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Abstract:  
 

Karenia mikimotoi is one of the most common red-tide dinoflagellates proliferating in the eastern North 
Atlantic and around Japan. Kills of marine fauna are associated with its blooms. In mixed water 
columns it migrates vertically, while in stratified water columns, the population remains confined within 
pycnocline layers. Wind events, increasing mixing and agitation initiate declines in its populations. This 
paper is focused on the formulation of mortality rate relative to shear rate. Autotoxicity is demonstrated 
by the use of a synthetic toxin. Bioconvection observed in cultures allows the establishment of a trade-
off between phototropism, which leads to the local accumulation of cells, and their autotoxicity, which 
would prevent cell concentration. The combination of these processes allows diffusion of the toxin into 
the underlying water, where it subsequently degrades. Confinement of the population in the pycnocline 
layer results also from another trade-off between growth conditions and shear-rate-modulated 
mortality. A simplified encounter kernel was introduced into the population dynamics equation to 
account for a mortality factor. Under realistic forcing conditions with a small number of parameters, this 
model reproduced the confinement of the population in the pycnocline layer, the proper timing and the 
duration of the recurrent K. mikimotoi bloom on the Ushant front (France). 
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IFREMER, DYNECO, Centre de Brest, B.P.70, 29280 Plouzané, France

Karenia mikimotoi is one of the most common red tide dinoflagellates proliferating in the eastern
North Atlantic and around Japan. Kill of marine fauna is associated with its blooms. In mixed water
columns, it migrates vertically while in stratified water columns, the population remains confined
within pycnocline layers. Wind events, increasing mixing and agitation, initiate declines in its
populations. This paper is focused on the formulation of mortality rate relative to shear rate.
Autotoxicity is demonstrated by the use of the synthetic toxin. Bioconvection observed in cultures
allow the establishment of a trade-off between phototropism that leads to the local accumulation of
cells and their autotoxicity which would prevent cell concentration. The combination of these
processes allows diffusion of the toxin into the underlying water, where it subsequently degrades.
Confinement of the population in the pycnocline layer results also from another trade-off between
growth conditions and shear-rate-modulated mortality. A simplified encounter kernel was
introduced into the population dynamics equation to account for a mortality factor. Under realistic
forcing conditions with a small number of parameters, this model reproduced the confinement of the
population in the pycnocline layer, the proper timing and the duration of the recurrent K. mikimotoi
bloom on the Ushant front (France).
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1. INTRODUCTION
Known in the literature successively under different

names (Gyrodiniumaureolum,Gymnodinium cf. aureolum,

G. nagasakiense, G. mikimotoi ), Karenia mikimotoi is one

of the most common red tide dinoflagellate proliferating

in the eastern North Atlantic regions and around Japan.

Blooms of this species are commonly associated with kill

of marine fauna. The vegetative niche of this species has

been outlined by Gentien (1998).

In the case of mixed or slightly stratified water

columns, K. mikimotoi is observed to vertically migrate

daily with a range of up to 15 m (Koizumi et al. 1996).

When stratification is greater, the population exhibits a

non-migrating maximum in the pycnocline layer

(Bjoernsen & Nielsen 1991; Arzul et al. 1993), relying

mainly on nitrogen remineralization (Le Corre et al.
1993). It is not possible to estimate from the available

data the lowest density gradient through which

migration still persists. The reasons of this shift in

behaviour have not yet been elucidated, but they are

of great importance when modelling is done in view

of prediction.

Sharp pycnocline layers are associated with high

shear between water mass and, if phototropism

modulated by cell quota were the only driving force

behind population movement, cells escaping from the

transition zone would flush out: observations of high

concentrations forming layers could be partly the
tribution of 18 to a Theme Issue ‘Environmental constraints
ocomotion and predator–prey interactions in aquatic

s’.

r for correspondence (pgentien@ifremer.fr).
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result of this selection. Even if fine layering can result
from purely physical processes (Franks 1995), persist-
ence of populations in narrow layers at small scale
suggests that other factors, such as chemotropism
or higher survival rates in layers of low turbulent
energy, may be involved in the maintenance of high-
concentration populations within these layers.
Maintenance and growth of the population is possible,
considering the temperature and light regimes at these
depths. These boundary layers may also exhibit
limited residual movement, allowing the population
to develop with limited dispersion. In this paper, we
address the possibility of higher survival rates in
pycnocline layers.

