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Abstract:  
 
We report the construction of the first genetic linkage map in the blue mussel, Mytilus edulis. AFLP 
markers were used in a 86 full-sib progeny from a controlled pair mating, applying a double pseudo-
test cross strategy. Thirty six primer pairs generated 2354 peaks, of which 791 (33.6%) were 
polymorphic in the mapping family. Among those, 341 segregated through the female parent, 296 
through the male parent (type 1:1) and 154 through both parents (type 3:1). Chi-square goodness of fit 
tests revealed that 71% and 73% of type 1:1 and 3:1 markers respectively segregated according to 
Mendelian inheritance. Sex-specific linkage maps were built with MapMaker 3.0 software. The female 
framework map consisted of 121 markers ordered into 14 linkage groups, spanning 862.8 cM, with an 
average marker spacing of 8.0 cM. The male framework map consisted of 116 markers ordered into 
14 linkage groups, spanning 825.2 cM, with an average marker spacing of 8.09 cM. Genome coverage 
was estimated to be 76.7% and 75.9% for the female and male framework maps respectively, rising to 
85.8 (female) and 86.2% (male) when associated markers were included. Twelve probable 
homologous linkage group pairs were identified and a consensus map was built for 9 of these 
homologous pairs based on multiple and parallel linkages of 3:1 markers, spanning 816 cM, with 
JoinMap 4.0 software. 
 
Keywords genetic linkage map, AFLP, blue mussel, Mytilus edulis. 
 

http://dx.doi.org/%2010.1111/j.1365-2052.2007.01611.x
http://www.blackwell-synergy.com/
http://www.ifremer.fr/docelec/
http://www.ifremer.fr/docelec/


 2

Introduction 
The blue mussel Mytilus edulis is a bivalve mollusc of major commercial importance with a worldwide 
production of around 1.5 mt.yr-1 (FAO, 2002). Additionally, mussels are among the best studied species of 
the littoral and sublittoral communities and have been the focus of research into genetics, biochemistry, 
physiology and ecology (Gosling 1992). Despite their economical importance, most bivalves - including 
mussels - have not been domesticated like agricultural animals or crops and their production is mainly 
based on collection of natural spat (i.e. juveniles). However, selective breeding programs have been 
initiated in some bivalve species (e.g. Pacific oyster: http://hmsc.oregonstate.edu/projects/mbp/, green 
shell mussel: http://www.cawthron.org.nz/aquaculture/selective-breeding.html). In the blue mussel, 
quantitative genetic studies of traits of economical importance for growth and length (Mallet et al. 1986; 
Stromgren & Nielsen 1989) suggest that significant improvement could be achieved by selective breeding. 
In this context, the development of genetic and genomic tools are likely to contribute to the development 
of selective breeding programs, and, more generally, to improve knowledge about the genome of this 
species of aquacultural and ecological importance. Genetic linkage maps based on polymorphic markers 
such as AFLPs, RAPDs and microsatellites have been generated in several aquaculture species such as 
salmon (Moen et al. 2004), tilapia (Kocher et al. 1998) or shrimp (Li et al. 2006). In bivalves, genetic maps 
have been established in the Pacific oyster Crassostrea gigas (Hubert & Hedgecock 2004; Li & Guo 
2004), the Eastern oyster Crassostrea virginica (Yu & Guo 2003) and the Zhikong scallop Chlamys farreri 
(Wang et al. 2004; Li et al. 2005; Wang et al. 2005). Such maps represent a framework which enables the 
identification and localisation of QTL (Quantitative Trait Locus) (e.g. Yu & Guo 2006) with the final aim of 
achieving genetic improvement through marker-assisted selection (MAS) (Liu & Cordes 2004). 
 Only seven microsatellites have so far been published for the blue mussel (Presa et al. 2002) and, 
although more than 20 allozyme markers have been developed for the mussel, their relatively low 
polymorphism makes them unsuitable for extensive mapping (Beaumont 1994). Therefore, AFLP markers 
(Vos et al. 1995) were chosen as they require no preliminary knowledge of the genome, are highly 
reproducible (Jones et al. 1998) and can generate relatively quickly a high number of markers dispersed 
across the 14 pairs of chromosomes in the mussel genome. 
 

