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Abstract: Acoustic data are often collected during bottom trawl surveys. Their use can potentially 
improve the precision and accuracy of fish abundance estimates if acoustic data collected between 
trawl stations are consistent with those collected during trawling operations. This question is 
addressed here through the analysis of 20 bottom trawl surveys (three survey areas and five different 
survey series) with coincident acoustic measurements during and between trawl stations. Firstly, on-
station and underway acoustic data were compared using statistics computed globally over each 
survey (average vertical profiles, global indices of collocations, and spatial structures) for various 
combinations of depth layers. Secondly, we focussed on underway acoustic data recorded in the 
vicinity of stations, distinguishing between data recorded before and after the tows. On-station and 
underway acoustic data were highly consistent, and no systematic perturbation of the acoustic sign 
due to the presence of the gear a few hundred metres behind the vessel was observed.  

Résumé : On récolte souvent des données acoustiques durant les inventaires faits au chalut de fond. 
Leur utilisation peut potentiellement améliorer la précision et la justesse des estimations d'abondance 
des poissons, si les données acoustiques récoltées entre les stations de chalutage sont compatibles 
avec celles récoltées durant les opérations de pêche. Nous examinons la question en analysant 20 
inventaires faits au chalut de fond (trois zones d'inventaire et cinq séries différentes d'inventaires) pour 
lesquels il existe des mesures acoustiques coïncidentes obtenues dans et entre les stations de 
chalutage. Nous avons d'abord comparé les données acoustiques obtenues en route et dans les 
stations à l'aide de statistiques calculées globalement pour chaque inventaire (profils verticaux 
moyens, indices globaux de collocation et structures spatiales) selon diverses combinaisons de 
couches de profondeur. Ensuite, nous nous sommes intéressés aux données acoustiques obtenues 
en route près des stations, en distinguant entre les données enregistrées avant et après le chalutage. 
Il existe un excellent accord entre les données acoustiques obtenues dans les stations et celles 
enregistrées en route; on n'observe pas de perturbation systématique du signal acoustique due à la 
présence des engins de pêche à quelques centaines de mètres derrière le navire. 
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Acoustic data are often collected during bottom trawl surveys. Their use can 

potentially improve the precision and accuracy of fish abundance estimates if acoustic 

data collected between trawl stations are consistent with those collected during trawling 

operations. This question is addressed by the current paper through the analysis of twenty 

bottom trawl surveys (three survey areas and five different survey series) with coincident 

acoustic measurements during and between trawl stations. Firstly, on-station and 

underway acoustic data were compared using statistics computed globally over each 

survey (average vertical profiles, global indices of collocations and spatial structures) for 

various combinations of depth layers. Secondly, we focussed on underway acoustic data 

recorded in the vicinity of stations, distinguishing between data recorded before and after 

the tows.  

On station and underway acoustic data were highly consistent and no systematic 

perturbation of the acoustic sign due to the presence of the gear few hundreds meters 

behind the vessel was observed.  

Key words 

Bottom trawl, acoustic, gear perturbation 

Introduction 

Bottom trawl surveys are one of the main survey methods used in the assessment 

of demersal fish stocks around the world (Gunderson 1993). It has recently become 

possible to carry out combined acoustic and bottom trawl surveys (e.g., in the Barents 

Sea, Aglen and Nakken 1997; Korsbrekke et al. 2001) or to collect acoustic and trawl 

data while carrying out a bottom trawl survey (Cachera et al. 1999; Krieger et al. 2001). 
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In some cases, such as Barents Sea cod (Gadus morhua L., Korsbrekke et al. 2001), the 

acoustic data are used to generate a secondary abundance index from the survey in 

addition to a trawl catch-rate index. Acoustic observations can also be used to gain 

additional information on fish availability and distribution away from the trawl station in 

order to improve the precision and accuracy of the trawl-based estimate. These two 

approaches were the basis for the EU funded (Framework Programme 5) project 

CATEFA (Combining Acoustic and Trawl data for Estimating Fish Abundance).  
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Two hypotheses need to be confirmed to allow this combination of acoustic and 

trawl survey data. The first is that the fishing gear and the acoustic devices are measuring 

the same thing. If true it would become possible to derive a relationship between trawl 

catch and acoustic observations (Krieger et al. 2001; Hjellvik et al. 2003). The second is 

that acoustic data collected away from the trawl stations is consistent with that collected 

during the trawling operations. The present paper deals with the second hypothesis.  