Increased stability of the water column due to
stratification and calm weather is generally favourable
to red tides, while storm events terminate them (see
Iizuka et al. 1989). Wind strength tends to be inversely
related to bloom maintenance (Yamamoto & Seike
2003). Physical–biological interactions at small scale
may have different effects on dinoflagellates, including
lowering the growth rate (Pollingher & Zemel 1981;
Juhl & Latz 2002; Sullivan et al. 2003) associated
sometimes with increased mortality and changes in
morphology (Berdalet 1992). However, the threshold
for the appearance of such negative effects is species
specific (Sullivan et al. 2003). Although the above-cited
works involved thecate dinoflagellates, similar effects
may also apply to K. mikimotoi, which is athecate. Even
if commonly observed and reported, the major
processes underlying these effects have never been
formulated in population models.

In the case of K. mikimotoi, the effect does not seem
to be a repression in growth rate due to the arrest of
11
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the cell cycle. Agitation in cultures reduces the cell
concentration to the point that specific care in
manipulating cultures has to be taken. This species

produces exotoxins with a haemolytic effect due to the
non-specific inhibition by 18 : 5n3 fatty acid of
membrane ATPases (Fossat et al. 1999). By prevent-
ing osmoregulation, it could be that the same
toxin kills K. mikimotoi while inhibiting competitors
(Gentien & Arzul 1990), killing fishes and other

organisms (Sola et al. 1999) and deforming bivalve
shells (Erard-Le Denn et al. 1990). We report here the
role of this toxin in the sensitivity of K. mikimotoi to
agitation.

Here, we report the autotoxicity demonstrated using
the synthetic toxin. From detailed studies conducted in

still cultures, we examine the trade-off between cell
concentration induced by phototropism and autotoxi-
city. A simplified formulation of the collision kernel was
applied to a one-dimensional model with realistic
forcing in order to test the importance of this control
process on population dynamics.
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2. MATERIAL AND METHODS
(a) Cell cultures and sampling

Karenia mikimotoi cells were sampled during a toxic
bloom from the Rade de Brest, France. The cells
isolated were batch cultured without agitation in a

sterile Guillard’s f/2 medium at 18G18C under a
12 h : 12 h light : dark cycle at 60 mE m2 sK1. Since the
species is very sensitive to agitation, special care was
taken in homogenizing the cultures, prior to sampling:
the same person always did the mixing, very gently,
before sampling, thus ensuring the best reproducibility.

Repartition into aliquots was done at least 12 h prior to
experimentation in order to limit the numbers of non-
viable cells. Samples were taken either by syringe or by
siphoning into tubes previously filled with the required
amount of Lugol’s fixative. Maximum growth rate was
determined at each degree Celsius between 12 and

208C after acclimation for at least two months in the
culture cabinet (two to three cultures). Since no growth
was observed at 128C, cultures were acclimated at 138C
prior to the growth rate estimation at 128C. Maximum
growth rates at each temperature were estimated using
a nonlinear regression procedure (NLREG software by P.

H. Sherrod: Dennis et al. 1981).
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(b) Viability test

Fluorescein diacetate (FDA) is non-fluorescent and
apolar. It was added to cell suspensions to allow the

viable cells to be counted. After entering the cell, it may
be hydrolysed into fluorescein by non-specific
esterases. If the cell membrane is intact, fluorescence
which is polar accumulates in the cell. It is therefore a
marker of esterases activity and membrane integrity,
and therefore is an index of cell viability. FDA dissolved

in acetone (1 mg mlK1) is added to the cell suspension
(2 ml mlK1), which is incubated in the dark for 10 min.
The proportion of viable cells (number of green cells
per total number) is estimated under epifluorescence in
at least 200 cells.
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(c) Synthesis of the all-cis-octadecapentaenoic
acid

The lability of the all-cis-octadecapentaenoic acid
identified previously as one of the major agents toxic
to K. mikimotoi (Parrish et al. 1993) prevents any direct
estimation of the dose–effect relationship on phyto-
plankton cells. This fatty acid was synthesized in
sufficient amounts (approx. 100 mg), according to the
method described by Kuvlev et al. (1992), a method
involving a g-iodolactonization of 22 : 6n3. This
method has previously been used to identify the mode
of action of K. mikimotoi toxic principle (Fossat et al.
1999; Sola et al. 1999). The structure of the
synthesized fatty acid was confirmed by GC–MS,
FAB–MS, IR and 1H-NMR and by comparison with
a sample isolated from cultures. The standard fatty acid
mixture contained 82% 18 : 5n3, the major impurities
being 20 : 5n3 (5.4%), 18 : 4n3 (2%) and 22 : 6n3
(1%) fatty acids. The fatty acid was stored immediately
after synthesis in vacuum-sealed ampoules in aliquots
of approximately 100 mg at K208C in the dark. The
content of each ampoule was dissolved in 1 ml
methanol and the exact fatty acid weight determined
by weighing. Possible degradation of the fatty acid into
aldehydes and oxidation products with a shorter
retention time was checked by GC prior to any toxicity
testing. Experiments were conducted with fatty acid
standard above 90% purity.