Material and methods 

Mapping family 

A full-sib mapping family was produced from two wild mussels collected from the Menai Strait, Wales, UK, 
since there has been no domestication of mussels and no homozygous nor selected lines are available. 
The methods used for gamete release, fertilisation and larval development were essentially as described 
by Beaumont et al. (1988). Larvae were reared in 2 l plastic beakers and fed 50 cells.μl-1 of a 3:1 mixture 
Pavlova lutheri and Rhinomonas reticulata. Filtered (1 μm) and UV-light treated water was changed three 
times a week when food was added. Ready-to-settle larvae were held on 80 μm sieves in a downwelling 
system (Utting & Spencer 1991) to allow metamorphosis and spat were fed a mixture of P. lutheri, 
Chaetoceros calcitrans and Isochrysis galbana clone T-Iso. Sieve mesh sizes were increased as mussel 
juveniles grew in size and mussels were transferred to IFREMER, La Tremblade, France when 2 month-
old for further ongrowing. Several full-sib families were produced but only one was randomly chosen for 
study and DNA was extracted from 86 20-month old F1 mussels. 
 

DNA extraction 
DNA was extracted from gill tissue using a chloroform extraction followed by purification with the Wizard® 
DNA Clean-Up System (Promega), according to Wilding et al. (2001). Quality and concentration of DNA 
was assessed using a spectrophotometer and by running a small sample on a 2% agarose gel. High 
quality extracted DNA was adjusted to a concentration of 100 µg.ml-1. 
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AFLP analysis 
AFLP analysis was performed by using a modified version of Vos et al. (1995), following Wilding et al.’s 
(2001) protocol, but digestion and ligation were achieved in the same mix and incubated 16 hours at 16°C. 
Electrophoresis and data collection was carried out on an ABI 3100-Avant (Applied Biosystems). 
Electrophoresis parameters were set at injection for 15 s at 15 kv, running for 25 min at 15 kv and 60°C, 
with POP4 polymer. Repeatability of the technique was checked by comparing the band pattern of four 
replicates obtained independently (four different DNA extractions: 2 gill, 2 muscle, four different AFLP 
amplifications (primer pair A1), performed on different days) on the same 20 samples of M. edulis. Results 
of this trial showed that consistent band patterns were obtained. 
 Thirty six AFLP primer pairs were genotyped in the mapping family (Supplemental Table S1). Two 
negative controls were included in each PCR reaction to detect any potential contamination. Data were 
analysed with GeneMapper® software version 3.7 and individuals were scored for the presence [A] or 
absence [a] of the amplified AFLP fragment. 
 

Distortion of segregation ratios 
Two kinds of segregating AFLP markers could be detected. Type 1:1 markers where one parent was 
heterozygous for the band and the other homozygous for no band and the F1 progeny were expected to 
segregate 1:1, band: no band. Type 3:1 markers corresponded to AFLPs where both parents were 
heterozygous for the band and the progeny were expected to segregate 3:1, band: no band. A chi-
squared goodness of fit test for the 1:1 or 3:1 segregation ratios was applied to each locus. All distorted 
markers (p<0.05) were excluded from further linkage analysis. 
 

Establishment of sex-specific framework linkage maps: MapMaker 3.0 software 
MapMaker 3.0 software (Lander et al. 1987) was used to build sex-specific linkage maps, based on type 
1:1 segregating markers in a double pseudo-test cross (F2 backcross model, Aa=H, aa=A) (Grattapaglia 
& Sederoff 1994). Each dataset was duplicated and recoded to allow the detection of markers linked in 
repulsion phase (“r” added at the end of their names; e.g. marker A1f123r was the recoded marker of 
marker A1f123). Linkage groups were determined with the GROUP command of MapMaker, conducted at 
LOD score ≥ 4.0 and genetic distance ≤ 37.5 cM. Once linkage groups were determined, the markers 
were ordered by the COMPARE command for a limited number of markers (n≤9), or otherwise by the 
THREE POINT and ORDER commands. After the ordering of markers within each linkage group, the 
RIPPLE command allowed the testing of robustness of the map obtained. Markers that presented a 
conflict in map position (several map positions possible, with a small difference of LOD score) were placed 
as associated markers. The ERROR DETECTION command (Lincoln & Lander 1992) was on during all 
the analyses described above to detect eventual genotyping errors. Map distances in centiMorgans were 
calculated using Kosambi’s mapping function (Kosambi 1944) and linkage groups were drawn with 
MapChart software (Voorrips 2002). 
 