There is considerable evidence that fish engage in avoidance behaviour to the 

trawl/vessel combination (Godø et al. 1999; Michalsen 1999; Handegard et al. 2003; 

Kloser and Horne 2003). Vessel speed is generally low during trawling (e.g. around 3 

knots) and, a large and noisy net is being towed. Away from the trawl stations, the survey 

vessel moves much faster (usually over 10 knots) and without a net. The evidence is 

mixed as to whether fish also engage in avoidance behaviour under this scenario (Mitson 

and Knudsen 2003; Fréon and Misund 1999; Fernandes et al. 2000). Different avoidance 

reactions, and hence availability to the echosounder, could have a significant impact on 

what is seen on the echogram. In order to use the acoustic data between trawl stations for 

the purpose of improving trawl survey estimates or of combining the data, we must be 

 3



65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

sure that the echosounder is seeing the same component of a population during trawling 

as it does while running between stations. This study uses data from a number of different 

trawl surveys in the North, Irish and Barents Seas (Fig. 1a). It examines the relationship 

between on-station and between-station acoustic data at both the local level (i.e., 

immediately adjacent to the trawl station) and more globally for each survey.   

Material and methods 

Surveys and data preparation 

Bottom trawl data with coincident acoustic measurements from three survey areas 

and five different survey series were used in this analysis (Table 1). 

The International Council for the Exploration of the Sea (ICES) co-ordinates the 

International Bottom Trawl Surveys (IBTS) in the North Sea. These surveys follow a 

random design, stratified by ICES rectangle (Fig. 1b). Trawl and acoustic data are only 

collected during daylight hours. The surveys used in this study were those carried out by 

the Centre for Environment Fisheries and Aquaculture Science (Cefas) - Lowestoft 

(2000, 2001 and 2002), the Fisheries Research Services (FRS) - Aberdeen (1999, 2000 

and 2002) and the Institut Français de Recherche pour l’Exploitation de la Mer (Ifremer) 

- Boulogne (2002 and 2003). Each survey comprises between 60 and 80 stations. The 

North Sea data had the most skewed distributions with many low values and a few 

extremely high values. In the case of the French data, 65 % of the total back-scattering 

energy on-station was concentrated in 3 % of the stations. 

The Northern Irish Bottom Trawl Surveys (NIBTS) in the Irish Sea. These 

surveys are mostly small (35 to 45 stations) and follow a random sampling design 

stratified by depth and substrate (Fig. 1c). Depth varied between 23 and 102 m. Four 
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surveys carried out by Dardni (Department of Agriculture and Rural Development, 

Northern Ireland) Belfast were available: autumn 1997, spring 2000, autumn 2001 and 

spring 2002. These surveys tend to encounter much more pelagic fish like herring 

(Clupea harengus) and sprat (Sprattus sprattus) than in the North Sea or Barents Sea 

surveys. 

The combined acoustic and bottom trawl surveys for cod (Gadus morhua) and 

haddock Melanogrammus aeglefinus) in the Barents Sea – are conducted by the Institute 

of Marine Research (IMR) Bergen. Sampling follows a regular grid with a haul every 20 

n.mi. (Fig. 1d). The number of hauls varied between 200 and 300. Surveys were available 

from 1997 to 2002.  

Simrad EK500 scientific echosounders were used for all surveys, with at least a 

38kHz split-beam transducer. The echo-sounder angle was of 7° and its pulse duration 

was of 1 ms. For this frequency, the efficiency of the TVG is 580 meters (Diner & 

Marchand, 1995). Since the maximum depth encountered in the different surveys used in 

this study was between 23 meters (Irish Sea) and 540 meters (Barents Sea), the 

propagation loss was not a problem. The acoustic back-scattering energies were 

converted to Nautical Area Scattering Coefficient (NASC; MacLennan et al. 2002) and 

expressed in m2·n.mi-2. The integration threshold was set at -70dB NASC values were 

available from trawl stations and between trawl stations. For the on-station NASC, 

integration was carried out for the whole trawling period. In general, the tow length is 

fixed within each survey series. NASC values between trawl stations were available at 

fixed Elementary Sampling Distance Units (ESDU) which differed by survey series: 0.1 

 5



110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

n.mi. for IFREMER data, 1 n.mi. for IMR data,  and 0.5 n.mi. for the rest of the datasets 

(Table 1).  

Because the ESDUs were smaller than the average tow lengths, between-station 

NASC values were pooled (regularized) to produce ESDU as close to the average tow 

lengths as possible for each survey series: 3 n.mi in the Irish Sea, 1 n.mi. in the Barents 

Sea, and 2 n.mi in the North Sea.  

NASC values for each ESDU and trawl station were subdivided into a series of 

bottom referenced layers (Fig. 2): ten one-meter layers sequentially from the seabed 

followed by several ten-meters layers. The accuracy of the sounder-detected bottom was 

verified and corrected where needed. This was achieved using manual or semi-automated 

procedures in the analysis of the acoustic data. In the latter case, the layer closest to the 

bottom included a backstep to avoid integrating the seabed. The size of the backstep 

varied between 10 and 40 cm, depending on the survey series and weather conditions. 

