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Abstract:  

Synthetic fiber ropes are characterized by a very complex architecture and a hierarchical structure. 
Considering the fiber rope architecture, to pass from fiber to rope structure behavior, two scale 
transition models are necessary, used in sequence: one is devoted to an assembly of a large number 
of twisted components (multilayered), whereas the second is suitable for a structure with a central 
straight core and six helical wires (1 + 6). The part I of this paper first describes the development of a 
model for the static behavior of a fibrous structure with a large number of twisted components. Tests 
were then performed on two different structures subjected to axial loads. Using the model presented 
here the axial stiffness of the structures has been predicted and good agreement with measured 
values is obtained. A companion paper (Ghoreishi, S.R. et al., in press. Analytical modeling of 
synthetic fiber ropes, part II: A linear elastic model for 1 + 6 fibrous structures, International Journal of 
Solids and Structures, doi:10.1016/j.ijsolstr.2006.08.032) presents the second model to predict the 
mechanical behavior of a 1 + 6 fibrous structure.  
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1. Introduction 
 

Synthetic fiber rope mooring systems, which are often composed of steel chain at the 

ends and a central synthetic fiber rope, are increasingly finding applications as offshore oil 

exploration goes to deeper sites. Previous researchers have shown that such mooring lines 

provide numerous advantages over steel mooring lines (steel wire ropes and chains), 

particularly in deep water applications for which the large self-weight of steel lines is 

prohibitive (Beltran et al., 2004; Foster, 2002). It is therefore essential to be able to model the 

mechanical behavior of very long synthetic mooring lines in order to reduce the need for 

expensive tests under varying parameters and operating conditions. 

Large synthetic fiber ropes are assemblies of millions of fibers and characterized by a 

very complex architecture and a hierarchical structure in which the base components (fiber or 

yarn) are modified by twisting operations. This structure is then a base component for the next 

higher structure. Its hierarchical structure leads to the hierarchical approach where the top is 

the fiber rope and the bottom is the base components, with several different types of elements 

between the base component and the fiber rope, i.e. yarn, assembled yarn and strand. Figure 1 

illustrates this hierarchical structure. 

Considering the fiber rope architecture, it consists of two different types of structure: 

one is a structure with a central straight core and 6 helical components (1+6), whereas the 

second is an assembly of a large number of twisted components (multilayered), see Figure 2. 

So to pass from fiber to rope structure, two scale transition models are necessary, used in 

sequence. The results of the model at each level can be used as input data for the model at the 

next higher level. Use of this approach from the lowest level, at which mechanical properties 

are given as input, to the highest level of the rope determines the rope properties. Based on 

this strategy, the transition models can be used to analyze synthetic fiber ropes of complex 

cross section. Figure 3 shows the typical hierarchy ranking from the smallest level to the 
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highest level for a 205 ton break load fiber rope. 

The focus of this paper is the modeling of the static behavior of a fibrous structure 

with a large number of twisted components subjected to axial loads, starting from the 

mechanical behavior of the base component, and the geometric description of the rope 

structure.  

In section 2, a description of the  structure (geometry and behavior) is given, then, in 

section 3, we present an overview of the existing mechanical models of such structures. In 

section 4, a new continuum model is developed. The analytical models are compared in 

section 5. Tensile tests have been performed, to provide the experimental data that are 

described in section 6. In section 7, we demonstrate the accuracy of the models by comparing 

their predictions to experimental results. 

 

2. Structure description 
 

Let us consider a multilayered structure in which each component follows a regular 

helical path round a central axis of the structure. The geometry of each component is 

characterized by the pitch length, P (length of one turn of the twist, or reciprocal of twists per 

unit length) and the lay angle, α, measured with respect to the structure Z axis. The 

component’s centerline is then an helical curve of radius r . 

The pitch length P, is the same at all radial positions, but the lay angle will increase 

from zero at the center to a maximum at the external surface of the structure, , as shown in  eα

Figure 4. 

It may be noted that the component cross-sections are elliptical in the plane 

perpendicular to the Z axis. Therefore, the lay angle of a component at a radial position , 

denoted by 

i
r

i
α can be calculated using the following expression: 
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For marine applications, the fiber ropes are subjected to axial loads, and the axial 

behavior of such structures exhibits coupling between tension and torsion due to the helical 

design of the components. Thus, the overall behavior can be expressed in the form: 
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where denotes the overall axial strain, zzu , zz,θ  the twist angle per unit length,  the 

axial force and  the torque. The four stiffness matrix components , ,  and  

are pure tensile, pure torsion and coupling terms respectively. Moreover, the stiffness matrix 

should be symmetric, as can be shown from Betti’s reciprocal theorem. 

zF

zM εεk θθk θεk εθk

 

3. Earlier models 
 

This work is concentrated on structures with a large number of components 

(constitutive elements). As noted by Raoof and Hobbs (1988), since the structure consists of a 

large number of components, the bending moments and torque in individual components can 

be neglected. Several authors have developed analytical models to predict the global elastic 

constants providing the relationship between loads and strains for such multi-layered 

structures, based on a knowledge of the component material and geometry of the structure. 