Establishment of a consensus map: JoinMap 4.0 software 
Male and female maps based on 1:1 and 3:1 segregating AFLP markers and a consensus map were 
achieved using JoinMap 4.0 software (Van Ooijen 2006). Male and female datasets were treated 
independently, as a population type CP (composite). First, the two parental maps based on 1:1 and 3:1 
markers were built. Then, homologous pairs of linkage groups were identified by multiple and parallel 
linkages of markers, i.e. several markers ordered in the same order in both parental maps. Only 3:1 
markers that did not contradict the mapping order of framework markers, previously established with 
MapMaker, were retained for the establishment of a consensus map. Recombination rates were converted 
into genetic distances (in cM) using Kosambi’s mapping function and linkage groups were drawn with 
MapChart software (Voorrips 2002). 
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Genome length and map coverage 
Average marker spacing of the framework map was calculated by dividing the total length of the map by 
the number of intervals. In the same way, the average marker spacing for each linkage group was 
calculated by dividing the length of each linkage group by the number of intervals on that linkage group. 
The expected length of the genome was estimated using method 4 of Chakravarti et al. (1991), based on 
framework markers alone and then with framework and associated markers. Observed genome coverage 
estimates were determined by dividing the observed genome length (total length in cM of all the linkage 
groups) by the expected length of the genome. Two observed genome coverage estimates were 
computed, whether or not associated markers were taken into account. 
 

Results 
The 36 primer pairs, screened for 86 F1 progeny and their two parents, generated a total of 2354 peaks, 
averaging 65 peaks per pair. The average number of segregating markers (among the two parents, 
including both types of markers) was 791, or 22 per primer pair, corresponding to 33.6% of polymorphic 
peaks. Among the 791 polymorphic markers in the mapping family, 341 were segregating through the 
female parent, 296 through the male parent and 154 through both parents. Chi-square analysis indicated 
that 243 (71.3%) and 210 (70.9%) of the markers segregated according to the expected 1:1 Mendelian 
ratio in the female and male respectively; and that 112 (72.7%) markers segregated according to the 
expected 3:1 Mendelian ratio. Distorted markers (p<0.05) were discarded from further linkage analysis. 
 