Acoustic data preparation was carried out using SIMRAD BI500 for the Norwegian data, 

Movies Plus for the French data and SonarData EchoView 3.1 for all of the other data. 

Acoustic signals of obvious and well-defined pelagic fish schools were excluded 

from the analysis.  

Notations 

The superscripts indicate whether a parameter refers to on-station (o) or between-

station (b) data. For instance, the numbers of samples taken on-station and between-

stations are denoted by and . Equations are only given for the on-station data. They 

are interchangable with between-station data by changing the superscripts.  

oN bN
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The NASC values observed at sample i , in layer , are denoted , 

. The longitude and latitude (
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Volumetric Scattering Coefficients,  sV , expressed in m-1 are obtained by: 
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Layers were also integrated and grouped into a bottom and a mid-water layer. In 

the North Sea and Irish Sea, the bottom layer was defined as the bottom 10 m and the 
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mid-water layer was the layers between 10 and 40 m off the bottom (Fig. 2). Because of 

the high average depth in the Barents Sea area and the large vertical opening of the trawl, 

the first 40 meters were regarded as the bottom layer and the mid-water layer was 

between 40 and 100 m above the bottom: 
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The sum over all the layers is denoted by . ( )o
As i

Global statistics 

Vertical profiles 

We computed the average vertical profiles for both on-station and between-station 

NASC for each survey according to: 
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This allows for a visual comparison of vertical fish distributions seen on-station 

and between stations. 

Horizontal structures 
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Global index of Collocation 

The match between the two spatial distributions was evaluated using a Global 

Index of Collocation  (GIC; Bez and Rivoirard 2000). This index is based on the centre of 

mass and inertia of each spatial distribution. The centre of mass for say the on-station 

bottom layers in a given area ( ), was computed as: 0-40
oCoM
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with equal weight given to each sample. The centre of mass is a vector of coordinates 

giving the mean location of the population in terms of longitude and latitude. The inertia  
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is expressed in surface units (typically square nautical miles) and quantifies the spatial 

dispersal of the population. The Global Index of Collocation (GIC) is given by: 
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It measures the spatial overlap between the on station and between-station populations 

and ranges from 1 for complete spatial overlap between the two populations to 0 when 

the two are distinct. Numerically, it decreases quickly with decreasing spatial overlap. 

This index is analogous to an analysis of variance type of criteria as it compares the mean 

(square) distance between the centroïds of the two populations, and the mean (square) 

distance between two individuals taken at random and independently from any of the two 

populations (Bez, in press). 
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Variograms 

Spatial structures of the vertically integrated NASC values were compared in 

more detail using variography (e.g. Rivoirard et al. 2000). Because the goal was to 

compare the spatial structures, and not to estimate biomass, the NASC values were 

transformed as follows:  

 

 

(Eq. 8)  ( )log 1 ( )    o
As i+

 

 

 

While this non-linear transformation modifies the spatial structure, it does not preclude 

comparisons of spatial structures from being made. Zero values remain zero after the 

transformation but differences between large data values are reduced.  

Because the sample sizes of the two sets were significantly different (a few dozen 

for on-station data and few hundred for between-station), we did not expect the variances 

to be equal (especially when dealing with skewed data). We therefore compared 

normalised variograms, i.e. variograms divided by the empirical variance of input data. In 

two instances, a poor match was observed between the variograms of on-station and 

between-station data. The impact of extreme values was then investigated by excluding 

some of the largest data.  
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Normalised variograms were averaged by surveys series, resulting in one 

variogram per survey series. 

Local statistics : before, during and after trawl 

To test for the existence of changes in the acoustic signal due to fish response to 

trawl gear, we compared records made during trawling with those made just before and 

after trawling. The objective was to test the null hypothesis (H0) that on-station and 

nearby between-station NASC values were similar, and more precisely, as similar as two 

consecutive between-station NASC values that lie outside the stations’ areas of influence.  

A window of the same order of magnitude of the tow durations was chosen to 

select between-station data located nearby each trawl station (1 n.mi. for Barents Sea 

surveys, 2 n.mi. for North Sea surveys and 3 n.mi. for Irish Sea surveys). This window 

was considered to be small enough to provide local statistics but large enough to include 

a sufficient number of observations.  

Bottom and mid-water layers were summarized by two statistics: a biomass 

criteria, i.e. the NASC values integrated over the depth layers and, a measure of vertical 

distribution, i.e. the altitude of the centre of mass (CoM) of the acoustic energy. The null 

hypothesis H0 to be tested, was that these two criteria were equal on average for 

observations made before, during and after trawling for both the bottom and mid-water 

layers.  