(d) Oxygen radical production measurements

Degradation of the fatty acid was followed indirectly by
trapping the oxygen radical trap HPPA (hydroxyphe-
nylpropionic acid), of the hydroxyl radicals produced,
following the method described by Palenik & Morel
(1988). HPPA is oxidized into a fluorescent dimer
measured by fluorescence (excitation 320 nm; emission
410 nm). Increase in fluorescence provides an integral
measurement of the oxygen radicals produced. Esti-
mation of the half-life of the fatty acid was measured in
the dark at ambient temperature (188C).

(e) Toxicity of the all-cis-octadecapentaenoic acid
The autotoxic effect of the 18 : 5n3 was tested in 50 ml
aliquots of K. mikimotoi cultures. The fatty acid
standard was dissolved in 1 ml methanol. The maxi-
mum volume added to test vials was 70 ml. Blanks were
performed with 70 ml pure methanol in 50 ml cell
suspensions. All measurements were done in triplicate.
The concentration of viable cells was determined as
described above.

(f) Cell behaviour measured by laser sheet

trajectography

Cell behaviour was observed by laser sheet trajecto-
graphy. An argon laser source was tuned at 488 nm,
conditioned through a polarizer and a half-wavelength
slide and through an optoacoustic deflector (AA-DTS-
X-250). After the adjustment of the conditioning optics
in order to maximize intensity of the first-order
diffraction and minimum intensity for the zeroth
order (188 incidence), a cylindrical lens was used to
obtain a light sheet. An intensified NanoCam camera
equipped with a 50 mm Nikon lens mounted back to
front allowed a 22 enlargement factor. Sharp cell
p. 1–11
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images could be obtained with a shutter speed of 1 ms.
The camera was mounted on a motorized stage
allowing controlled displacements. Synchronization
and generation of pulses for the optoelectronic
deflector was performed by PASCAL software through
an IEEE-488 bus, a multifunction and impulse
generator. The motorized stage was driven through
an RS-232. After calibration of the depth of the field, it
was then possible to measure cell concentration and, by
superposition of successive frames, to measure cell
speed. In the descending plumes, cell concentration
was so high that only movements of the fronts of the
clouds of cells could be used to assess velocity
measurements.
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(g) Migration experiments

Aliquots of cultures at least 10 days old were
transferred to square-sectioned cells (5!5!25 cm)
at least 12 h prior to the experiment. Three millilitres of
distilled water were added carefully at the water
surface. Under light, the cells tended to concentrate
in a surface layer from which descending plumes
developed. An apparent steady state, as judged from
the length of the descending plumes, developed in
approximately 2–3 h. Before the establishment of
descending plumes, underlying water was gently
siphoned out. The elevated cell concentration remain-
ing in the cell was counted every 30 min for 1.5 h. Each
experiment was conducted in triplicate. After incu-
bation periods, an FDA viability test was performed
and each vial was counted for live cells after a 10 min
incubation period in the dark.
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(h) One-dimensional physical modelling

The hydrodynamic model is a one-dimensional
dynamical and numerical model forced by wind and
tide. In order to simulate tidal effects, free surface
elevation gradients are considered. The model has five
state variables, namely temperature, salinity, velocities
(u, v) and turbulent kinetic energy. The turbulence
closure is achieved by an algebraic formulation of the
mixing length.

The two components of the velocity were

vu
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KfvZKg

vx

vx
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;

8>>>>>><
>>>>>>:

ð2:1Þ

where t is the time; z is the vertical coordinate (positive
upward); u is the E–W velocity (m sK1); v is the N–S
velocity (m sK1); g is the gravitational acceleration
(9.81 m sK2); f is the Coriolis parameter (10K4 sK1);
nz is the vertical eddy viscosity (m2 sK1); and (vx/vx),
(vx/vy) is the free surface elevation gradient.

