) ⊂ V

0 = ProjX(D) but, in general, the inclusion is strict.
For a decision maker or control designer, knowing the viability kernel has practical interest since
it describes the states from which controls can be found that maintain the system in a desirable
configuration forever. However, computing this kernel is not an easy task in general.

The present paper aims at giving explicit upper and lower approximations of this kernel using
weakly (viable) or strongly invariant domains in the specific context of monotonicity properties of
both constraints and dynamics1. To achieve this, let us recall what is meant by weakly or strongly
invariant domains.

A subset V of the state space X is said to be strongly invariant for the dynamics f in the
desirable set D if

∀x ∈ V , ∀u ∈ U , (x, u) ∈ D =⇒ f(x, u) ∈ V. (5)

That is, if one starts from V, any control may transfer the state in V into a desirable configuration.
This is generally a too demanding requirement.

Similarly, a subset V is said to be weakly invariant for the dynamics f in the desirable set D,
or a viability domain of f in D, if

∀x ∈ V , ∃u ∈ U , (x, u) ∈ D and f(x, u) ∈ V. (6)

That is, if one starts from V, a suitable control may transfer the state in V and the system into a
desirable configuration. In particular, it is worth pointing out that any desirable equilibrium is a

1No topological assumptions are needed. Only for Proposition 8, do we require a continuity property.
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viability domain of f in D. A desirable equilibrium is an equilibrium of the system that belongs to
D, that is a pair (x̄, ū) ∈ D such that x̄ = f(x̄, ū).

Moreover, according to viability theory [1], the viability kernel V(f, D) turns out to be the union
of all viability domains, that is the largest set such that

V(f, D) =
⋃{

V, V ⊂ V
0, V viability domain for f in D

}
. (7)

For the sake of completeness, we recall the proof in the Appendix (see Proposition 12). A major
interest of such a property lies in the fact that any viability domain for the dynamics f in the
desirable set D provides a lower approximation of the viability kernel.

An upper approximation Vk of the viability kernel is given by the so called viability kernel until
time k associated with f in D:

Vk :=



x0 ∈ X

∣∣∣∣∣∣

∃ (u0, u1, . . . , uk) and (x0, x1, . . . , xk)
satisfying (1) for t = 0, . . . , k − 1
and (2) for t = 0, . . . , k



 . (8)

We have
V(f, D) ⊂ Vk+1 ⊂ Vk ⊂ V0 = V

0 , ∀k ∈ N . (9)

It may be seen by induction that the decreasing sequence of viability kernels until time k satisfies
the following dynamic programming equation

V0 = V
0 and Vk+1 = {x ∈ Vk | ∃u ∈ U , f(x, u) ∈ Vk and (x, u) ∈ D} . (10)

By (9), such an algorithm provides approximation from above of the viability kernel as follows:

V(f, D) ⊂
⋂

k∈N

Vk = lim
k→+∞

↓Vk. (11)

In [1], conditions for the equality to hold true are exposed (are required the compacity for the
constraints and upper semicontinuity with closed images for the set-valued map associated with
the controlled dynamics).

Once the viability kernel, or any approximation, or a viability domain is known, we have to
consider the management or control issue, that is the problem of selecting suitable controls at each
time step. For any viability domain V and any state x ∈ V, the following subset UV(x) of the
decision set U is not empty:

UV(x) := {u ∈ U | (x, u) ∈ D and f(x, u) ∈ V}. (12)

Therefore UV(f,D)(x) stands for the largest set of viable controls associated with x ∈ X. Then, the
decision design consists in the choice of a viable feedback control, namely any selection Ψ : X → U

which associates with each state x ∈ V(f, D) a control u = Ψ(x) satisfying Ψ(x) ∈ UV(f,D)(x).