Comparisons of observations recorded before, during and after the tows were 

sensitive to possible mixture of a trawl effect and a distance effect. The objective of the 

test was thus to disentangle how much the observed differences originated from the 

distance between the observations and from trawl effects respectively. When the spatial 
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distribution of fish is such that any two proximate values are naturally similar (strong 

spatial structure of the study variable), observations made before, during and after a trawl 

station must be very similar in order for H0 not to be rejected. On the other hand, if the 

spatial structure is weak, the average difference between two proximate values is 

naturally relatively large, and H0 cannot be rejected, even for a relatively large 

discrepancy between observations made before, during and after trawling. Tests were 

thus evaluated with regards to the similarity of 1000 randomly selected pairs of 

successive between-station observations sufficiently far away from trawl stations to 

preclude a trawl effect. For each survey, the following three differences: during - before; 

during – after; and random1 – random 2, were thus considered (the first two being 

positive when the observations recorded during trawling operations were larger). These 

differences were considered relative to the mean value of the integrated NASC values and 

the altitude of the centre of mass of the acoustic energy relatively, both parameters were 

pooled by survey series. Empirical cumulative density functions (cdf) were thus built for 

each survey series and for bottom and mid-water layers separately.  

Finally, a paired Student test, robust to departure from normality, was used to test 

if mean differences were equal to zero. Given H0, a large p-value indicates a high 

likelihood that observed difference are consistent with a zero mean.  

Time of day considerations 

With the exception of the Barents Sea surveys, all surveys are performed during 

daylight and no impact of the time of the day is expected. In the Barents Sea however, 

there is ample evidence that vertical zonation of gadoid fish can vary throughout the day 

or year (Hjellvik et al. 2002). In the present analysis, this would not be expected to have a 
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major impact. For the pooled analyses, we have combined data for all times of day and 

equal compensation is expected for both on-station and between-station data as these are 

homogeneously distributed in time. For the before-during-after studies, each haul is 

matched to adjacent between-station data taken at same time, thus reducing the impact of 

diel changes. Finally, surveys are taken at the same time of year (Table 1), thus reducing 

seasonal effects. 

Coordinates transformations 

In order to compute true distances between samples, coordinates were 

transformed to an orthogonal system. A gnomonic projection with a centre at N72°00 

E30o00 was used for the Barents Sea data. A transformation based on the cosine of the 

mean latitude of the coordinates was applied to the North Sea and the Irish Sea data 

separately. 

Results 

Vertical profiles 

There is a clear and consistent trend in the vertical acoustic profiles across surveys 

and survey series (Fig. 3, 4 and 5). In general, the mean NASC value is highest in the 

depth layer closest to the bottom, and decreases approximately exponentially over the 

next five to nine meters. Above this, the mean NASC is either relatively constant or 

decreases steadily both for on-station and between-station data. For the Irish Sea (Fig. 5) 

where a lot of the backscatter can be attributed to fish schools, the above-mentioned trend 

only appears after dense (pelagic) school echo traces have been excluded from the 

analyses. If these are retained, they result in a more bell-shaped vertical profile with the 

maximum energy a few meters above the bottom. The match between on station and 
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between station vertical profiles is nearly perfect for both represented quantiles for the 

Barents Sea case where the number of stations is large (Fig. 3), but less evident as the 

number of samples decreases (e.g. Irish Sea; Fig. 5). However, there is no general pattern 

of on-station or between-station profiles being systematically larger than the other. 

Similarly, the year-to-year differences in the vertical profiles are consistently reflected in 

both the on-station and between-station data, regardless of the number of samples. 

Global Index of Collocation 

The GICs were greater than 0.9 in 75% of the surveys suggesting a strong overall 

correspondance in the spatial distributions of NASC values between on-station and 

between-station data (Fig. 6). The GIC was considerably lower (around 0.6) in only two 

cases where centres of mass of each distribution was far apart each other compared to the 

respective dispersion of each population (inertia). 

No systematic difference in the GIC values was observed between the bottom and mid-

water layers. The mid-water GICs were generally smaller than those of the bottom layers 

(average GICs of 0.91 and 0.93 respectively) but the difference was not statistically 

significant (Student’s T test: p.value = 0.57).  

Variograms 

The match between the log-transformed variograms for on-station and between-

station data was very good for the Barents Sea surveys (Fig. 7a). For the other survey 

series (Fig. 7 b-e), a reasonable match was observed. However, in two cases (IBTS from 

FRS and IFREMER), this was only obtained after respectively 2.5% and 2% of the most 

extreme values were removed. The between-station data allowed resolution of the small-

scale spatial structures that are inaccessible with the on-station data alone and would lead 
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350 

to geostatistical models compounded of a nugget effect that explains around 40 % of the 

total variability (regardless of survey series) and of a component with autocorrelation 

limit distance of 200 n.mi for the Barents Sea surveys, and approximately 50 n.mi for the 

others. 

