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Abstract:  
 
The normalized radar cross-section (NRCS) expression of the Local Curvature Approximation (LCA-1) 
is derived to first order. The polarization sensitivity of this model is compared to the Kirchhoff 
Approximation (KA), Two-Scale Model (TSM), Small Slope Approximation (SSA-1) and Small 
Perturbation Method (SPM-1) to first order in the backscattering configuration. Analytical comparisons 
and numerical simulations show that LCA-1 and TSM could be rewritten with the same formulation and 
that their polarization sensitivities are comparable. Comparisons with experimental data acquired in C- 
and Ku-band reveal that the polarization sensitivities of these models are not adequate. However, the 
NRCS azimuth modulation predicted by LCA-1 is found to be dependent on polarization and sea 
surface roughness. This property of the LCA-1 model yields to an azimuth modulation for the 
polarization ratio. Based on the surface curvature correction concept, a simplified electromagnetic 
model is proposed. The curvature correction is restricted to the resonant wave-number of the sea 
roughness spectrum. This is found to reproduce the polarization ratio given by experimental data 
versus incidence angle and wind speed. 
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1 introduction

An area of unfilled promised field in ocean remote sensing is the develop-

ment of a consistent inversion of sea surface geometry and kinematic via the

ever-increasing complement of microwave and optical techniques. Since the

review by Valenzuela [1], many asymptotic solutions have been proposed to

reproduce the observe normalized radar cross-section (NRCS) of the sea sur-

face. Recently, Elfouhaily and Guerin [2] published a very complete review to

further advance on this subject. In particular, Elfouhaily pioneered the con-

cept for asymptotic solutions dynamically driven by surface properties, more

specifically local curvature characteristics.

However, to date, there are still large discrepancies between observations

and predictions. In particular, difficulties exist to fully understand the ratio

between co-polarized sea surface NRCS in the backscattering configuration. An

advanced model, such as the Small Slope Approximation (SSA) [3], applied to

the sea surface has been reported to fail to reproduce this NRCS ratio [4]. Stud-

ies based on standard Two-Scale Model (TSM) showed the same limitations [5].

The main issue is the ability to reproduce the NRCS in HH co-polarization.

These authors, following others (e.g. [6]), attributed the prediction difference

between models and data to difficulties to fully take into account waves with

steep slopes which cannot be considered in the framework of these approx-

imations. Other efforts [4, 5, 7] showed that adding a scalar (non-polarized)
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contribution attributed to wave breaking effects through specular reflection

on surface patches with enhanced roughness could help to overcome this issue.

However, as the failure of SSA or TSM is observed at any wind speed, solely

invoking effect of breaking waves is still a matter of debate. Some authors

argue that other surface (bound waves. e.g. [8]) or near-surface processes (sea

droplets. e.g. [9]) would yield the same impact on the NRCS.

Our purpose is to use and apply the latest improvements suggested by

Elfouhaily and Guerin [2] in the field of the asymptotic electromagnetic model-

ing to better understand the polarization sensitivity of the scattered signal to

the sea surface geometry. Promising studies have already been proposed to use

such models in the case of backscattering from an 1-D ocean surface [10]. As

already advanced by Elfouhaily and co-authors, the sea surface curvature shall

control the polarization sensitivity of the scattered electromagnetic field [11].

In that context, the polarization ratio is dynamically driven by the surface

geometry properties. However, questions remain regarding the relative weight

of the different sea surface wave scales to such sensitivity. Based on analytical

comparisons between models formulations, and comparisons between models

prediction and experimental data in the backscattering configuration, we dis-

cuss these aspects. A simplified asymptotic solution is then proposed to better

understand the expected variability of the sea surface polarization ratio as

function of wind speed and direction. The simplified asymptotic theory offers
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tractable statistical solutions, and results are compared to Ku- and C-Band

data acquired in VV and HH polarization configuration.

2 Position of the problem

2.1 Coordinates system and definitions

To expose the general problem in this paper, we adopt the same vectorial

conventions than in [2]. The right cartesian coordinate system is defined by the

triplet of normalized vectors (x̂, ŷ, ẑ), where the z-axis is directed upward. Σ

is the rough surface which separates the upper medium and the lower medium

(respectively air and water in our specific case). The (sea) surface elevation

is represented by z = η(x, y) = η(r), where r is the horizontal component

of the three-dimensional position wave vector R = (r, z). According to these

conventions, we consider a incident downward propagating electromagnetic

plane wave with a wave-vector K0 = (k0,−q0). The up-going scattered waves

is characterized by the wave-vector K = (k, qk). k0 and k are the horizontal

components of the incident and scattered waves whereas q0 and qk are the

vertical ones. We define also Qh and Qz related to the coordinates of the wave

numbers K and K0: Qh = k − k0 and Qz = q0 + qk.

The scattered field above and far away (R → ∞) from the sea surface is
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assumed to be related to the incident wave through the relation:

Es(~R) = −2iπ
eiKR

R
S(k, k0) · Ê0. (1)

S(k,k0) is the so-called scattering operator. Es(R) and S(k, k0) can be de-

composed on the fundamental polarization basis:

p±v (±k) =
kẑ ∓ qkk̂

K
p±h (±k) = ẑ × k̂, (2)

where the subscripts v and h indicate the vertical and horizontal polarizations,

respectively. The minus superscript corresponds to the down-going plane waves

while the plus superscript to the up-going waves. In this vectors basis, the

scattering operator is related to the scattering amplitude 2×2 matrix through:

S(k, k0) =




p−v (k0)

p−h (k0)




T

·



Svv(k, k0) Svh(k,k0)

Shv(k,k0) Shh(k, k0)


 ·




p+
v (k)

p+
h (k)


 , (3)

where the superscript T stands for the transpose operator. In the 2×2 matrix,

the first subscript indicates the incident polarization whereas the second one

indicates the scattered polarization configuration considered.