Sex-specific linkage maps 
The female framework map established with MapMaker 3.0, based on the 243 AFLP markers segregating 
through the female parent only, consisted of 121 markers (49.8%). Seven markers were not linked to the 
framework map (2.9%). Additionally, 115 markers were linked to the framework map with a LOD score of 
4.0 but not placed accurately and were therefore considered as “associated markers”. Associated markers 
were located beside their closest framework marker (Supplemental Table S2). Fourteen linkage groups 
were identified for the female map covering 862.8 cM (Figure 1). The sizes of the linkage groups ranged 
from 9.5 cM to 101.5 cM. The number of framework markers per linkage group varied from 2 to 16, and 
the number of associated markers from 0 to 23. The average distance between 2 framework loci ranged 
from 4.09 cM (G10F) to 19.5 cM (G12F), with an average spacing of 8.06 cM. The maximum interval of 
the female map was 32.9 cM (G2F) (Table 1). Some clusters of AFLPs could be observed, containing 
from 2 to 7 markers. A single linkage group could contain up to 4 clusters (e.g. G1F). The estimated 
genome length was 1125.3 cM. The observed coverage was therefore 76.7% for the female framework 
map. When associated markers were considered, the estimated genome length was 1006.0 cM and 
genome coverage became 85.8% for the female map. 
 The male framework map established with MapMaker 3.0 was based on the 210 AFLP markers 
segregating through the male parent only. The resulting map consisted of 116 framework markers 
(55.2%). Six markers were not linked to the framework map (2.9%). Additionally, 88 markers were placed 
as associated markers (Supplemental Table S3). Fourteen linkage groups were set up for the male map 
covering 825.2 cM (Figure 2). The sizes of the linkage groups ranged from 20.3 cM to 86.5 cM. The 
number of framework markers per linkage group varied from 3 to 20, and the number of associated 
markers from 1 to 14. The average distance between 2 framework loci ranged from 3.08 cM (G13M) to 
15.4 cM (G6M), with an average spacing of 8.09 cM. The largest interval varied from 8.2 cM (G13M) to 
37.6 cM (G1M) (Table 1). Some clusters of AFLPs could be observed, containing from 2 to 7 markers. A 
single linkage group could contain up to 6 clusters (G8M). All framework markers were mapped with a 
LOD score of 4.0 except marker A6f121r of G5M that was linked to this group with a LOD score of 2.79. 
For the male map, the estimated genome length was 1087.1 cM and observed coverage was 75.9%. 
Including associated markers, the estimated genome length was reduced to 957.6 cM with genome 
coverage of 86.2%. 
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Marker distribution 
There was a random distribution among linkage groups of all markers generated by the three different 
EcoRI primers. A contingency chi-square test for the 14-groups x 3-EcoRI primers was not significant for 
either female or male (χ2 = 12.720 or 24.604, 22 d.f., p=0.316 or 0.941 respectively). The female and male 
framework maps (Figures 1 and 2) revealed a high number of clusters, 43 on the female and 36 on the 
male map. Uneven distribution of markers means that gaps remain to be filled because both maps show 
intervals spanning more than 20 cM. The assumption of a random distribution of AFLP markers across the 
genome was tested using Spearman correlation coefficients and chi-square test for departure from a 
Poisson distribution. Spearman correlation coefficients (rs) between genetic length and number of markers 
per group were 0.481 for the male (p>0.05) and 0.635 for the female (p<0.05). However, when a single 
outlier linkage group was removed from the male dataset, the correlation became significant (p<0.05). 
Therefore, in spite of observed clusters, AFLP markers generally tended to be randomly distributed in the 
linkage maps. 
 Observed and expected distributions of AFLPs were compared over 20 cM intervals in female and 
male framework maps. A chi-square test for departure from a Poisson distribution was computed. The 
mean of the Poisson distribution was set up to the mean number of markers per 20 cM interval length: 
2.61 for the female and 2.8 for the male maps. No significant departure from the Poisson distribution was 
observed for the female (χ2=13.22, 7 d.f., p=0.067). However, this goodness-of-fit test was highly 
significant for the male (χ2=28.63, 7 d.f., p<0.001), mostly due to three intervals of 20 cM containing eight 
markers. This confirms that clustering of AFLPs was more important in the male framework map, with the 
presence of a few dense clusters of markers (containing up to seven markers). 
 

Preliminary consensus map 
Twelve probable homologous linkage groups were identified and for nine of them, a consensus map was 
established based on at least three markers of type 3:1 exhibiting multiple and parallel linkages (Figure 3). 
Up to four 3:1 markers were used to build a consensus group. These consensus groups were named 
according to the names of the groups they derived from, e.g. consensus group G10F_G11M_comb issued 
from the joining of groups G10F of the female map and G11M of the male map. For three of the twelve 
probable homologous groups, a consensus map was difficult to construct (Figure 4). For example, the 
homology of groups G7F and G14M was based on a single marker (B1f123*). The homology of groups 
G11F and G12M was based on the parallel and multiple linkage of three markers (B4f222*, E10f66* and 
E10f78*) but the alignment of these two groups according to these three markers indicated that G12M 
could be homologous to only the terminal part of G11F, making the establishment of a consensus map 
difficult and potentially unreliable. Finally, the male group G6M seemed to have two potential homologes 
in the female map: G13F and G7Fpartial, assessed by three and two markers of type 3:1 respectively. 
Despite the mapping of a few 3:1 markers, no clear homologes could be identified for the male groups 
G3M and G10M nor for the female groups G8F and G12F. 
 The observed genome lengths obtained for the female, the male and the consensus maps 
established with MapMaker and JoinMap were very similar: 863 and 825 cM for the female and male 
maps (MapMaker), 871 and 799 cM for the female and male maps (JoinMap) and 816 cM for the 
consensus map. 
 