The paper is organized as follows. Section 2 is devoted to the definitions of monotonicity for
both the dynamics and constraints. Then, Section 3 exhibits lower and upper approximations of
the viability kernel in this monotonicity context. An example is exposed in Section 4 to illustrate
some of the main findings.
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2 Monotonicity properties

In this section we define what is meant by monotonicity of the desirable set D together with the
dynamics f , both with respect to state x and control u.

2.1 Set monotonicity

In what follows, the state space X and the control space U are X ⊂ R
nX and U ⊂ R

nU supplied
with the componentwise order: x′ ≥ x if and only if each component of x′ is greater than or equal
to the corresponding component of x:

x′ ≥ x ⇐⇒ x′
i ≥ xi, i = 1, . . . , n.

We also define the maximum x ∨ x′ of (x, x′) as follows:

x ∨ x′ := (x1 ∨ x′
1, . . . , xn ∨ x′

n) = (max(x1, x
′
1), . . . ,max(xn, x′

n)).

We now define the monotonicity of constraint sets.

Definition 1 [Set monotonicity] We say that a set S ⊂ X is increasing if it satisfies the following
property:

∀x ∈ S , ∀x′ ∈ X , x′ ≥ x ⇒ x′ ∈ S.

We say that a set K ⊂ X × U is increasing if it satisfies the following property:

∀(x, u) ∈ K , ∀x′ ∈ X , x′ ≥ x ⇒ (x′, u) ∈ K.

A geometric characterization of set monotonicity is given equivalently by S + R
nX

+ ⊂ S in the first
case, and by K + R

nX

+ × {0R
nU} ⊂ K in the second case (where state and control do not play the

same role).

2.2 Dynamics monotonicity

Similarly, we define monotonicity for the dynamics as follows.

Definition 2 [Mapping monotonicity] We say that the dynamics f : X×U → X is increasing
with respect to the state if it satisfies

∀(x, x′, u) ∈ X × X × U , x′ ≥ x ⇒ f(x′, u) ≥ f(x, u),

and is decreasing with respect to the control if

∀(x, u, u′) ∈ X × U × U , u′ ≥ u ⇒ f(x, u′) ≤ f(x, u).

4



2.3 Maximal and saturated dynamics

We define the maximal dynamics by
∨

u∈U,(x,u)∈D
f(x, u), for x ∈ V

0. Since the dynamics f has
several components (except when X ⊂ R),

∨
u∈U,(x,u)∈D

f(x, u) is generally not achieved by a
common ū; this is why we introduce the notion of function “saturated at x”.

Definition 3 The maximal dynamics f̌ is defined by

∀x ∈ V
0 , f̌(x) :=

∨

u∈U,(x,u)∈D

f(x, u) . (13)

We say that the maximal dynamics f̌ is saturated at x ∈ V
0 if there exists u ∈ U such that

(x, u) ∈ D and f̌(x) = f(x, u).

When X ⊂ R and under appropriate topological assumptions (such as U is compact and the
dynamics f is continuous with respect to the control), the maximal dynamics is saturated.

Lemma 4 Assume that the desirable set D is increasing and that the dynamics f is increasing with
respect to the state. Then the maximal dynamics f̌ is increasing with respect to the state, in the
sense that

∀(x, x′) ∈ V
0 × V

0 , x′ ≥ x ⇒ f̌(x′) ≥ f̌(x) .

Proof. We have:

x′ ≥ x ⇒ f(x′, u) ≥ f(x, u) , ∀u ∈ U since f is increasing with the state

⇒
∨

u∈U,(x′,u)∈D

f(x′, u) ≥
∨

u∈U,(x′,u)∈D

f(x, u)

⇒
∨

u∈U,(x′,u)∈D

f(x′, u) ≥
∨

u∈U,(x′,u)∈D

f(x, u) ≥
∨

u∈U,(x,u)∈D

f(x, u)

since the set D is increasing and thus (x, u) ∈ D ⇒ (x′, u) ∈ D

i.e. {u ∈ U, (x, u) ∈ D} ⊂ {u ∈ U, (x′, u) ∈ D}

⇒ f̌(x′) ≥ f̌(x) by (13) .