Two categories of these models are presented: semi-continuous models developed for 

metallic cables and models specifically presented for synthetic cables.   

semi-continuous models 
 

Homogenization is a well known method in solid mechanics, and can be used for the 

continuum modelling of a discrete system composed of a large number of identical repetitive 
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elements. With an appropriate choice of the material parameters, one can accurately represent 

the global behavior of the real system. This method was first applied to cable modelling by 

Hobbs and Raoof  (1982). It is the orthotropic sheet model that has been described in detail by 

Raoof (1983) and then extended by Raoof and his associates over two decades. 

In this model the classical twisted rod theories for the behavior of helical laid wires 

has been extended to include a set of kinematic compatibility conditions. The individual layer 

of wires is replaced by an equivalent cylindrical orthotropic sheet, which is assumed to be thin 

and to be in a plane stress state.  

As in the case of composite laminates, four elastic constants are necessary. Two of 

them are obtained directly from the mechanical properties of the wires. The other two are 

related to the contact stiffness between adjacent wires in the layer. The complete structure is 

then treated as a discrete set of concentric orthotropic cylinders. The orthotropy axes 

correspond to those of a fiber composite material in which the fibers have the same lay angle 

as the wires in the corresponding layer.  

Another semi-continuous model was developed by Blouin and Cardou (1989), and 

later extended by Jolicoeur and Cardou (1994; 1996). This also consists of replacing each 

layer with a cylinder of orthotropic, transversely isotropic material. In this model the elastic 

constants can be used as free, adjustable, parameters, or else estimated rationally from contact 

mechanics equations as in the case of the orthotropic sheet model. 

Once the cable is modelled using such continuum approach, analytical solutions for 

elementary loadings can be derived (Crossley et al., 2003a, 2003b). 

These semi continuous models take into account friction between constituents. 

However, some elastic constants are obtained from contact mechanics, considering layer 

components have circular cross-section. It can be seen from Figure 2 that it’s not the case for 

fiber ropes. Moreover, due to the homogenization process, the accuracy of this model 
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increases when the number of wires in a given layer increases. Lastly, these models are 

tedious to use, and since they are non-linear, they require a numerical solving. 

Despite these limitations, the model of Raoof and Hobbes (1988), briefly presented in 

section 3.1, will be applied here in section 5. 

 

synthetic fiber ropes models 
 

In this category the simplest model is that of Hoppe (1991) in which the structure and 

the components are assumed to be subjected to pure tensile forces, the bending and torsional 

stiffness for both of them being neglected. Contact and friction between the components are 

also neglected., but such an approximation is justified for monotonic axial loading. It should 

be noted that this analytical model provides only the overall tensile behavior. 

Leech et al. (1993), presented a more complex quasi-static analysis of fiber ropes and 

included it in a commercial software: Fiber Rope Modeller or FRM. Their analysis is based 

on the principle of virtual work and can take frictional effects into account. The program 

computes tension and torque from their dependence on elongation and twist. 

Another model was developed by Rungamornrat et al. (2002), and later extended by 

Beltran et al. (2003) and Beltran and Williamson (2004). These models are very similar with 

that of Leech but they have concentrated on a damage model to take into account the 

degradation of rope properties as a function of loading history. 

The Leech’s model appears to be very sophisticated, with an accurate mechanical 

modelling of the components of the fiber ropes behavior and their interactions. Moreover, the 

cross-section geometry can be described using different forms of arrangement of components 

(see section 3.3). Therefore, the Leech’s model can be considered as a reference model, but 

it’s a computer-based model. 

Hereafter, the synthetic fiber ropes models of Hoppe (1991) and Leech et al. (1993) 
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are briefly presented and then a new continuum model will be developed from the Hoppe’s 

one to analysis the structure with a large number of twisted components. 