Correlation before/during/after trawl 

Integrated NASC for mid-water layers (Fig. 8a) and for bottom layers (Fig. 8b) 

All the cumulative histograms of the relative differences were symetrical with a 

narrow mode around zero indicating that in half of the cases NASC values were larger 

during trawling than before and after. Empirical c.d.f. were visually highly consistent for 

a given survey series; the differences between them being larger between than within 

survey series. The empirical c.d.f. between the quantiles 25 and 75% were highly 

consistent. Differences were observed in the distributions’ tails only. There was no 

evidence of the relative differences during - before and during – after having a 

systematically higher or lower spread than those obtained for randomly selected data. For 

bottom layers and for all surveys (Fig. 8b), NASC integrations were on average higher 

during the tow than before or after. However, these means were not significantly different 

from 0 in most cases (two p-values out of ten below 0.1). Interestingly, the differences 

between randomly selected off-station data showed the same symetrical and skewed 

distributions and were considered equal to 0 for all but two cases as well. The picture was 

somewhat different for the mid-water layers where the NASC values were alternatively 

smaller and larger during trawling than before or after. This, however, was rarely 

statistically significant (two p-values out of ten below 0.1). Here again, the average 
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differences between randomly selected off station data were considered not equal to 0 for 

two cases. 

Differences in altitudes of the centre of mass for mid-water layers (Fig. 9a) and for 

bottom layers (Fig. 9b) 

Differences in altitudes of the centre of mass from NASC values showed weaker 

tails and weaker modes than the integrated NASC values did resulting in similar medians 

and means. For the ”bottom” layers (Fig. 2), the majority of the observed differences 

were less than 1 meter. In only one case (FRS) did the differences during – before and 

during – after show empirical distributions shifted towards lower values compared to that 

of the reference situation. Despite the fact that the mean of the latter was significantly 

different from zero, this was the sole case where we observed a reduction of the mean 

heigh of the acoustic energy associated to trawling activities. None of the other cases 

indicated an impact of trawl presence: average differences were alternatively positive or 

negative, the proportion of p-values smaller than 0.1 was similar for cases with the trawl 

and without, and the differences between empirical c.d.f. were larger between survey 

series than within. Interestingly, the during – before and during – after trawling 

differences observed in the Barents Sea surveys were more concentrated around zero than 

the differences observed where no trawl was in the water: variations in vertical 

distributions were thus smoothed when the trawl was present. 

Discussion  

With the final goal to combine acoustic and catch data, which was not considered 

in this study, we examined the hypothesis that acoustic data collected away from the 

trawl stations were consistent with those collected during the trawling operations. Rather 
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than examine one survey with a particular format, we chose to study a series of different 

surveys ranging from the Barents Sea to the North and Irish Seas, to attempt to identify 

broad trends in this type of data. The major differences between the data sets were the 

numbers of data points available on-station, and the proportion of stations connected with 

acoustic transects. The Barents Sea surveys included between 200 and 300 trawl stations 

per survey, whereas in the North and Irish Seas surveys included between 13 and 80 

stations. IBTS data were only taken in daylight hours, with the last station of the day and 

the first one of the following day not being connected by acoustic transects. As a 

consequence, relationships between on-station and between-station observations are 

likely to be more apparent for the Barents Sea than for any of the other surveys. 

The first type of analysis was a straightforward global comparison using all the 

available data, for the pooled NASCs by layers for the on-station and between-station 

data. The general pattern was broadly consistent across all the surveys. The bulk of the 

acoustic energy was found in the deepest layers in the water column: the back-scattering 

energy reduces exponentially as the range from the seabed increases and then stabilises 

somewhere between 5 m and 10 m off the bottom. More importantly, the pattern is 

similar for both on-station and between-station data. Where differences occurred, they 

were not systematic as on-station integrated values could be both greater or less than 

between-station data. Furthermore, where deviations from the general pattern occurred in 

a particular survey, they were seen in both on-station and between-station data.  

The Global Indices of Collocation (GICs) confirmed the subjective appraisal of 

the vertical profiles. To help interpretations, GICs were computed for simulated fish 

distributions (isotropic Gaussian fish density with fish density being set to zero for 
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densities below the 5% quantile). From this simulation, it was concluded that a GIC 

between 0.6 and 0.8 could be considered as a low value and a threshold of 0.8 might be 

adopted as a minimum value for a good match (Fig. 10). For the bottom layers, only one 

survey out of twenty showed a poor match, and this had low station numbers ( = 46). 