2

3 Viability results under monotonicity properties

This section exhibits lower and upper approximations of the viability kernel in this monotonicity
context. We show that some monotonicity properties of the dynamics f and of the desirable set
D are transmitted to the associated viability kernel. This allows to compute or approximate the
viability kernel through viability domains under suitable assumptions.

A first obvious monotonicity property is that any viability domain associated with f in D is a
viability domain for any D

′ such that D ⊂ D
′.
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Proposition 5 If the desirable set D is increasing and the dynamics f is increasing with respect
to the state, then the associated viability kernel V(f, D) is an increasing set, as well as all the sets
Vk, k ∈ N given by (10).

Proof. Let us prove that the set V(f, D) is increasing (see Definition 1). Consider x ∈ V(f, D) and
x′ ≥ x. By definition (4), there exists two sequences (ut)t∈N in U and (xt)t∈N in X such that

x0 = x, xt+1 = f(xt, ut) and (xt, ut) ∈ D , ∀t ∈ N .

Since f is increasing with respect to the state (see Definition 2), we can show by induction that the trajectory
(x′

t)t∈N defined by
x′

0 = x′ and x′

t+1 = f(x′

t, ut) , ∀t ∈ N

satisfies x′

t ≥ xt, ∀t ∈ N. Since the set D is increasing, we deduce from (xt, ut) ∈ D and x′

t ≥ xt that
(x′

t, ut) ∈ D, ∀t ∈ N. Thus x′ ∈ V(f, D) and, finally, the set V(f, D) is increasing.
For the rest, the proof uses the characterization (10) of the sets (Vk)k∈N. The set V0 = V

0 = {x ∈ X |
∃u ∈ U , (x, u) ∈ D} in (3) is increasing since the set D is supposed to be increasing. Now, assume that
the set Vk is increasing and consider x ∈ Vk+1 and x′ ≥ x. By the definition (10) of Vk+1, there exists
u ∈ U such that (x, u) ∈ D and f(x, u) ∈ Vk. On the one hand, since the set D is increasing, we obtain
that (x′, u) ∈ D. On the other hand, since the dynamics f is increasing with respect to the state, we have
f(x′, u) ≥ f(x, u) and, since the set Vk is increasing, we obtain that f(x′, u) ∈ Vk. Thus, by (10) we obtain
that x′ ∈ Vk+1, meaning that the set Vk+1 is increasing. By induction, we conclude that Vk is increasing
for all k ∈ N.

2

3.1 A first lower approximation of the viability kernel

The following result is a corollary of Proposition 5.

Proposition 6 If the desirable set D is increasing and the dynamics f is increasing with respect
to the state, and if there exists a desirable equilibrium (x̄, ū), then

1. the upper orthant

{
x ∈ X | x ≥ x̄

}
is a viability domain for f in D;

2. consequently

{
x ∈ X | x ≥ x̄

}
⊂ V(f, D).

Proof.

1. Since (x̄, ū) is a desirable equilibrium, the set {x̄} is a viability domain. The assumptions of Proposi-
tion 5 being satisfied, we obtain that the set {x ∈ X | x ≥ x̄} is a viability domain for f in D.

2. The viability kernel V(f, D) is the union of all viability domains by Proposition 12.

2
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3.2 A first upper approximation of the viability kernel

We first exhibit strongly invariant domains, then provide an upper approximation of the viability
kernel.

Proposition 7 Assume that the desirable set D is increasing and that the dynamics f is increasing
with respect to the state. Then the domain {x ∈ X | x ≤ x̄} is strongly invariant, whenever x̄ ∈ V

0

satisfies f̌(x̄) ≤ x̄ (in particular when x̄ is a fixed point of f̌).