The surface condition was

nz
vu

vz
;
vv

vz

� �
Z

tx

r
;
ty

r

� �
;

the surface wind stress components where r is the
density of seawater (kg mK3).
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The bottom condition was

nz
vu

vz
;
vv

vz

� �
ZCd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

b Cv2
b

q
ðub; vbÞ;

where Cd is the drag coefficient (2.5!10K3) and ub, vb

are the velocities in the bottom layer.
For tidal forcing, we applied the linear theory of tide

which indicates that the horizontal gradient induced by
a tidal wave propagating in one direction can be
expressed as the following horizontal gradient:

vx

vx
;
vx

vy

� �
Z

U0

gT
cos

2pt

T

� �
; sin

2pt

T

� �� �
;

where T is the M2 tidal period (44 712 s) and U0 is the
maximum tidal current reached during a tidal cycle.

The turbulence closure model was based on the
turbulence kinetic energy (TKE) state equation and an
algebraic formulation of the mixing length (Luyten
et al. 1996)

vk

vt
Z

v

vz
nz

vk

vz

� �
CPs CGK3;

where k is the turbulent kinetic energy (TKE: m2 sK2);
3 is the dissipation rate of TKE (mK2 sK3); production
of TKE by vertical velocity gradient: PsZnz((vu/vv)2C
(vv/vz)2); reduction of TKE by vertical density
gradient: GZKgkz(1/r)(vr/vz); and kz is the vertical
eddy diffusivity (m2 sK1). In the chosen turbulence
closure scheme, 3 is given by a function of TKE and the
mixing length l according to the following equation:

3Z 30

k
1
2

[
;

where 30Z0.166 and l zZkz(1Kz/H )1/2, with Karman
constant kZ0.4 and H is the depth of the water column.

Finally, turbulent eddy viscosity and eddy diffusivity
are given by nzZSuk

2/3, where Su and Sb are the
stability functions, the expressions of which can be
found in Luyten et al. (1996).

Though similar to that of Westgard (1989), our
model differs from it in two ways. In our model, (i) tidal
current is taken into account (which was not the case in
Westgard 1989) and (ii) 3 is estimated as a function of
the mixing length (we have a one-equation k closure
scheme and not a two-equation k-3 closure scheme as
in Westgard 1989). Luyten et al. (1996) compared
different turbulence closure schemes for shelf stratified
waters and concluded that there was no difference in
the results between the two schemes, and the k closure
scheme being less computer intensive. This model can
be applied to situations with homogeneous or stratified
vertical profiles of temperature and salinity; in particu-
lar, it can accommodate any type of gradient in
turbulent eddy diffusivity due to complex haloclines
on the shelf under the influence of river plumes. The
model can also estimate the steady state vertical
distribution as well as time-dependence distributions.
3. RESULTS AND DISCUSSION
We investigated the behaviour of K. mikimotoi in still
cultures, and then applied the results in a simplified one-
dimensional model in order to test the importance of
crowding on population dynamics as a control process.
11
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Figure 2. Integrated production of oxygen radicals during
degradation of the 18 : 5n3 fatty acid (as estimated from the
formation of the fluorescent dimer of hydroxyphenylpropio-
nic acid).

0.5 1.0 1.5 2.0 2.5 3.0 3.50

10

20

30

40

50

60

70

80

90

concentration of 18:5n3 (×10−4 M)

m
or

ta
lit

y 
(%

 o
f 

de
ad

 c
el

ls
)

Figure 1. Dose–effect titration of the all-cis-3,6,9,12,15-
octadecapentaenoic acid on Karenia mikimotoi.
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(a) In vitro cultures of Karenia mikimotoi

When cultured in batch, phytoplankton species follow a
growth described by the logistic equation that takes into
account an asymptotically stable census limit. In the
case of our strain of K. mikimotoi, the maximum cell
concentration reached in batch cultures never exceeded
4!107 cell lK1. Assuming a Poisson distribution
(Rothschild 1992), the mean nearest neighbour dis-
tance at this cell concentration C is dZ0.55CK1/3Z
175 mm. Each cell requires on average a vital volume
that corresponds to a travel time of roughly 2 s, as
measured from laser sheet trajectography of individual
cells. It should be noted that during these experiments in
still cultures, cell collisions were never observed.

Different bioactive agents have been reported to be
excreted by K. mikimotoi, namely the all-cis-
3,6,9,12,15-octadecapentaenoic acid (in short
18 : 5n3) and its glycerides (Parrish et al. 1993), as
well as three volatile sesquiterpenoids (Kajiwara et al.
1992). The volatile sesquiterpenoids appear to be rather
stable in culture conditions, but unfortunately, their
production has not been studied in detail. Parrish et al.
(1994) showed that the concentrations of 18 : 5n3 vary
greatly with environmental (temperature and light)
culture conditions. It can reach 34% of total fatty
acids at 188C and 35 mE mK2 sK1. This fatty acid
inhibits Na-, K- and Mg-ATPase activities in a non-
specific way (Fossat et al. 1999; Sola et al. 1999), and it
could therefore act on different biological targets.
Furthermore, these authors showed that toxicity from
oxygen-free radicals produced by the degradation of the
fatty acid was not involved in the process.