Discussion 
In our mapping family of M. edulis, segregation distortion (χ2, p<0.05) averaged 29% for the type 1:1 
markers, and 27% for the type 3:1 markers. The observed numbers of distorted markers were 98 for the 
female 1:1 markers, 86 for the male 1:1 markers and 42 for the 3:1 markers, and were higher than the 
expected numbers by chance only (17, 15 and 8 respectively at α=5%). 
 High segregation distortion could be caused by technical artefacts in genotyping such as size 
homoplasy (i.e. AFLP fragments showing the same size but belonging to different loci). Incomplete 
enzyme digestion and/or inefficient PCR represent another technical artefact, leading towards null 
homozygous AFLP genotypes. In our study, around 60% of the distorted markers were deficient for 
homozygous null genotypes, ruling out technical artefacts as the main source of non-Mendelian 
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segregation. Finally, the relatively high proportion of distorted markers (towards a homozygote deficiency) 
could be explained by linkage of markers with lethal or deleterious genes in recessive state that cause 
genotype-dependant mortalities. A high genetic load has previously been reported in bivalves (McGoldrick 
& Hedgecock 1997; Bierne et al. 1998; Launey & Hedgecock 2001) and is therefore to be the most likely 
hypothesis explaining our results. 

To our knowledge, maps presented in our study represent the first genetic linkage maps 
established in the blue mussel M. edulis. Despite their preliminary nature, these male and female maps 
offer a good representation of the blue mussel genome. Firstly, both maps contain 14 linkage groups, 
which correspond to the haploid number of chromosome of this species (Thiriot-Quiévreux 1984). 
Secondly, total map length observed in this study is similar to the theoretical genetic length based on 1.0-
1.3 crossing over per chromosome. The observed genetic length was 825.2 cM for the male map, and 
862.8 cM for the female map. Work on the Pacific and Eastern oysters (2n = 20) revealed an average 
number of chiasmata per chromosome of ~1.1-1.2 (Guo, X., unpublished data cited in Li & Guo 2004). 
Based on these data, assuming a hypothetical range of 1.0-1.3 chiasmata per chromosome for M. edulis, 
the theoretical map length should range 700 to 910 cM (1.0 or 1.3 x 50 cM x 14 chromosomes). The 
observed total genetic length for both maps in our study falls into that range. Moreover, expected genome 
lengths estimated in this study (957-1006 cM) were 5-36% longer than the theoretical length based on 
cytological studies (700-910 cM). The discrepancy between both estimates (expected and theoretical 
genome lengths) is smaller than that identified in two separate studies on C. gigas: 42-99% (Hubert & 
Hedgecock 2004) and 32-79% (Li & Guo 2004). 
 The ratios of longest to shortest linkage groups are 10.7:1 and 4.3:1 in the female and male maps 
respectively. These ratios are greater than the cytological ratio (length of chromosome 1 to length of 
chromosome 14) observed in several karyological studies in M. edulis: 2:1 (Thiriot-Quiévreux 1984); 1.74-
1.86:1 (Insua et al. 1994). This suggests that gaps remain to be filled and that more markers should be 
added for a better coverage of the genome. However, Hubert & Hedgecock (2004) reported slightly higher 
ratios in C. gigas, 7.6:1 in the female and 13.7:1 in the male, compared to the 2:1 cytological ratio (Thiriot-
Quiévreux 1984). Therefore, the discrepancy observed between these two ratios is similar in M. edulis 
and C. gigas. 
 Genome coverage estimated for both maps is relatively good, at 76.7% and 75.9% for framework 
female and male maps respectively. Genome coverage increased to around 86% for both maps when 
associated markers (linked but not mapped) were taken into account. These estimates are similar to the 
one established in C. gigas: 70-79% (microsatellite markers: Hubert & Hedgecock 2004) or 81-92% 
(AFLPs: Li & Guo 2004); and in C. virginica: 70-84% (AFLPs: Yu & Guo 2003). Also, only 3% of markers 
were unlinked to any other marker in both maps, another indicator that framework maps established in M. 
edulis cover a good proportion of the genome. 
 Our study reported a similarity of map lengths between sexes, in the range 800-870 cM, obtained 
with two different software (MapMaker 3.0 and JoinMap 4.0). The linear relationship between linkage 
distance and recombination rate implies that recombination rates in males and females could be similar in 