Proof. By Lemma 4, the maximal dynamics f̌ is increasing with respect to the state. Let x̄ ∈ V
0 satisfy

f̌(x̄) ≤ x̄. Let x ∈ X and u ∈ U be such that x ≤ x̄ and (x, u) ∈ D. We have

f(x, u) ≤ f̌(x) by (13)

≤ f̌(x̄) by Lemma 4 since x ≤ x̄

≤ x̄ by assumption.

We have proved that

x ≤ x̄ ⇒

(
∀u ∈ U , (x, u) ∈ D ⇒ f(x, u) ≤ x̄

)
.

This means, by (5), that the domain {x ∈ X | x ≤ x̄} is strongly invariant for the dynamics f in the desirable
set D.

2

Only for the following Proposition do we need to make a topological assumption.

Proposition 8 Assume that the desirable set D is increasing and that the dynamics f is increasing
with respect to the state. Assume also that the maximal dynamics f̌ is continuous, and that V

0 is
bounded from below. Define M as the set of those elements which are larger than at least one fixed
point of f̌ in the closure V0 of the state constraints set:

M := {x ∈ X | ∃x′ ∈ V0 , f̌(x′) = x′ , x ≥ x′} . (14)

Then
V(f, D) ⊂ V

0\{x ∈ V
0 | f̌(x) ≤ x or x 6∈ M} . (15)

Proof. By Lemma 4, the maximal dynamics f̌ is increasing with respect to the state.
Now assume that there exists x0 ∈ V(f, D) such that f̌(x0) ≤ x0. We shall prove that necessarily

x0 ∈ M. Let (u0, u1, . . .) and (x0, x1, . . .) be such that xt+1 = f(xt, ut) and (xt, ut) ∈ D. Define x̌0 = x0

and x̌t+1 = f̌(x̌t), for t = 1, 2 . . .. First, we prove by induction that xt ≤ x̌t. The equality holds for t = 0.
Assuming xt ≤ x̌t, since the maximal dynamics f̌ is increasing with respect to the state, we obtain that

xt+1 = f(xt, ut) ≤ f̌(xt) ≤ f̌(x̌t) = x̌t+1 .

Sedond, we deduce from xt ≤ x̌t that x̌t ∈ V
0 since xt ∈ V

0 and since the set V
0 is increasing by Proposition 5.

Third, since f̌ is increasing with respect to the state and since f̌(x0) ≤ x0, we easily see by induction that
the sequence (x̌t)t∈N is decreasing.

The decreasing sequence (x̌t)t∈N being in V
0, it is bounded below by assumption and therefore converges

to x ∈ V0 (componentwise). By continuity of f̌ , we have f̌(x) = x. Thus, by x0 ≥ x, we deduce that x0 ∈ M.

2

We can relax the assumption that the maximal dynamics f̌ is continuous, if we replace M by
{x ∈ X | ∃x′ ∈ V0 , f̌(x′) ≤ x′ ≤ x}.
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3.3 A second lower approximation of the viability kernel

If we adapt the dynamic programming algorithm (10), we obtain a lower approximation of the
viability kernel as follows.

Proposition 9 If V is a viability domain of f in D, then

Ṽ = {x ∈ X | ∃u ∈ U , (x, u) ∈ D and f(x, u) ∈ V} (16)

is a viability domain which contains V. As a consequence

1. the induction

Ṽ0 = V and Ṽk+1 = {x ∈ X | ∃u ∈ U , (x, u) ∈ D and f(x, u) ∈ Ṽk} , ∀k ∈ N (17)

generates an increasing sequence of viability domains;

2. and its limit is included in the viability kernel:

⋃

k∈N

Ṽk = lim
k→+∞

↑ Ṽk ⊂ V(f, D).

Proof.
By the definition of a viability domain, we have V ⊂ Ṽ. For x ∈ Ṽ, by definition, there exists u ∈ U such

that (x, u) ∈ D and f(x, u) ∈ V ⊂ Ṽ; that is, Ṽ is a viability domain of f in D.