 

3.1 Raoof’s model 
 

Raoof and his associates have worked extensively on the behavior of metallic 

structures with a large number of wires so that the bending moments and torque in individual 

wires become much less significant than they are in six and seven wire cables (Hobbs and 

Raoof, 1982; Raoof, 1983; Raoof and Hobbs, 1988; Raoof, 1991; Raoof and Kraincanic, 

1995a; Raoof and Kraincanic, 1995b). In these studies a great deal of attention has been paid 

to the inter-wire contact phenomena and friction has been taken fully into account. By treating 

each layer of wires as an orthotropic sheet with non-linear properties determined using the 

mechanical contact theories and assuming Coulomb friction, it has been possible to establish 

the stiffness matrix in the presence of an axial load. 

The main features of this model are presented hereafter, in the case of metallic 

multilayered structure with an isotropic material. 

These authors have established a set of nonlinear simultaneous equations to analyse 

the kinematics of each layer of wires, providing a set of compatible strains in the anisotropic 

cylinder with a core (for more details see Raoof and Hobbs (1988)). The elastic behavior of 

each orthotropic sheet in the local coordinate system (t,b,n), see Figure 5, can be expressed in 

the following matrix form: 
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where , 
ij

S ε  and σ  are the compliance, the strains and stresses referred to the axes of 

orthotropy parallel and normal to the wire axes, respectively.  
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The compliance parallel to the wire axis  is straightforward, reflecting the ratio 

between the sheet area and the wire area (

11S

π/4 ): 

E
S

π
4

11 =   ( 4 ) 

where E is the Young’s modulus for the wire material, and the coupling term  is given by: 12S

1112 SS ν−=   ( 5 ) 

where ν  is Poisson’s ratio. 

The compression compliance, , has been expressed as: 
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where D is the wire diameter and,  is the contact load per unit length on the contact area 

which is obtained from Hertzian contact theory for the contact of two parallel cylinders. The 

contact load, , is determined numerically by using an iterative method.  

cP

cP

The shear compliance, , is determined from other results of the contact theory, (Mindlin, 

1949): 

66S

2/1

max

22
66 1

1

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
=

l

lS
S

δ

δ

ν
  ( 7 ) 

where 
l

δ  is the line contact displacement for a given total perturbation in structure axial 

strain, and  is the corresponding displacement at the onset of full-sliding condition.  maxlδ

The stiffness (or compliance) has been shown to be a function of the amplitude of the 

load variation about the mean. For small changes of axial force the stiffness is larger than it is 

for bigger variations. Small changes do not overcome the inter-wire friction, while larger 

changes do, causing sliding and a lower effective modulus. 
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In this study, the stiffness matrix results of this model for two extreme cases are 

presented: the lower bound or full-slip, correspond to lδ

for 0=l

maxlδ=  and the upper bound or no-slip 

δ . 

Once the stiffness matrix of all the layers (for a given axial preload) has been found, in order 

to obtain the behavior of the structure, the stiffness matrix of each layer is transformed into 

the global coordinate system of the structure (t', b', n'), see Figure 5, and the summation of the 

stiffness of all the layers enables the global behavior of the structure to be established.  

It should be noted that to apply this model to a multilayered fibrous structure, Young’s 

modulus of the component material is obtained from axial stiffness of components in the 

direction of their axis, see section 4. In addition, Poisson’s ratio, ν , according to the volume 

constant deformation assumption, has been set to 0.5.  

 

3.2 Hoppe’s model 
 

The work of Hoppe (1991) based on purely geometrical considerations, allows a 

model of behavior of this type of structure under a simple tensile force to be determined. This 

model requires the knowledge of the tensile properties of the components and the construction 

parameters of the structure, i.e. the number of layers, the number of components in each layer 

and the lay angle of each layer. This model is based on the following hypotheses: the 

geometry of the structure is multilayered with the helical component having circular section; 

at the local and global levels, the base components and the structure work only in traction in 

the direction of their axis (bending and torsion are neglected); the section of the structure 

remains plane, and perpendicular to its axis after deformation; deformation of the structure is 

at constant volume; strains and friction effects due to contact between components are 

neglected. 

Using these hypotheses, the elongation of each component is determined as a function 
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of those of the structure, and then the axial force in each component is determined. The 

projection of the force on the structure axis and summing for all the components enables a 

closed-form expression for the global behavior (only axial stiffness) of the structure to be 

established. In section 4, a closed-form analytical solution, for stiffness matrix components, 

will be developed which is based on Hoppe’s model. 

 

3.3 Leech’s model 
 

Leech and al. (1993) presented a model whose formulation is based on the principle of 

virtual work to analyze fiber ropes. This model is integrated in a commercial software (FRM, 

2003) to predict the behavior of the synthetic cables subjected to an axial load. This model 

differs from Hoppe’s model by the following aspects: at the global level, the behavior of the 

structure is characterized by coupling between tension and torsion phenomena using a 2×2 

stiffness matrix; friction effects due to contact and the relative motions between components 

are considered; the geometry of the structure is multilayered, and two extreme rope geometry 

descriptions in transverse deformation have been considered: Layered packing geometry and 

Wedge geometry, see Figure 6. 