Slightly poorer results were obtained for the mid water layers, with three out of the 

twenty surveys having low GIC values. NASC values were generally much lower in the 

mid water layers and also much more variable so this outcome is not surprising.  
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The variograms allowed a more detailed study of the spatial structures associated 

with the on-station and between-station data. For the Barents Sea data, the relatively high 

number of stations allowed the generation of good quality variograms for on-station and 

between-station data. These variograms were highly similar. For the other surveys, the 

variograms were less well behaved, reflecting the smaller number of samples relative to 

the sampling area and the large skewness of the data. However, they were also similar, 

provided that some extreme values were removed in two cases. Variograms were 

considered relative to their variances; we only compared their shapes. The variance of the 

between-station data was often larger than the variance of the on-station data because the 

chances of encountering rare extreme fish concentrations is higher with several thousands 

samples than with a few dozen or a few hundred samples (Bouleau and Bez, 2005). Still, 

the strong similarity in the shapes of the variograms, would allow using the spatial 

structures depicted by the between-station data (rescaled to the on station data variance) 

to obtain a variogram model usable for the purpose of quantitative estimation. It is worth 

reiterating here, that the variograms were computed with log-transformed data. This non 

linear transformation induces bias and the variograms obtained here can not be directly 
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used for estimation purposes. Both the log-transformation and the selection of a certain 

quantile (97.5 or 98%) of the data, aim to reduce the impact of the extreme data. This is 

not at odds with the fact that most of the total abundance is explained by a very small 

proportion of data. As a matter of fact, it is usually agreed that fish data behave like log 

normal variables. When simulating a lognormal variable, the likelihood of getting an 

extreme value increases with the number of samples. Therefore, we could not have 

expected on-station data to sample the tails of the distributions with the same accuracy as 

the between-station data, the latter being much more numerous than the former. In 

addition, the impact of few extreme values on empirical variograms is known to be large 

and not meaningful for the comparative exercise we did in this study. In other words, 

what made between-station variograms different from the on-station variograms was only 

the occurrence of extreme rare data. The bulk of the observations had spatial distributions 

that matched well.  

The final step in the analysis, was to examine the relationship between on-station 

and between-station data in the areas close to each haul. For this comparison we only 

used the most adjacent between-station data to each haul. However, given the survey 

protocol, a small but non-zero distance existed between observations made before, during 

or after trawling. To disentangle how much of the observed differences originated  from 

the distance between the observations and from a possible trawl effect respectively, we 

bootstrapped between-station data to serve as a reference situation for the comparisons. 

We found that both before and during trawling data, and during and after trawling data 

were, with one exception, not more different than two successive randomly selected 

between-station data (the distributions of their differences are strongly similar). The 
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statistical approach is designed so that under H0, 10% of the p-value are below 0.1. In 

this study, 25% (10 out of 40) of the p-values obtained when testing on station data with 

adjacent ones were smaller than 0.1 (6 times for the during – before differences and 4 

times for the during – after differences). Contrary to expectation, this proportion was 

35% (7 out of 20) for the so-called reference situations provided by the bootstrapped 

between-station data. The null hypothesis that the average difference in biomass or in 

height of the centre of mass for observation made before, during or after trawling was 

thus acceptable.  

Most critically for the purposes of this analysis, the inference supported by all the 

results is that we see similar energy values on-station and between stations, suggesting 

that we were observing the same fish assemblages in the two situations. However, there is 

some evidence in the literature of fish reaction to research vessels during trawling (e.g. 

Godø et al. 1999; Handegard et al. 2003). Reactions can be both vertical, as in diving, or 

horizontal, as in moving out of or towards the path of the trawl. We shall distinguish 

between gear and vessel induced reactions. In the Barents Sea for instance, Handegard et 

al. (2003) showed that the fish present in the 40 first metres above the sea bed, exhibit a 

slight diving reaction to the vessel passing and a marked horizontal reaction to the warp. 

Given the mean depths of the study areas, the distances between the acoustic beam 

beneath the vessel and the trawl, ranged from 100-200 m for Irish Sea and North Sea to 

more than 500 m for the Barents Sea (Fig. 11). It is likely though that if the gear does not 

perturb the fish distribution long in advance (long with regards to the above mentioned 

distances), on-board mounted echo sounders can only reveal vessel perturbations. In such 
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a case, the only expected perturbation comes from the vessel which is running both 

between-station and on-station, the two situations are therefore comparable.  

We shall also distinguish reactions that lower fish acoustic densities from 

reactions that increase them. Fish diving would tend to increase fish biomass in the 

metres above the sea bed. It would also tend to increase tilt angle and hence reduce target 

strength (MacLennan et al. 1987; McQuinn and Winger 2003; Kloser and Horne 2003). 