The lability of the octadecapentaenoic acid precluded
the testing of extracts ofK.mikimotoi culture medium on
itself. The fatty acid was therefore synthesized from
22 : 6n3 using a g-iodolactonization step, as described in
§2. After checking the stereochemistry and purity, the
LC50 for K. mikimotoi was found to be 1.5!10K4 M
(figure 1). Controls consisting of 70 ml pure methanol
gave results under 3% mortality. It clearly shows that
K. mikimotoi is sensitive to its own toxin but to a lesser
degree than potential competitors, as 1 mM 18 : 5n3
inhibits totallyChaetoceros gracile growth (Gentien 1998).
These concentrations should not be extrapolated to
nature as the fatty acid adsorbs on the wall, and on the
air–water interface. In nature, the toxic agent is
distributed around the producing cells and not dissolved
in the aqueous phase; this renders the extrapolation even
moredifficult. However, this test demonstrates a different
sensitivity of the two biological targets.

Allelopathic properties in K. mikimotoi have been
demonstrated (Gentien & Arzul 1990; Arzul et al.
1993): they provide to this species a competitive
advantage over the other phytoplankton species.
However, the sensitivity of K. mikimotoi to its own
toxin could counteract this advantage. In order to
estimate the potential effect of this compound released
at the cell membrane, it is essential to define how it is
distributed around the cell.

To this effect, its half-life was measured indirectly by
trapping the oxygen radicals produced by its
degradation to HPPA. The increase in fluorescence
due to the HPPA dimer formation gives an integrated
measure of oxygen radicals produced during the decay
RSTB 20072079—2/4/2007—07:12—SRIKANTH—273602—XML RSB – p
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of the 18 : 5n3 (figure 2). The half-life of this molecule
in seawater and in the dark at 188C is approximately
50 min. This half-life should be regarded as a
maximum, since decay of degradation products can
produce extra radicals. The average vital distance
between cells could result from a balance between the
flux from the cell and the molecular diffusion on the
one hand and the toxin degradation and the LC50 on
the other hand. Owing to the rapid decay of the toxin
excreted by the cells, the action distance is very short
and the estimated distance of 175 mm seems to be the
upper limit. When transported in the viscous range,
cells that continuously produce the toxin transport
their own cloud of toxin.

Even if the time required for the toxin to act
irreversibly is unknown, any increase in cell concen-
tration would have a negative effect on cell viability. In
culture, during the dark phase, cells tend to be evenly
distributed throughout the culture volume, but during
the light phase, cells crowd at the air–water interface in
very thin layers (2–5 mm in thickness). Thus, cell
concentration can locally be much higher than the
average limit concentration in a culture. Subsampling in
the surface layer showed local cell concentration over
p. 1–11
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3!108 cell lK1 (average neighbour distance of approx.
90 mm). The apparent contradiction with the obser-
vations reported above can be solved by a careful
analysis of the processes. While the surface layer
concentrates, descending plumes from the surface
layer are observed. These descending plumes are so
concentrated in cells that it was impossible to identify
individual cells with the visualization system. Once the
maximum vertical extent of the plume was reached, cells
separated from their plume and progressively reached
the surface layer at instantaneous speeds of
90–100 mm sK1 on average. This speed is similar to
that observed for individual cells in the dark phase, but
under illumination, the azimuths of the trajectories
(data not shown) are oriented towards the surface
resulting in a continuous cell exchange between surface
layer and underlying water. This phenomenon, called
‘bioconvection’, has been described for many flagellates
(Hopkins & Fauci 2002). As reported by Harashima
et al. (1988), the essence of this phenomenon is that
gravity acts on the concentrated layer, not on the water
or micro-organisms separately but on their mixture.
The energy source of bioconvection is the active
transport of buoyancy given internally by the upward
swimming of micro-organisms. These patterns increase
the vertical diffusion of dissolved compounds released
by cells, including possible exotoxins. Continuity
requires an inflow of underlying water to compensate
for the flux driven by descending plumes. If the
residence time in the underlying water is sufficient,
then the toxin would decay and the compensating flux to
the surface layer would be free of toxin.