For layered packing geometry, it is assumed that a bundle of parallel identical 

components with circular cross-section is twisted in the assembly to form a structure with a 

core, surrounded by a layer of equally wound components, this layer enclosed by another 

layer and so on until all the components are used. Each layer is a helical structure of many 

components and each helix has the same pitch length but a different lay angle.  

For wedge geometry, the components in the same level are allowed to deform 

transversely and change their shape to a wedge or truncated wedge. The equivalent helix 

radius is the radius of the center of area of the wedge. Within each layer the packing factor 

(PF) is introduced to take into account the presence of the voids in the layer that can be 
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defined by the ratio of the area of material to the layer cross sectional area. It can be expressed 

by: 

ii

ici
i Wr

An
PF

π

α

2
cos/

=   ( 8 ) 

where ,  and  are the number of components in layer i, component cross 

section area and the width of the layer i respectively. It should be noted that for a given PF, 

the width of the layer will be defined and vice versa. 

in cA iW

The estimation of the frictional forces that develop between the components in a 

structure is based on the classical slip-stick model where the friction force is assumed to 

develop between two contact surfaces in the direction opposite to the relative slip of these two 

surfaces. Six sliding modes have been presented and it was noted that, for the twisted 

structure under axial loading, the only significant frictional contribution, (and even that is 

small), comes from the axial sliding mode (Leech et al., 1993; Leech, 2002). 

In the present study, FRM software was used to obtain the results for Leech’s model, 

with the wedge geometry option. First, the structure is defined. Essentially, this consists of 

specifying the number of components in each layer with the appropriate twist and the nature 

of the packing at that layer. Second, the dimensional and tensile properties of the components 

must be provided. Most are single parameters, but the non-linear force-strain relations can be 

defined in the software by the coefficients of fourth order polynomials. In this study the force-

strain relations were considered linear and derived from test data. 

The stiffness matrix is obtained in two steps. First, we let  0, =zzθ  and vary the axial 

strain, , about a given value (0.01), to calculate  and  through the FRM software, 

which leads to  and from Eq. (1). In the same way,  and  will be obtained by 

setting the axial strain, , to a given value (0.01) and varying 

zzu , zF zM

εθk

z

εεk θεk

zzu ,

θθk

z,θ . 
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4. Continuum model  
 

All the models presented above require the construction parameters of the structure 

such as number of layers, number of components in each layer (see Figure 6) and lay angle of 

each layer (see Figure 5). These are not always easy to define precisely for fiber rope 

structures, see Figure 2, where it appears difficult to model the strand cross-section as a 

multilayered structure.  In addition, these models are integrated in programs and numerical 

analysis is necessary, (except for the Hoppe model which presented a closed-form expression 

but only for the pure tensile behavior of the structure with no torsion and coupling terms). 

Here, an analytical model with a closed-form expression and model geometry more in 

agreement with the real geometry of the structure will be established. This involves an 

extension of the Hoppe’s model (Hoppe, 1991) which is based on the same hypotheses, as in 

the initial model, with the exception of: 

In the literature, the structures studied are multilayered, but in the present model we 

don't consider them like an assembly of layers, but rather as a set of coaxial helixes. These 

helixes have the same number of turns per unit length, and their section amounts to a material 

point, and that describe the geometry of a constituent element. It is in this sense that this 

model is termed a continuum model. Moreover, within the structure the packing is assumed to 

be uniform. Therefore, the geometric input data for this model are restricted to the external 

structure radius, the pitch length and a packing factor value. In addition, the present model 

can describe coupling behavior between traction and torsion. 

The stress-strain (force-strain) properties of the material which are introduced into the 

model are, in general, taken to correspond to the actual force-strain properties of the 

component as obtained from experiments. The relation between force-strain is assumed linear 

and Young’s modulus of the component material is given by: 

ccc AkE =    (9 ) 
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where  is the component axial stiffness (slope of the force-strain curve) and  is the cross 

section area of the component. 

ck cA

 

4.1 Axial strain of components  
 

In the present model, the components are assumed to be subjected to pure tensile 

forces, the bending and torsion stiffness are neglected. In axial loading, with traction and 

torsion, the axial strain of each component is composed of two different parts: the first results 

from the elongation of the structure, whereas the second is due to its rotation. For small 

strains, it is possible to separate these phenomena, the axial deformation of the component is 

expressed therefore by: 

R
tt

A
tttt εεε +=    ( 10 )  

where t is the tangent to the component center line, and  are the axial strains of the 

component due to the elongation and to the rotation of the structure respectively. 