1. Straightforward consequence.

2. Consequence of Proposition 12 in the Appendix.

2

3.4 A second upper approximation of the viability kernel

We adapt the dynamic programming algorithm (10) to the case of saturated dynamics. We stress
that, under nice monotonicity properties, we obtain an algorithm converging exactly to the viability
kernel V(f, D).

Proposition 10 Assume that the desirable set D is increasing and that the dynamics f is increasing
with respect to the state. Assume also that the maximal dynamics f̌ is saturated at all x ∈ V

0.
Then

1. the decreasing sequence (10) satisfies the backward induction

V0 = V
0 and Vk+1 = Vk

⋂
f̌−1(Vk) , ∀k ∈ N , (18)

2. any Vk is an upper approximation of the viability kernel for k ∈ N: V(f, D) ⊂ Vk

8



3. the decreasing sequence (Vk)k∈N converges to V(f, D):

V(f, D) =
⋂

k∈N

Vk = lim
k→+∞

↓Vk.

Proof.

1. By the assumptions on D and f , Vk is an increasing set by Proposition 5. Thus, on the one hand, we
have

x ∈ Vk+1 ⇐⇒ x ∈ Vk and ∃u ∈ U , f(x, u) ∈ Vk and (x, u) ∈ D by (10)

⇒ x ∈ Vk and
∨

u∈U,(x,u)∈D

f(x, u) ∈ Vk since the set Vk is increasing

⇒ x ∈ Vk and f̌(x) ∈ Vk by (13)

⇒ x ∈ Vk

⋂
f̌−1(Vk) .

On the other hand, let x ∈ Vk

⋂
f̌−1(Vk). Since Vk ⊂ V

0 and since, by assumption, the maximal
dynamics f̌ is saturated at all x ∈ V

0, let us denote by ū an element of U such that (x, ū) ∈ D and
f̌(x) = f(x, ū) (see Definition 3). We have:

x ∈ Vk

⋂
f̌−1(Vk) ⇒ x ∈ Vk and f(x, ū) ∈ Vk and (x, ū) ∈ D

⇒ x ∈ Vk and ∃u ∈ U , f(x, u) ∈ Vk and (x, u) ∈ D

⇒ x ∈ Vk+1 by (10).

2. This follows from the previous item and from (9).

3. Let us denote V∞ := limk→+∞ ↓ Vk and prove that V(f, D) = V∞. Thanks to (11), we already know
that V(f, D) ⊂ V∞. We obtain the reverse inclusion V(f, D) ⊃ V∞ by showing that V∞ is a viability
domain associated with f in D (see Proposition 12). Consider a fixed x ∈ V∞. Since the maximal
dynamics f̌ is saturated at x, there exists u ∈ U such that (x, u) ∈ D and f̌(x) = f(x, u). We claim
that f(x, u) ∈ Vk for all k ∈ N. For this, notice that, by (10) for all k ∈ N, there exists uk ∈ D

such that (x, uk) ∈ D and f(x, uk) ∈ Vk. On the one hand, by definition of the maximal dynamics
f̌ , we have f(x, uk) ≤ f̌(x) = f(x, u). On the other hand, recall that Vk is an increasing set. Thus,
f(x, u) ∈ Vk. Since V∞ =

⋂
k∈N

Vk, we obtain that f(x, u) ∈ V∞. We have proved that, for any
x ∈ V∞, there exists u ∈ U such that (x, u) ∈ D and f(x, u) ∈ V∞. Hence V∞ is a viability domain.

2

3.5 A third lower approximation of the viability kernel

A lower approximation of the viability kernel may be obtained by a lower approximation of the
dynamics as follows.

Proposition 11 Assume that the desirable set D is increasing and that the dynamics f is bounded
below by an increasing f [ : X × U → X:

∀(x, u) ∈ X × U , f [(x, u) ≤ f(x, u) and f [ is increasing with respect to the state.

