FN Archimer Export Format PT J TI Early feeding of carnivorous rainbow trout (Oncorhynchus mykiss) with a hyperglucidic diet during a short period: effect on dietary glucose utilization in juveniles BT AF GEURDEN, Inge ARAMENDI, M ZAMBONINO-INFANTE, Jose-Luis PANSERAT, S AS 1:1;2:1;3:2;4:1; FF 1:;2:;3:PDG-DOP-DCB-PFOM-ARN;4:; C1 IFREMER, INRA, NuAGe, Nutr Aquaculture & Genom Res Unit,UMR A067,Nutr M, F-64310 St Pee Sur Nivelle, France. IFREMER, Marine Fish Nutr Team, Plouzane, France. C2 INRA, FRANCE IFREMER, FRANCE SI BREST SE PDG-DOP-DCB-PFOM-ARN IN WOS Ifremer jusqu'en 2018 copubli-france copubli-p187 IF 3.661 TC 81 UR https://archimer.ifremer.fr/doc/2007/publication-2728.pdf LA English DT Article DE ;Glucose metabolism;Intestinal glucose transport;Carbohydrate digestion;Nutritional programming;Fish nutrition AB Based on the concept of nutritional programming in higher vertebrates, we tested whether an acute hyperglucidic stimulus during early life could induce a long-lasting effect on carbohydrate utilization in carnivorous rainbow trout. The trout were fed a hyperglucidic diet (60% dextrin) at two early stages of development: either at first feeding Q days, stimulus 1) or after yolk absorption (5 days, stimulus 2). Before and after the hyperglucidic stimulus, they received a commercial diet until juvenile stage (> 10 g). Fish that did not experience the hyperglucidic stimuli served as controls. The short- and long-term effects of the stimuli were evaluated by measuring the expression of five key genes involved in carbohydrate utilization: a-amylase, maltase (digestion), sodium-dependent glucose cotransporter (SGLT1; intestinal glucose transport), and glucokinase and glucose-6-phosphatase, involved in the utilization and production of glucose, respectively. The hyperglucidic diet rapidly increased expressions of maltase, a-arrylase, and glucokinase in stimulus I fish and only of maltase in stimulus 2 fish, probably because of a lower plasticity at this later stage of development. In the final challenge test with juveniles fed a 25% dextrin diet, both digestive enzymes were upregulated in fish that had experienced the hyperglucidic stimulus at first feeding, confirming the possibility of modification of some long-term physiological functions in rainbow trout. In contrast, no persistent molecular adaptations were found for the genes involved in glucose transport or metabolism. In addition, growth and postprandial glycentia were unaffected by the stimuli. In summary, our data show that a short hyperglucidic stimulus during early trout life may permanently influence carbohydrate digestion. PY 2007 PD JUL SO Comparative and evolutionary physiology SN 0363-6119 PU American Physiological Society. VL 292 IS 6 UT 000247725300023 DI 10.1152/ajpregu.00444.2006 ID 2728 ER EF