A
ttε

R
ttε

 

Elongation   
 

Let 
z

λ  be the extension ratio (ratio of deformed length to initial length of the 

structure) measured along the structure axis, and  the corresponding extension ratio for a 

component whose initial and final radial positions are  and 

rλ

or r , respectively, see Figure 7 a). 

The extension ratios,  and , are defined as follows: zλ rλ
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As the volume is supposed to remain constant, the initial and final radial positions of each 
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component can be related by the following expression: 

2)(
r
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z =λ   ( 12 ) 

If 
o

α  is the lay angle of this component in the initial state, one has: 

o
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since after deformation the pitch length, P, determine by zoPP λ= , the corresponding lay 

angle α  in the deformed state is given by: 

2/3
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Let us consider a structure having the initial length , and bounded by planes 

perpendicular to the structure axis. The initial length of a component of lay angle  is 

oL

oα

ooo Ll αcos/=   ( 15 ) 

the axial length in the deformed state being oz Lλ , the corresponding component length in the 

deformed state is 

αλ cos/)( oz Ll =   ( 16 ) 

using equations  (13-16), the component extension ratio rλ  can be expressed as follows: 
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which yields  from (11)2 . A
ttε

 

Rotation 
 

When the structure undergoes a relative rotation, , between the two end sections of 

length , the axial strain of the component due to this rotation is expressed by: 

zθ

oL
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=ε   ( 18 ) 

where  is defined by (see Figure 7 b)): lΔ

αθ sinzrl =Δ   ( 19 ) 

substituting ( 12 ), ( 15 ) and (19 ) into the expression ( 18 ), we obtain : 

ozz
z

oR
tt

r
ααθ

λ
ε cossin,=   ( 20 ) 

where zz,θ  is the twist angle per unit length defined by: 

0
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θ =     ( 21 ) 

However, in general, for a given structure, its outer diameter, , is known, as well as 

the value of the lay angle on the outer layer, 

eor

eoα . Since for all the components the pitch 

length, P, is the same, the lay angle of an arbitrary component with a radial position of , can 

be written as a function of the parameters of the outer layer: 
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using equations ( 14 ) and ( 22 ), one obtains: 
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While taking into account the expressions (11) and substituting the relations (17) and (20) into 

equation ( 10 ), the total axial strain of the component is given by: 
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where αsin  is given according to the equation (23)2, which are functions of extension ratio, 
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zλ , and the outer layer parameters associated to the initial geometry (  and ). Otherwise, eor eoα

oαcos  and oαsin  are given by substituting 1=zλ  into the relation ( 23 ). Therefore, for an 

arbitrary point at a radial position , the axial strain in the local coordinate system,or ttε , is a 

function of two independent variables,  and . zλ or

 

4.2 Stiffness matrix derivation 
 

In this model the components are assumed to be purely tensile elements with a 

uniaxial behavior that can be represented by: 

  ( 25 ) ttEttσ = ε

where t is the tangent to the component centerline (see Figure 5). In order to obtain the 

stiffness matrix the stress in the local coordinate system, , is transformed to the global 

cylindrical coordinate system 

ttσ
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therefore, the total axial force and torque are obtained by integration of the stresses on the 

cross section area of the structure in the initial state: 
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where ttσ  is obtained from ( 24 ) and ( 25 ) and αcos  and αsin  from ( 23 ). The global 

packing factor ( ) is introduced to take into account the presence of the voids in the whole 

of the cross sectional area of the structure. It can be expressed by: 
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where N is the total number of components in the structure. 

After integration of the relations (27) using the Maple™ software, and rewriting the results in 

the matrix form, equation (2), the stiffness matrix components, for the linear material, are 

expressed as follows: 
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                 (29) 

the stiffness matrix is a function of only the extension ratio of the structure, , global 

packing factor, , and the outer layer geometrical parameters of the structure in the initial 

state (  and ). Since the stiffness matrix components depend on the strain, this model is 

essentially nonlinear, but for the interval [1.001 1.04] of extension ratio (practical strain range 

for aramid), 

zλ

gPF

eoαeor

zλ , the results can be considered as constant. In the following, the results for the 

same axial strain ( ) are presented. 01.1=zλ
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5. Models comparison 
 

The previous models have been applied to a strand of a 205 ton aramid cable of known 

construction parameters (given by the cable supplier) shown in Table 1. 