M. edulis. Similar recombination rates were reported between males and females in P. japonicus (Li et al. 
2003). However, several studies reported large sex-specific differences in recombination rates, generally 
towards higher recombination rates in females in rainbow trout (Sakamoto et al. 2000), in C. virginica (Yu 
& Guo 2003 ) and in P. monodon (Wilson et al. 2002). Most of these studies showed congruence between 
sex-specific recombination rates and genetic distances, with a longer genetic distance reported in the sex 
exhibiting higher recombination rates. Nevertheless, caution must be taken in the inference of sex-specific 
recombination frequency from genetic distance because some studies reported sex-discrepancy between 
genetic map lengths due to the number of informative markers (Agresti et al. 2000). However, in our 
study, the number of markers mapped in the female (121) and male (116) maps was similar so it is likely 
that recombination frequencies between sexes are similar in M. edulis. This could be confirmed by 
pairwise comparisons of average spacing between markers common to male and female maps, 
particularly after the addition of codominant markers. 
 Clustering of AFLPs is a common feature of AFLP-based genetic maps and has been observed in 
several species, e.g. in maize (Castiglioni et al. 1999), rainbow trout (Young et al. 1998), tilapia (Agresti et 
al. 2000) or channel catfish (Liu et al. 2003). Clustering of AFLPs could result from the non-random 
distribution of enzymatic restriction sites across the genome, and therefore indirectly from the choice of 
enzymes of restriction used. In this study, EcoRI and MseI were used for digesting the DNA. EcoRI and 
MseI restriction sites are relatively AT-rich, and so could reflect the variation in GC content among 
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chromosomal regions (Yu & Guo 2003). Contrary to studies on oysters, clustering of AFLPs seems to 
occur more towards centromeric regions than telomeric ones in the blue mussel (G1M, G3M or G10M). As 
chromosomes of M. edulis are mostly metacentric or submetacentric (Thiriot-Quiévreux 1984; Insua et al. 
1994), this clustering could correspond to centromeric suppression of recombination, associated with 
heterochromatin (Tanksley et al. 1992). 
The large intervals (> 20 cM), observed in both maps, could be due to the medium-density of the maps 
obtained, and it is expected that adding markers should reduce those gaps. Alternatively, they could 
correspond to hot-spot regions of recombination in the genome. 
 The consensus map presented in this study, even though incomplete, shows the feasibility of an 
AFLP-based mapping strategy in an undomesticated marine species. However, to increase the accuracy 
of the consensus map, more 3:1 markers should be scored, to base the consensus map on more than 
three markers per group, and markers should be chosen to be more evenly spaced throughout each 
linkage group. More importantly, adding codominant markers such as microsatellites, SNPs or ESTs (type 
I markers), serving as anchor loci between the two parental maps, will increase the accuracy of the 
consensus map as well as its portability in the context of QTL mapping. Efforts were made in our study to 
use the published microsatellite loci (Presa et al. 2002) but we could not achieve reliable results. The 
combination of dominant (AFLPs or RAPDs) and codominant (microsatellites) markers proved to be very 
useful for the construction of a consensus map in rainbow trout (Nichols et al. 2003), tilapia (Kocher et al. 
1998), zebrafish (Johnson et al. 1996) and common carp (Sun & Liang 2004). To facilitate the mapping of 
type I markers, the DNA from the mapping family can be made available to the research community. 
 Future work could include the production of additional mapping families involving crosses between 
M. edulis and M. galloprovincialis that will be useful for mapping the numerous type I markers already 
developed in M. galloprovincialis (Venier et al. 2003; Venier et al. 2006). Such families could be used to 
investigate QTLs affecting production and life history traits that differ between the two taxa. 
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Table 1 Length, number of markers (framework and associated), average spacing, largest interval of 
linkage groups of the female and male maps established with MapMaker 3.0. 
 