Fish may also move into the acoustic dead zone (Ona and Mitson 1996; Lawson and Rose 

1999) and be inaccessible to the echosounder. In the present study, the statistically non-

significant but systematic stability or increase of NASC value in the “bottom” layers 

during trawling is associated neither to a corresponding systematic decrease of NASC 

values in the “mid-water” layers, nor to a change in height of the mean energy in any of 

the “bottom” or “mid-water” layers. This suggests that none of the above mentioned gear-

avoidance behaviours are operating in the study situations and that the area of influence 

of gear perturbations are, on average, less than the trawl to vessel distances. This does not 

suggest that trawl perturbations do not exist, but rather that they can not be observed with 

on-board mounted echo sounders. In particular, gear perturbations were considered to 

explain the lack of correlations observed between the acoustic signal and catch data or 

why the highest correlations between acoustic and trawl catches were obtained after 

acoustic data were integrated over a greater depth than that of the headline height of the 

trawl (Bouleau et al. 2003, Hjellvik et al. 2003). 

In conclusion, the acoustic data collected between trawl stations were consistent with the 

acoustic data collected on stations. Overall, there was good agreement between the two 

data sets while there were some exceptions in some individual survey series. Poor 
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matches could been explained by the sparseness and the skewness of the corresponding 

data. The Barents Sea case shows what can be achieved for ‘bottom’ layers with a more 

substantial data set, where in all cases the on-station and between-station data were 

consistent for all indicators and methods. In this case, the correlation between catch data 

and on-station acoustics data is high, making it possible to use between-station acoustics 

to enhance the quality of trawl survey abundance indices. 
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Figure 1 Study areas (a) and sampling schemes for (b) the International Bottom Trawl 

surveys (IBTS), (c) the Northern Irish Bottom Trawl Surveys (NIBTS), and (d) the 

combined acoustic and bottom trawl surveys for cod (Gadus morhua) and haddock 

(Melanogrammus aeglefinus) in the Barents Sea. Solid squares represent stations. Crosses 

represent between-station recordings. They appear as lines when the density of between 

stations observations is large. 

 

Figure 2. Bottom-referenced depth layers used for the acoustic integration. The first 10 

layers from the bottom have a height of 1 m; the following layers are 10 m in height. 

Mid-water and bottom layers used for the analysis are represented for the Barents Sea 

surveys (right) and the North Sea or Irish Sea surveys (left). 

 

Figure 3. Vertical profiles of acoustic backscattering. Barents Sea survey (1997-2002). 

Representation of the 25% and 75% quantiles of Nautical Area Scattering Coefficient 

(NASC) values per layer for on-station data (dashed lines) and between-station data 

(solid lines).The x-axis is the mean NASC value (in m2⋅n.mi.-2) per layer. The y-axis is 

the height of each layer relative to the detected bottom (in meters). 

 

Figure 4. Vertical profiles of acoustic backscattering. International Bottom Trawl 

surveys (IBTS): (a) Fisheries Research Services (FRS), (b) Environment Fisheries and 

Aquaculture Science (Cefas) and (c) Institut Français de Recherche pour l’Exploitation de 
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la Mer (Ifremer). Representation of the 25% and 75% quantiles of Nautical Area 

Scattering Coefficient (NASC) values per layer for on-station data (dashed lines) and 

between-station data (solid lines).The x-axis is the mean NASC value (in m

600 

601 

602 

603 

604 

605 

606 

607 

608 

609 

610 

611 

612 

613 

614 

615 

616 

617 

618 

619 

620 

621 

622 

2⋅n.mi.-2) per 

layer. The y-axis is the height of each layer relative to the detected bottom (in meters). 

 

Figure 5 Vertical profiles of acoustic backscattering. Northern Irish Bottom Trawl  

Surveys (NIBTS) without pelagic data. Representation of the 25% and 75% quantiles of 

Nautical Area Scattering Coefficient (NASC) values per layer for on-station data (dashed 

lines) and between-station data (solid lines).The x-axis is the mean NASC value (in 

m2⋅n.mi.-2) per layer. The y-axis is the height of each layer relative to the detected bottom 

(in meters). 

 

Figure 6 Histogram of Global Indices of Collocations (GICs) between on-station and 

between-station spatial distributions of Nautical Area Scattering Coefficient (NASC) 

values. All surveys combined.  Distinction between bottom layers (i.e.  for the 

Barents Sea surveys and  for the others) and mid-water layers (i.e.  for 

the Barents Sea surveys and  for the others). 

0-40GIC

0-10GIC 40-100GIC

10-40GIC

 

Figure 7 Variograms of log-transformed Nautical Area Scattering Coefficient (NASC). 