Table 2 shows the input data necessary for all models. 

Comparing tables 1 and 2 shows that input data are missing for all the models. A 

sensitivity analysis has been performed elsewhere by Ghoreishi (2005), and the results have 

shown that the overall behavior is not sensitive to these missing values for the practical 

structures of interest here ( ). Some illustrative parts of this sensitivity analysis are 

reported hereafter.  

°≤15eoα

As it has been previously mentioned, it’s practically difficult to represent the strand 

cross-section with a multilayered structure. Therefore, several multilayered discretizations can 

be used. From the value of the strand radius and assembled yarn surface, it has been 

considered that the strand was made with 4 layers. The results obtained with the Leech’s 

model corresponding to 3 different multilayered discretizations are given in Table 3, with 

very small differences. 

The influence of the packing factor has also been studied, since this parameter is not 

defined at the local scale (i.e. in each layer) when the Leech’s model is used. A four layers 

discretization with respectively 1, 6, 14 and 21 assembled yarns in each layer, has been 

considered, with 3 different values of the radius of the assembled yarn. For a given value of 

this radius, the packing factor of the layers 2 to 4 was constant and calibrated in order to 

obtain a cross-section radius consistent with the strand radius value. The results are listed in 

Table 4, where it can be checked that they are slightly sensitive to the packing factor values.     
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Therefore, for the present study, the values for the missing data were taken as follows: 

Number of layers is chosen to be 4, 

Component numbers for each layer are 1, 6, 14 and 21 and the PF in each layer are 1, 0.75, 

0.88 and 0.89  respectively. 

On the other hand, equation ( 28 ) gives a global packing factor, 86.0=gPF . This value is in 

agreement with the previous values used in the Leech’s model, which shows that both models 

have the same quantity of material in the cross-section of the structure. 

Component radius: 1.31 mm which yields a value of  for Young’s modulus of 

component. 

24 /1042.6 mmN

Table 5 presents the results obtained for the different models. Besides the calculated 

stiffness matrix components, the percentage of asymmetry between coupling terms, and 

, is shown for each model. The influence of friction is presented for the Raoof and Leech 

models. It should be noted that in synthetic fiber ropes, the friction coefficient between the 

different components is not a well known parameter. For the yarn on yarn, and the aramid 

material, friction coefficient values are given between 0.11-0.24 (FRM, 2003). These values 

have been obtained from tests on the different yarns.  

εθk

θεk

It should be also mentioned that, in Raoof’s model, the packing factor in each layer is 

assumed to be 
4
π  (for metallic components), but here this value is modified by using the 

value corresponding to that chosen in the FRM software, as well as the global packing factor 

for the continuum model. Indeed, the same structure is defined for all the models (same 

material quantity in the structure). 

The main conclusion from table 5 is that all the models yield very similar results for 

the axial stiffness, . The difference for the coupling terms is visible. Only the torsion term 

results, , are significantly different for the different models.   

εεk

θθk
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To show which model gives more reliable results (particularly for the torsion term, 

), it would be necessary to be able to compare them to experimental results. θθk

 In Raoof’s model, the structure in the no-slip case is much stiffer than in full-slip, 

however the coupling terms are smaller in the no-slip case. On the other hand, except for the 

axial stiffness where the two limit case results are similar, the differences between the two 

cases are significant, particularly for the torsion term. It is interesting to note that the 

orthotropic sheet theory presented for the multilayered metallic cables by Raoof, and based on 

the contact theory between the metallic components with circular cross section, yields results 

completely comparable with those obtained from other specific models for synthetic cables. 

The model of Hoppe provides a similar value for the axial stiffness but does not allow the 

other stiffness terms to be obtained. 

The results from Leech’s model show that the friction effect can be neglected for axial 

loading. However, it should be mentioned that while the friction effect plays a small role in 

global stiffness behavior of such structures, the effect of friction on the long-term 

performance and durability of a structure under cyclic loading can be significant. 

Then, the theoretical predictions will be compared to experimental results that obtained from 

traction test on two different structures. 

 

6. Experimental results 
 

Experimental studies have been performed at two scale levels, first on yarns to 

determine the base component properties and then on two different assembled yarns which 

represent the multi-layer structure.  

Tensile tests at the yarn level give an indication of the material behavior without the 

effects of twist and construction. They were performed on a 10 kN test machine at an applied 

crosshead displacement rate of 50 mm/minute. Elongation was measured using two digital 
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cameras, which record the movements of marks on the yarns, as shown in Figure 8. The test 

procedure for these and all subsequent tests was to apply five bedding-in load-unload cycles 

up to 50% of the nominal break load, before the load cycle which was used for the modeling. 