Then, V(f [, D) is a viability domain associated with f in D, and thus

V(f [, D) ⊂ V(f, D). (19)

9



Proof. The assumptions that the dynamics f [ and the set D are increasing ensure that the set V(f [, D)
is increasing, according to Proposition 5. Consider x ∈ V(f [, D). By Proposition 12, the viability kernel
V(f [, D) is a viability domain for the dynamics f [: thus, there exists u ∈ U such that (x, u) ∈ D and f [(x, u) ∈
V(f [, D). By assumption f(x, u) ≥ f [(x, u). Since V(f [, D) is increasing, we deduce that f(x, u) ∈ V(f [, D):
this means that V(f [, D) is a viability domain associated with the dynamics f in D.

2

Consequently, if f is not well known, it can be replaced by an increasing sub-approximation which
gives a viability domain associated with f in D. This may provide a deterministic and precautionary
way of taking some uncertainty into account.

4 An example

In this section we apply various results to a model inspired by the management of an age structured
abundance population model with a possibly non linear stock-recruitment relationship. This model
is derived from fish stock management [18].

Let A ∈ N
∗ denote a maximum age, and a ∈ {1, . . . , A} an age class index. The state variable

is x = (xa)a=1,...,A ∈ R
A
+, the abundances at age, and the control variable u ∈ R+ is related to

the harvest, so that X = R
A
+ and U = R+ with the notations of Section 1. With t the time index

(years), the following dynamical relations relate the hereabove variables and define a dynamics f

(see [18, p. 256]) 



x1
t+1 = ϕ(SSB(xt))

xa+1
t+1 = e−(M+utF a)xa

t , a ∈ {1, . . . , A − 1}
(20)

where M ≥ 0 is the natural mortality, the non zero nonnegative vector (F a)a=1,...,A−1 is the ex-
ploitation pattern2 and SSB is the spawning stock biomass, defined by3

SSB(x) :=
A∑

a=1

pawaxa (21)

and ϕ describes a stock-recruitment relationship. We take the Beverton-Holt relationship [8]

ϕ(x) =
x

α + βx
(22)

which is increasing with respect to its argument. The exploitation is described by catch-at-age C a

and yield Y , respectively defined for a given vector of abundance x and a given control u by the so
called Baranov catch equations (see [18, p. 255-256]):

Ca(xa, u) :=
uF a

uF a + M

(
1 − e−(M+uF a)

)
xa and Y (x, u) :=

A∑

a=1

wa Ca(xa, u). (23)

2This is why the control u is called the exploitation pattern multiplier.
3Here, (pa)a=1,...,A are the proportions of mature individuals at age and (wa)a=1,...,A are the weights at age (all

positive).
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State constraints set. The desirable set D we consider is defined by a minimum threshold ymin

on the yield:
D := {(x, u) ∈ X × U | Y (x, u) ≥ ymin}. (24)

Since u 7→ Ca(xa, u) is strictly increasing for at least one a (recall that the exploitation pattern
(F a)a=1,...,A is non zero nonnegative), the state constraints set V

0 = ProjX(D) is given by

V
0 = {x ∈ R

A
+ | lim

u→+∞
Y (x, u) > ymin} = {x ∈ R

A
+ |

∑

a=1,...,A, F a>0

waxa > ymin}.

Monotonicity properties. The desirable set is increasing, since Y (x, u) is increasing with re-
spect to x. The dynamics f is increasing with respect to the state, since ϕ is an increasing function,
and is decreasing with respect to the control.