Average of normalised variograms per series of surveys. (a) Barents Sea Surveys 1997-

2002. International Bottom Trawl surveys (IBTS): (b) Fisheries Research Services (FRS), 

(c) Environment Fisheries and Aquaculture Science (Cefas) and (d) Institut Français de 

Recherche pour l’Exploitation de la Mer (Ifremer). (e) Northern Irish Bottom Trawl  
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Surveys (NIBTS). Solid lines: between-station variograms. Dashed lines: on-station 

variograms. Omni directional computations. Distance lags are the ESDU for between-

station NASC and the inter stations distance for the on station NASC. The quantile of 

active data is indicated (98% means that the most extreme 2% of the data was removed). 

 

Figure 8 Difference between the vertically integrated Nautical Area Scattering 

Coefficient (NASC) observed before, during and after trawling (∇ during – before and ∆  

during – after) and for two randomly selected successive between station observations 

( ). The mean difference is indicated by the symbols and cumulative distribution of the 

differences is indicated by the lines. Each panel represents the pooled data for each 

survey series. The x-axis represents relative differences of NASC in m2⋅n.mi.-2. The y-

axis represents the empirical cumulative density function. Distinction is made between 

mid water layers (a) and bottom layers (b). P-values of the Student tests are indicated: 

solid symbols represent values smaller than 0.1.  

 

Figure 9 Difference between the altitude of the centre of mass of the Nautical Area 

Scattering Coefficient (NASC) values observed before, during and after trawling (∇ 

during – before and ∆  during – after), and for two randomly selected successive between 

station observations ( ).The mean difference is indicated by the symbols and cumulative 

distribution of the differences is indicated by the lines. Each panel represents the pooled 

data for each survey series. The x-axis represents relative differences of NASC in 

m2⋅n.mi.-2. The y-axis represents the empirical cumulative density function. Distinction is 
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made between mid water layers (a) and bottom layers (b). P-values of the Student tests 

are indicated: solid symbols represent values smaller than 0.1.  

 

Figure 10 Global Indices of Collocations (GICs) for simulated situations. Fish 

distributions are considered to be isotropic and distributed according to a Gaussian 

distribution with fish density being set to zero for densities below the quantile 5%. Two 

types of fish populations are concerned (patchy or spread). Several possible distances 

between the centres of mass are concerned.  

 

Figure 11 Scale representation of the observation protocol. North Sea and Irish Sea 

survey protocols are not distinguished. 
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North Sea / Irish Sea

Barents Sea

100 m

~60 m

~300 m
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Area 

Source 

Survey 

series 

year month 
Number of 

stations 

Mean  

towed distance 

(n.mi.) 

Original 

ESDU

 (in n.mi.)

Number of  

between station data 

(after regularization) 

Height used to 

split vertical 

profiles  

depth range 

(m) 

GIC 

 ”bottom” 

layers 

GIC 

 ”midwater” 

layers 

IMR 1997 02- 03 176 1.50 1 5209 40 143 – 699 0.98 0.95 
IMR 1998 02 198 1.53 1 5135 40 63 – 720 0.9 0.85 
IMR 1999 01- 02 223 1.49 1 5567 40 104 – 480 0.99 0.97 
IMR 2000 01- 02 302 1.42 1 7680 40 58 – 550 0.98 0.99 
IMR 2001 01- 03 300 1.49 1 7666 40 55 – 487 0.97 0.96 

Barents 

Sea 

IMR 2002 01- 03 287 1.44 1 7383 40 63 – 542 0.98 0.98 
FRS 2000 01- 02 44 1.8 0.5 468 10 45 – 150 0.6 1 
FRS 2002 01- 02 46 2.01 0.5 351 10 48 – 144 0.89 0.74 
FRS 2003 01- 02 47 1.98 0.5 430 10 49 – 150 0.9 0.98 
Cefas 2000 08 - 09 71 1.98 0.5 1038 10 24 – 178 0.99 0.99 
Cefas 2001 08 - 09 70 2.01 0.5 883 10 24 – 211 0.99 0.84 
Cefas 2002 02 23 1.98 0.5 1140 10 24 – 84 0.93 0.97 

Ifremer 2002 02 77 1.83 0.1 440 10 9 – 88 0.9 0.95 

North Sea 

Ifremer 2003 02 82 1.89 0.1 722 10 14 – 90 0.93 0.75 
DARDNI 1997 10 13 3.00 0.5 84 10 25 – 103 0.98 0.91 
DARDNI 2000 3 37 2.90 0.5 110 10 26 – 106 0.99 0.95 
DARDNI 2001 10 34 2.70 0.5 236 10 23 – 90 0.94 0.99 

Irish Sea 

DARDNI 2002 3 41 2.85 0.5 173 10 24 – 102 0.93 0.98 

44

Table 1. Main characteristics of the various surveys used in the analyses. ESDU : Elementary Sampling Distance Unit  
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