This is standard practice in rope testing and stabilizes the material and construction. 

An example of the yarn test results including the five bedding-in cycles and the test to 

failure is shown in Figure 9. 

Chailleux and Davies (2003) have also used yarn tests to identify the intrinsic 

viscoelastic and viscoplastic behaviour of the aramid fibers used in the present study (Twaron 

1000).  

In order to provide data for correlation with the models, tests were then performed on 

two different assembled yarns taken from a 25 ton break load rope, Figure 10 (at least 5 

specimens were characterized for each), for which the construction parameters are given in 

Table 6. All the samples were made with the same aramid fiber grade. The load was 

introduced through cone and spike end connections. Tests involved applying five initial 

bedding-in cycles, as for the yarn tests, by loading the samples to 50% of their nominal break 

load at a loading and rate of 50 mm/minute then unloading at the same rate. The same image 

analysis system was used, measuring the displacements of two marks bonded to the 

assembled yarn (Figure 10). From the tests on the component (yarn) and the structures 

(assembled yarns 1 and 2) the axial stiffness values were measured as shown in table 7. The 

stiffness values presented are those from the 6th loading. 

 

7. Comparison between prediction and tests 
 

In this section the previous experimental results will be compared to models 

predictions. For modeling the assembled yarn 1, the number of layers is assumed to be 2, for 

which the component numbers for each layer are 3 and 9. The PF’s for each layer are both 
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0.95, and the corresponding global packing factor, from equation ( 28 ), is also 0.95. In the 

assembled yarn 2, the number of layers is assumed to be 3 in which the component numbers 

for each layer are 1, 5 and 10. The PF’s in each layer are 1, 0.96 and 0.96  respectively and 

the corresponding global packing factor, from equation (28 ), is 0.96. 

The yarn axial stiffness and the geometrical parameters then enable a prediction to be 

made of the stiffness coefficients of the structures using the continuum model (Eq. (29)1), and 

this gives axial stiffness values of 252.7 kN and 336.7 kN for assembled yarns 1 and 2 

respectively. The structures were also modeled with the FRM software, and this gives results 

very close to those of the continuum model (252.6 kN and 336.9 kN respectively). Raoof’s 

model was not applied to these structures because there are not a large number of wires in 

each of the layers here. 

The comparison is shown graphically below in Figure11. 

So far all the tests performed have concentrated on the axial stiffness  by testing 

structures with fixed end loading conditions. However, a small number of tests have shown 

that there is not measurable tension-torsion coupling terms and torsion stiffness for the small 

diameter assembled yarns at this level. In order to determine the other coefficients (coupling 

terms and torsion term) and to compare them with predicted values test results for the higher 

level such as strands of 205T fiber rope would be necessary. 

εεk

 

8. Conclusion  
 

A nonlinear elastic continuum model has been developed for analysis the overall axial 

stiffness of fibrous structure with a large number of twisted components. By contrast with 

multilayered approaches, the structure under consideration is herein depicted as a set of 

coaxial helixes only characterized by their external lay angle and corresponding radius. The 

constitutive material is assumed to be linear. Considering static monotonic axial loads, the 
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inter-fiber friction effects are not taken into account. Moreover, the studied structures 

exhibiting small lay angles, the overall diametral contractions are neglected, which may 

contribute to the overestimation of stiffness. The developed analytical model leads to useful 

closed-form expressions thus allowing to optimize rope constructions.  

Due to lack of published experimental data, the model has first been compared with 

models of the literature. The results obtained, have shown that all the models give results that 

agree reasonably well with each other, except with respect to the torsion stiffness, for which 

there is a significant difference. In addition, stiffness matrices of all the models deviate 

slightly from symmetry and this lack of symmetry is due to a certain lack of consistency in the 

various simplifying hypotheses. 

Tensile tests have then been performed on aramid fiber assemblies with two structures, 

to obtain the axial stiffness. This preliminary test results indicate a good correlation with the 

model. Additional test data, especially to examine tension-torsion and pure torsion loading, 

are needed to gauge performance of the models. The integration of these results in a model for 

a large aramid wire rope and comparison with tension and tension-torsion coupling test results 

will be described in Part 2 of this paper. 
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Figure 1 : Synthetic fiber rope structure. 