Computation of desirable equilibria. Introducing Da(u) := e−((a−1)M+u(F 1+...+F a−1)) (a =
2, . . . , A), the proportion of equilibrium recruits which survive up to age a (D1(u) = 1), and the
equilibrium spawners per recruits

spr(u) :=

A∑

a=1

pawaDa(u) ,

we see that the function x1 7→ ϕ(x1spr(u)), with ϕ given by (22), has a nonnegative fixed point
Rϕ(u) = 1

β − α
spr(u) , supposed to be positive, and which is decreasing with u. Then

x∗(u) := (Rϕ(u), D1(u)Rϕ(u), . . . , DA(u)Rϕ(u))

is such that f(x∗(u), u) = x∗(u), and is decreasing with u. There remains to find conditions under
which such (x∗(u), u) is not only an equilibrium but a desirable equilibrium, that is Y (x∗(u), u) ≥
ymin.

For the sake of simplicity, we assume that the function Y ∗ : u 7→ Y (x∗(u), u) (yield at equilib-
rium) is continuous and goes to zero at infinity (we have Y ∗(0) = Y (x∗(0), 0) = 0 by (23)). Then,
the function Y ∗ admits a maximum value, commonly called the maximum sustainable yield, since
it is the maximum equilibrium yield. We denote

ymsy := max
u≥0

Y ∗(u) = Y ∗(umsy)

achieved for a fishing effort multiplier umsy. By definition, ymsy is the maximum value for ymin such
that there exists a desirable equilibrium.

Approximation of the viability kernel. Let us consider ymin ∈]0, ymsy[. By the intermediate
value theorem, there exist u+

min > u−
min such that Y ∗(u+

min) = Y ∗(u−
min) = ymin. By the expression

of x∗(u), decreasing with u, we obtain that x∗(u+
min) ≤ x∗(u−

min). We define

Ṽ
− = {x ∈ R

A
+ | x ≥ x∗(u−

min)} ⊂ Ṽ
+ = {x ∈ R

A
+ | x ≥ x∗(u+

min)}.

According to Proposition 6, both sets Ṽ
+ and Ṽ

− are viability domains associated with f in D,
defined in (24) with the threshold ymin. We obtain the lower approximation of the viability kernel

Ṽ
+ ⊂ V(f, D) .
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The resulting patterns are shown in Figure 1 in the two-class case, that is with A = 2. Using
Proposition 9, the viability domain obtained one step backward from Ṽ

+ is sketched in Figure 2.

x1

x2

x∗(u+

min
)

x∗(u−

min
)

Figure 1: Example of two viability domains defined with two desirable equilibria.
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Figure 2: Enlargement of a viable orthant in the plan (x1, x2).
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A Appendix

Proposition 12 The viability kernel V(f, D) is the union of all viability domains, that is the largest
set V such that V ⊂ {x ∈ X | ∃u ∈ U , (x, u) ∈ D and f(x, u) ∈ V}. In other words, the viability
kernel is the largest viability domain.

Proof.
First, we prove that any viability domain V associated with f in D is a subset of V(f, D). For x ∈ V,

let us put x0 = x and let u0 ∈ U be such that x1 = f(x0, u0) ∈ V and (x0, u0) ∈ D. Starting from x1, we

12



proceed in the same way to obtain u1. Going on, we find a sequence (u0, u1, . . .) such that xt+1 = f(xt, ut)
and (xt, ut) ∈ D for all t ∈ N. Thus, x ∈ V(f, D).

Second, we prove that V(f, D) is a viability domain. By definition, for all x ∈ V(f, D), there exists
decisions u0, u1 . . . and states x0, x1 . . . starting from x at time 0 satisfying for all times t ∈ N, (xt, ut) ∈ D

and xt+1 = f(xt, ut). Let us set y = f(x, u0). With the states yt = xt+1 and the decisions vt = ut+1, we
obtain that y ∈ V(f, D). Then, there exists u (= u0) ∈ U such that (x, u) ∈ D and f(x, u) ∈ V(f, D). Thus,
V(f, D) is a viability domain.

We conclude that V(f, D) is the largest viability domain associated with f in D and that all the viability
domains are included in V(f, D).

2
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