 

Linkage 
group 

Length 
(cM) 

No. of framework 
markers 

No. of associated 
markers 

Average 
spacing (cM) 

Largest interval 
(cM) 

Female: 
G1F 101.5 15 23 7.25 27.8 
G2F 101.3 11 12 10.13 32.9 
G3F 83.3 10 13 9.25 21.9 
G4F 76.0 10 5 8.40 28.3 
G5F 75.2 10 8 8.35 31.0 
G6F 69.9 7 3 11.65 26.7 
G7F 66.7 9 5 8.34 28.9 
G8F 65.8 8 4 9.40 22.3 
G9F 61.6 9 11 7.7 22.5 
G10F 61.3 16 11 4.09 14.3 
G11F 60.2 10 11 6.69 25.4 
G12F 19.5 2 0 19.5 19.5 
G13F 11.0 2 5 11.0 11.0 
G14F 9.5 2 4 9.5 9.5 
Total 862.8 121 115 8.06 32.9 

Male: 
G1M 86.5 13 9 7.21 37.6 
G2M 84.9 10 10 9.43 22.1 
G3M 79.5 7 14 13.25 30.8 
G4M 77.8 8 3 11.11 23.7 
G5M 74.9 10 5 8.32 35.2 
G6M 61.6 5 10 15.4 23.9 
G7M 61.2 6 5 12.24 24.1 
G8M 60.2 20 7 3.17 16.9 
G9M 57.6 7 5 9.6 12.9 

G10M 57.0 8 5 8.14 25.2 
G11M 53.0 5 5 13.25 20.4 
G12M 26.4 5 1 6.6 16.0 
G13M 24.3 9 7 3.08 8.2 
G14M 20.3 3 2 10.15 11.5 
Total 825.2 116 88 8.09 37.6 
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Supplemental Table S1 Primer pairs used for scoring AFLPs, with their abbreviations. 
 
 
 
 
  

Eco+CAG
FAM 

Eco+ACG 
HEX 

Eco+ACT 
NED 

Mse+CGA 
A1 B1 E1 

Mse+CAA A2 B2 E2 
Mse+CTG A3 B3 E3 
Mse+CAT A4 B4 E4 
Mse+CTT A5 B5 E5 
Mse+ATC A6 B6 E6 
Mse+AGT A7 B7 E7 
Mse+CTC A8 B8 E8 
Mse+CTA A9 B9 E9 
Mse+CAC A10 B10 E10 
Mse+CAG A11 B11 E11 
Mse+CCT A12 B12 E12 
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Supplemental Table S2 Associated markers of the female map (linked but not mapped). 
Group name Framework marker Associated markers 

A12f227 A7f177, A10f102, B4f63r, B11f166, A1f162r, A11f41r 
E12f138 E4f99, B5f119, B10f119, B12f119, E10f229r, B9f119 
E4f57 E6f177r, E8f294r 

G1F 

A7f99r E3f84r, B6f166r, B6f82, A3f176, A1f83, A1f106, B9f64, B9f120, 
A10f171r 

E5f88r B5f88r 
E10f44r A3f133r 
B8f97r E11f225 

G2F 

A10f39 A3f153, B1f191, A9f287, A4f341r, E12f51r, B11f170r, B5f57r, 
E3f94, B9f179 

B4f303 A8f201r, A9f164r 
E1f211 B3f48r, E7f140 
E11f130r A7f40r, E7f100 

G3F 

A9f195r B3f129, B3f136r, A1f249r, B11f248, A3f291, B3f137, B1f47r 
B1f178 A10f162r G4F 
A1f41 E10f102, E10f133, E8f258r, A10f237 
E9f115r A1f242, E11f238, E1f152r G5F 
B1f55 A10f54, A10f88, A11f102, A6f132r, B12f150r 
A4f109r E3f193r G6F 
E10f171 A1f126, A5f110 
E12f191r A1f173, A1f174, B11f148r G7F 
A8f76r E12f163r, A7f180 
A3f123 B6f230, B11f43 
A10f328 E3f279 

G8F 

E12f241 A11f323 
A1f191 A7f343, A7f348r, A6f196, E7f63r, E6f173 
E8f289 B5f311, E1f167 
B5f179r A4f168 

G9F 

B7f217r E8f66r, B9f152r, A7f238 
A5f97 B3f303, E1f72r 
B1f133 E10f83, A7f252r, B10f372r 
E3f183r A4f205, A11f197, E12f96 