The speed of the descending plume front was
observed to be approximately 200 mm sK1. The upper
part of the plumes can be approximated as cylinders of
4–6 mm (measured with the laser sheet system
equipped with the optoelectronic deflector). These
plumes induce a downward flux from the surface layer
of 15.7 mm3 sK1 per plume. Three to five plumes were
observed in the 5!5 cm section containers. The total
downward flux for an average of three plumes is in the
range 30–68 mm3 sK1. The renewal time of water in
the surface layer is between 1.2 and 7 min. Since no
adverse effects on cell concentration were observed,
this time is not sufficient at a distance of 90 mm to
promote an irreversible effect on cells. The renewal
time of underlying water is of the order of few hours,
allowing the toxin to decay and the compensation water
entering the surface layer to be free of toxin. This
mechanism explains why cells do not suffer from
crowding in the surface layer.

To confirm the hypothesis that a high residence time
is necessary for the toxin to decay, underlying water
was carefully withdrawn while the cell concentration
was building up in the top layer. The results are
illustrated in figure 3. The initial cell concentration in
the concentrate is highly variable since it depends on
various experimental conditions. The number of live
cells was estimated (FDA measurements) after 180 min
in the concentrate. On average, the final cell concen-
tration observed in 12 experiments was 4!107 cell lK1,
with over 90% of the remaining cells still viable. This
limit cell concentration is the one found in batch
cultures.
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The importance of bioconvection in maintaining the
crowded layer has been further confirmed by the
following experiment. Bottom illumination of a culture
flask blackened on the sides caused cell crowding at the
bottom. Bioconvection could not occur in these
conditions. After a light period of 4 h, all the cells had
died; after return of the culture to normal illumination
condition, the culture failed to grow again owing to the
absence of a viable inoculum.

In summary, K. mikimotoi produces a short-lived
toxin that acts at a short range. By the inhibition of
competitors at low cell concentrations (104 cell lK1),
this toxin provides a competitive advantage (Arzul et al.
1993) but controls, at the same time, its own maximum
cell yield. In quiet conditions, the phototropism-driven
cell behaviour leads to local accumulation of cells
without negative effects on cell concentration owing to
the exploitation of physical instabilities.

The range of action of the toxin is the result of a
balance between the production flux at the cell
membrane, the molecular diffusion and the toxin
decay rate. Local saturation of the medium does not
occur since the toxin is unstable and the toxic effect acts
only at a short distance. This finding is in accordance
with the report by Uchida et al. (1999) that the
inhibitory effect of K. mikimotoi on Heterocapsa
circularisquama in bialgal cultures occurred mainly by
direct cell contact. Therefore, allelopathic and auto-
toxic processes have an action at a short range (less than
175 mm). Hereafter, K. mikimotoi are considered as
virtual particles with a maximum diameter of 175 mm.

We further examined the implications of this
intrinsic property of K. mikimotoi on its own population
development under realistic conditions.
(b) In situ population development
A common feature in field observations of K. mikimotoi
is that it often occurs in or near the pycnocline layer
during some stage of its population development.
There are cases where populations develop in weakly
stratified water bodies. However, along the Atlantic
coast of Europe, blooms occur mainly on the stratified
side of hydrographic fronts (Partensky & Sournia
1986). Blooms in stratified water columns remain
11
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confined mainly within the pycnocline layers (Birrien

et al. 1991). Bjoernsen & Nielsen (1991) studied the
distribution of G. aureolum in a pycnocline layer in the

Kattegat with a high-resolution sampler. They
observed a strong heterogeneity of the dinoflagellate

population in the decimetre scale and concluded that
G. aureolum formed at that time a more or less coherent

‘magic carpet’ in the pycnocline layer. These authors
supposed that the inhibition of potential predators

could be an important factor in the maintenance of a
high phytoplankton biomass in the pycnocline layer.

Karenia mikimotoi has been shown to produce
exotoxins that are detrimental to the growth of other

algae (Gentien & Arzul 1990). On the Ushant front,

K. mikimotoi’s maximum concentration corresponded
to a minimum in diatoms (Arzul et al. 1993), and the

minimum cell concentration for a reduction in the
diatom growth rate was approximately 104 cell lK1

(Gentien 1998). Therefore, allelopathy exerted by
K. mikimotoi may have been playing an effective role

at the onset of the population development. We
reported above that this adaptive advantage may be

countered by autotoxicity above a limit in cell
concentration; it could be that the population thus

benefits from this confinement in a layer while, at the
same time, being limited by this same confinement.