 

 

Figure 2: 205 ton break load synthetic fiber rope cross section; the rope represents a 1+6 

structure, core and strands are assemblies of a large number of twisted components. 
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Figure 3: diagram showing the typical hierarchy ranking from the smallest level to the highest 

level for a 205 ton break load fiber rope. 
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Figure 4: an arbitrary component at a radial position  and a component at the outer surface 

of the structure with a radial position . 

i
r

e
r

 

 

Figure 5 : local and global coordinate systems for a layer of wires. 
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Figure 6 : multi layered geometry of structure for various models: a); Raoof, Hoppe and 

Leech (layered packing geometry) and b) Leech (wedge geometry). 

 

 

 

Figure 7: component before and after deformation; a) elongation and b) rotation of the 

structure. 
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Figure 8. Testing of yarns on 10 kN test machine, two digital cameras to measure strain. 
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Figure 9. Force-strain plot for tensile test on 336 tex aramid yarn (Twaron 1000), 5 cycles to 

50% of break load followed by test to failure. 
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Figure 10. Test on assembled yarn sample on 200 kN test machine, showing sample and two 

digital cameras to measure strain. 
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Figure 11: comparison between present model predictions, FRM software results and 

corresponding experimental measurements for strain-force curve of a) assembled yarn 1 and 

b) assembled yarn 2. 
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Tables 
 
 

Outer diameter 18.3 (mm) 
Pitch length 275 (mm) 
Components number  42 
component axial stiffness, * ck 346.1 kN 
*  obtained from experiments ck

Table 1: available construction parameters for strand of 205T aramid cable. 
 
 

Models Input data 
Raoof 
and 

Hoppe 

Pitch length, Number of layers, Components number per layer, 
Component radius, Young’s modulus of component. 

Leech 
Pitch length, Number of layers, Component number per layer, 
Components radius, component axial stiffness, , PF for each 
layer. 

ck

continuum 
Strand radius, Pitch length, Young’s modulus of component, 

. gPF

Table 2: necessary input data for all models. 
 
 

Multilayered 
discretization 

εεk  
(103 kN) 

εθk  
(kN.m) 

θεk  
(kN.m) 

θθk  
(N.m2) 

1+6+14+21 14.1 13.3 13.0 21.7 

1+7+14+20 14.1 13.1 12.8 21.4 

3+8+13+18 14.1 13.0 12.7 21.5 

Table 3: results obtained for Leech’s model for different multilayer discretizations of the 
strand made of 42 assembled yarns distributed in 4 layers. 
 
 

Assembled yarn 
radius (mm) 

PF of 
layers 2-4 

εεk  
(103 kN) 

εθk  
(kN.m) 

θεk  
(kN.m) 

θθk  
(N.m2) 

1.31 0.866 14.1 13.3 13.0 21.7 

1.35 0.921 14.1 12.9 12.7 21.1 

1.38 0.958 14.1 12.9 12.7 21.0 

Table 4: results obtained for Leech’s model for different values of  Packing factor. 
 
 

 



 

Models εεk  
(103 kN) 

εθk  
(kN.m) 

θεk  
(kN.m) 

θθk  
(N.m2) εθ

θεεθ

k
kk −

 

(%) 

Full slip 14.1 13.5 13.7 19.0 1.48 
Raoof 

No slip 14.7 7.72 9.27 105 20 

Hoppe 14.1 ---- ---- ---- ---- 

0=μ  14.1 13.3 13.0 21.7 2.26 

15.0=μ  14.1 13.3 13.5 22.1 1.50 Leech 

3.0=μ  14.2 13.4 13.9 22.9 3.73 

Continuum model 14.1 13.2 13.1 16.5 0.76 

Table 5: results obtained for different models applied to the strand of 205T aramid cable. 
 
 

Structure  Construction parameters Structure  Construction parameters 
Outer diameter 2.03 (mm) Outer diameter 2.33 (mm) 

Component 
diameter 

0.572 
(mm) 

Component 
diameter 

0.572 
(mm) 

Pitch length 52.6 (mm) Pitch length 58.8 (mm) 
Component 

number 12 Component 
number 16 

Assembled 
yarn 1 

Component axial 
stiffness,  ck 21.4 kN 

Assembled 
yarn 2 

component axial 
stiffness,  ck 21.4 kN 

Table 6: construction parameters for different structures. 
 
 
 

Samples Test number Sample length  
(mm) 

Average Axial 
stiffness 

(kN) 

Average 
Rupture force 

(kN) 
Yarn 

(Twaron 1000) 5 349 - 355 21.4±  1% 0.550 2% ±

Assembled 
yarn 1 6 344 - 352 228.2± 3.6% 5.12 8% ±

Assembled 
yarn 2 5 343 - 354 298.5± 0.8% 6.88 14% ±

Table 7: test results on the yarns and assembled yarns after five bedding-in cycles. 

 