G10F 

A9f41 E11f160, A11f114r, B11f91 
A11f110 E4f121r 
B4f65 A7f66, B8f199r 

G11F 

A7f134 B1f154, E3f105, A4f269, E11f136, B12f135, E1f278r, E9f181r, 
B9f52 

A7f141 A9f73, B12f271, A11f83r, E11f70 G13F 
A8f93 A9f183 
B1f259 E1f303r G14F 
A12f288r A8f98, B12f330, B11f263r 
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Supplemental Table S3 Associated markers of the male map (linked but not mapped). 
Group name Framework marker Associated markers 

A9f76 A1f205, E1f56r, A8f193r 
A4f146 B6f66 
A6f165r A1f42 
A10f107 B3f122, A7f100r, A9f161r 

G1M 

B12f279r E11f148 
B4f132 A1f264, B3f269, A4f138, A4f143, B6f266, E12f97, A12f77r 
E11f193r E10f128 

G2M 

A7f318 A7f346r 
A5f116r E1f76 
A10f209r B4f129, A5f124, A10f143, A12f50, B10f228r, B11f64r 

G3M 

B10f53r A5f169, B9f74, B12f168, E1f95r, B8f113r, B8f128r, B8f204r 
G4M E7f172 A4f183, E12f155, E4f42r 

A9f334r B4f125, E4f153r 
B12f138r E6f106 

G5M 

B6f161r B11f86, B9f108r 
E1f235 A8f167, B11f151, A7f75r, B6f105, B10f314, A3f327r, E7f84, 

B4f213r, E9f171r 
G6M 

E5f121r E7f150r 
E4f273r A1f273, A4f120, A10f97, A10f41r G7M 
A10f106r A4f43 
B4f262 E9f112r 
E8f77 B12f229 
B11f355r A6f167r 

G8M 

B11f152r A1f204, A7f241, A10f270r 
B6f51 B10f198r 
A11f262r A3f88, E7f234, E11f96 

G9M 

B10f188 A11f280r 
G10M A6f87 A7f55, B7f128, E9f282, A7f340r, B7f106r 

A4f296 A5f119, E9f105, E11f111 
E12f56 E10f40r 

G11M 

A6f81r B7f126r 
G12M E10f94r A8f134 

A1f77 A1f100r, B3f318r 
E9f193 A3f70, A3f109r 

G13M 

E11f104r B1f107, A3f39r, A5f139r 
B11f67 E7f94 G14M 
E4f156r A11f325 

 
 



Figure 1. AFLP linkage map of the blue mussel M. edulis: Female map obtained with MapMaker 3.0, including 121 framework markers 
for a total of 863 cM. AFLP markers are labelled with the primer pair name followed by the letter “f” (for fragment) and a 3-digit 
fragment size in base pairs. Markers are indicated on the right and absolute positions on the left (in Kosambi cM). Numbers in brackets 
on the right of locus name correspond to number of associated markers (linked but unplaced). 
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Figure 2. AFLP linkage map of the blue mussel M. edulis: Male map obtained with MapMaker 3.0, including 116 framework markers for a 
total of 825 cM. AFLP markers are labelled with the primer pair name followed by the letter “f” (for fragment) and a 3-digit fragment size in 
base pairs. Markers are indicated on the right and absolute positions on the left (in Kosambi cM). Numbers in brackets on the right of locus 
name correspond to number of associated markers (linked but unplaced). 
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Figure 3. Consensus map established in the blue mussel M. edulis, in a mapping family including 
two parents and 86 F1 progeny using JoinMap 4.0 software. The consensus map is based on the 
finding of nine homologous pairs of linkage groups. Homologous markers are displayed in bold 
and underlined, ending with an asterisk (*). AFLP markers are labelled with the primer pair name 
followed by the letter “f” (for fragment) and a 3-digit fragment size in base pairs. Markers are 
indicated on the right and absolute positions on the left (in Kosambi cM). 
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Figure 4. Probable homologies between female and male groups assessed by the mapping of 3:1 markers in M. edulis using JoinMap 
4.0 software. Three pairs of likely homologous are represented for which no consensus map could be established. Pairs of homologous 
markers are displayed in bold and underlined, ending with an asterisk (*). AFLP markers are labeled with the primer pair name 
followed by the letter “f” (for fragment) and a 3-digit fragment size in base pairs. Markers are indicated on the right and absolute 
positions on the left (in Kosambi cM). 
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