In §4, we test the hypothesis that the exotoxin
production is an essential control factor in the

population dynamics. Hereafter, we consider that two
cells encounter when the vital volumes of these

two cells intersect. Under quiet conditions in vitro,
motile cells have the possibility to avoid each other.

In situ, cells are transported and they may enter in
‘contact’ and turbulence would increase, at a given cell

concentration, the frequency at which individual cells

are within a certain distance of another. We treated this
increase in frequency as the encounter of virtual

particles with a diameter range between 25 mm (the
cell diameter) and 175 mm (the vital volume around

each cell).
Encounter rate is a function of sizes of colliding

particles, their concentrations and environmental
parameters. The encounter rate of particles is given

by bcC
2, where C is the concentration of particles and

bc is the coagulation kernel (product of the encounter

kernel (b) and the efficiency kernel (a)). The encounter
kernel represents the average percentage of particle

pairs that will encounter per unit time and unit volume.
It is the sum of the terms describing the different

processes that bring particles into contact. Three major
processes can generate encounter: Brownian motion;

differential sedimentation; and shear (Pruppacher &
Klett 1978, adapted by Jackson 1990).

Owing to their own motility, cells present a cell

diffusivity that could be treated in the same way as
Brownian motion if the cells were colliding in still

conditions. Measurements of cell distance show that
cells always maintain a minimum distance between

them: collisions or cell doublets have never been
observed, under quiet conditions. Even if the cell

diffusivity is quite high, it can be supposed that in
turbulent conditions, cell diffusivity does not have an

important contribution to the encounter kernel.
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Differential sedimentation means that each large

settling particle generates a wake with a downward-
induced motion. Such a large descending particle is

expected to accumulate a cluster of smaller ones in its

wake. The observations of cells in contact show a
release of intracellular material due to lysis. In the first

approximation, we suppose that released matter would
be in the form of colloids, with a zero sedimentation

speed. This process was therefore neglected.
The third encounter mechanism is due to shear:

differences in fluid velocity cause two particles to

approach each other. Considering only the latter
mechanism and the fact that only the same-sized

particles are concerned, the encounter kernel formu-
lation for particles of the same size reduces to bZbShZ
10.4gr 3 according to Pruppacher & Klett (1980),

where g is the shear rate (sK1) and r (mm) is the cell
active diameter which can be larger than the cell

diameter. The term expressing mortality will therefore
be formulated as follows: KKgC2, where g is the shear

rate (sK1) ðgZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=7:5vÞ

p
Þ, where 3 is the energy

dissipation rate and v is the kinematic viscosity

(Moum & Lueck 1985); C is the cell concentration

(mK3); and K is a scaling parameter that takes into
account the effective cross-section diameter and a

scaling factor (KZ0.1 for cell concentration expressed
in dmK3).

The effect of the mortality process due to auto-

toxicity was tested under real conditions occurring on
the Ushant front. The Iroise Sea, off West Brittany

(France), in the eastern North Atlantic, shows a tidal
and seasonal well-developed frontal system, the

northern part of which was previously described as
the Ushant front, well described for its physical,

chemical and biological properties (Pingree et al.
1975, 1977). This area was selected as communities
of dinoflagellates, including K. mikimotoi recur fre-

quently in the pycnocline layers on the stratified side of
this tidal front (Holligan & Harbour 1977). Realistic

forcing has been applied to a one-dimensional model

with realistic tides. Wind data have been obtained from
the Ushant meteorological station.

Growth formulation was kept as simple as possible to
test the effect of mortality induced by cell encounter. The

maximum growth rate was observed to be 0.6 dK1

(Gentien 1998). The growth rate relation to temperature

wasobtained bya polynomialfit to invitromeasurements:

(mZ2.5!10K3T3K0.15T2 C2.8775 TK17.25). This
equation reproduces the zero growth rate observed at

128C for this strain. The relative stability of maximum
growth rate (more than 0.5 dK1) between 14 and 188C

reflects probably the acclimation time allowed before

growth rate measurements at different temperatures.
The pigment composition and bio-optical charac-

teristics of K. mikimotoi being very plastic with respect
to adaptation to the growth light regime allow it to

benefit from both low and high levels of light (Johnsen

& Sakshaug 1993). A light regime such as those
reported from the pycnocline layers (1–5% incident

light) during summer can support net growth of the
population, albeit at non-saturated rates (Richardson

& Kullenberg 1987). In the first approach, light
limitation was not considered at all, even if this 1%
p. 1–11
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limit may be encountered around 25–30 m depth
in summer.

In stratified water columns, cells do not migrate and
remain in the pycnocline layer. This has been
considered as a fact and a model of vertical migration
was not implemented. The explanation of this shift in
behaviour should be the subject of further work.

The time evolution of the tracer K. mikimotoi is
therefore

vC

vt
Z

v

vz
kz

vC

vZ

� �
CmðT ÞCKKgC2:

This model was run under realistic forcing for the
years 1996–1998. K was kept constant at 5!10K5 (for
a cell concentration expressed in cell lK1), even if it is
probable that K varies according to the cell physiologi-
cal status. Mucopolysaccharides excretion would tend
to lower g at a given energy dissipation rate (3) by local
changes in the kinematic viscosity (n). This process was
not considered in this first approach model.

Initial conditions were set at the level of 1 cell lK1

distributed in the water column, with no reset during
wintertime. figures 4–6 show results from the model
run with 50 evenly distributed layers in the 50 m depth
water column. It was started on 1 January 1996, but the
stabilization period of the model is omitted from the
figure and the results are presented for 1997–1998.
Figure 4 represents the time–depth evolution of the
isotherms: the gross features of the stratification
offshore of the front are correctly reproduced in terms
of temperature range and timing of the stratification.

Q
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Figure 5 represents the evolution of the calculated
shear rate resulting from the influence of wind events
and the modulation of tidal friction on the bottom. Two
low shear rate (less than 0.5 sK1) periods occur at mid-
depth in the summer months. During these periods, the
K. mikimotoi-like tracer (figure 6) appears to develop in
the pycnocline layer. The resulting pattern is similar to
that reported by Holligan & Harbour (1977). The inset
in figure 6 shows time discontinuities in cell densities
closely associated with bursts of agitation induced
by wind.
4. CONCLUSIONS
The ichthyotoxicity of K. mikimotoi is due to the
production of a fatty acid (all-cis-octadecapentaenoic
acid) or its glycoglycerolipids (Parrish et al. 1998). This
fatty acid is labile, and therefore acts at local scales on
algal competitors and other biological targets. Each cell
of K. mikimotoi is surrounded by a cloud of toxin that
does not exceed the 175 mm diameter. This toxin
provides a competitive ecological advantage to
K. mikimotoi over the other species encountered.
However, K. mikimotoi cells are sensitive to their own
toxins. Autotoxicity is a well-known process in
terrestrial plants and has profound implications in
agroecosystems (Singh et al. 1999). This is one of the
few documented cases of autotoxicity in the marine
environment (Pratt & Fong 1940; Imada et al. 1992).
In culture, the possible autotoxicity in the case of cell
crowding resulting from concentration of motile cells
11
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by phototropism was shown to be countered by the
exploitation of physical instabilities.

The dependency on turbulence was tested as a major
possible control in population dynamics. The model-
ling exercise should be considered as an experiment to
evaluate the importance of this control process. To this
effect, growth formulation has been kept as simple as
possible, with a growth rate depending on temperature
and mortality expressed by an encounter kernel
depending solely on shear rate. This growth equation
is similar in structure to the logistic equation used in
still batch cultures with one major difference; that is,
the mortality factor in C2 depends on external forcing
factors (tide and wind). Quite surprisingly, this simple
formulation reproduces the gross features of the
development of K. mikimotoi on the Ushant front.
Population confinement in the pycnocline layer
(Birrien et al. 1991; Gentien 1998) is not mainly driven
by diurnal migration capabilities, as observed vertical
distributions can be reproduced without using diurnal
migration complex formulations. Hence, one can
conclude that the confinement in the pycnocline layer
is probably not due to an active behaviour but due to an
increased survival rate.

This approach differs from the general ‘ecological’
models derived from models of phytoplanktonic
biomass, in which it does not consider the competition
for nutritive substrate as the determinant of the
competition outcome between the various phytoplank-
tonic species, but rather relies on intrinsic properties of
a given species.

Ranking of control factors allows reduction in the
number of parameters needed from several tens to six,
four of them (the coefficients of ) being experimentally
measurable, and therefore allows improvement of the
robustness of the model. The higher the cell concen-
tration, the higher will be the mortality rate. The
population dependency on shear rate is likely to control
the termination of the bloom more effectively than the
possible depletion in nutrients. This result should be
further investigated for these hydrodynamic con-
ditions, using better shear rate estimates and a better
understanding of the processes leading to collision
between cells. This simple scheme may need some
adaptation for shallow weakly stratified seas, where
biological control factors may be more important than
the physical ones. Nonetheless, the rate of cell mortality
due to encounters should be considered as one of
the major control factors of the population growth for
this species.
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