6 Resonant Curvature Approximation.

For a given polarization configuration pq, Spq(k,k0) is further written as:

Spq(k, k0) =
1

Qz

∫

r
Npq(k, k0; η(r))e−iQzη(r)e−iQH ·rdr, (4)

where N(k, k0; η(r)) is a Kernel depending on the approach considered to

establish the solution.

The scattering cross-section is given by the incoherent second order statis-

tical expression:

σpq =< |Spq(k,k0)|2 > −| < Spq(k,k0) > |2 (5)

2.2 Expansion of the scattering matrix

Asymptotic electromagnetic models predicting the scattered field from a rough

surface can then rely on the expansion of the kernel N(k, k0; η(r)) in the scat-

tering amplitude expression (4). In particular, Voronovich [3] and Elfouhaily et

al. [11] proposed two different expressions for the kernel N(k, k0; η(r)). These

kernels must satisfy known limits, and are defined to reach dynamically the

two asymptotic limits of:
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• the SPM-2 solution in the small perturbation limit:

S(k, k0) =
B(k, k0)

Qz
δ(QH)− iB(k, k0)η(QH) (6)

− Qz

∫

ξ
B2(k, k0, ξ)η̂(k − ξ)η̂(ξ − k0)dξ,

where B(k, k0), B2(k,k0, ξ) are the SPM kernels at first and second order

(see e.g. [11]). ξ is the wave number of the sea surface. η̂ it the Fourier

transform of the surface elevation η.

• the Kirchhoff solution (KA) in the high frequency regime:

S(k,k0) =
K(k, k0)

Qz

∫

r
e−iQzη(r)e−iQH ·rdr, (7)

where K(k, k0) is the Kirchhoff kernel (see e.g. [11]).

A general development of the Kernel N(k,k0) can read:

N(k, k0; η(r)) = N0(k, k0) + N1(k, k0; η(r)) + N2(k, k0; η(r)) + . . . (8)
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where the sub-kernels up to the second order are expressed as:

N1(k,k0; η(r)) =
∫

ξ
N1(k, k0; ξ)η̂(ξ)eiξ·rdξ, (9)

N2(k,k0; η(r)) =
∫

ξ

∫

ξ′
N2(k, k0; ξ, ξ′)η̂(ξ)η̂(ξ′)ei(ξ′+ξ)·rdξdξ′, (10)

and are polarization dependent. As discussed by Irisov [12] in the case of

the SSA, but also valid for LCA, solutions to satisfy the two asymptotic

limits can be easily found. Hereafter, we focus on first order solution (i.e.

N2(k, k0, ξ, ξ′) = 0) to simply fulfill SPM-1 and KA limits. The SSA-1 (see

Eq. (5.12) in [3]) or LCA-1 (see (1) eq in [11]) solutions for the scattering

matrix become:

S(k,k0) =
N0(k, k0)

Qz

∫

r
e−iQzη(r)e−iQH ·rdr

− i

∫

r

∫

ξ
N1(k,k0; ξ)η̂(ξ)e−iQzη(r)e−i(QH−ξ)·rdξdr (11)

with:

N0(k, k0) = B(k, k0), (12)

N1(k, k0; ξ) = 0, (13)
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for SSA-1 and

N0(k, k0) = K(k,k0), (14)

N1(k, k0; ξ) = [B(k, k0; ξ)−K(k, k0)], (15)

for LCA-1.

2.3 NRCS expression

Performances of such approaches were demonstrated for LCA (see e.g. [11,13])

and SSA (e.g. [14]), using Monte Carlo Simulations compared with the method

of the moments. The statistical average of a large amount of scattered fields

using random draws has been found different than analytic expressions of the

NRCS directly deduced from the incoherent statistical second order moment.

A Monte Carlo scheme applied to a sea surface description is limited by the

resolution needed for the small waves and the multi-scale aspect of the sea

surface. This aspect directly impacts the results (see discussion in section

3.2). The statistical results presented here are then always compared with

measurements to discuss their capabilities.
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The statistical evaluation mostly concerns

< |Spq(k, k0)|2 >=< Spq(k, k0)S∗pq(k,k0) >, (16)

where the superscript in X∗ stands for the conjugate quantity of X. Up to

first order Spq(k,k0) and S∗pq(k,k0) are given by:

Spq(k, k0) =
∫

r

[
N0(k, k0)

Qz
− i η̃(r)

]
e−iQzη(r)e−iQH ·rdr (17)

S∗pq(k, k0) =
∫

r

[
N∗0(k, k0)

Qz
+ i η̃∗(r′)

]
eiQzη(r′)eiQH ·r′

dr′, (18)

where r′ = r+∆r, with ∆r the correlation length. η̃(r) is the modified height

function defined as:

η̃(r) =
∫

N1(k, k0; ξ)η̂(ξ)eiξ·rdξ, (19)

where N1(k,k0; ξ) can be interpreted as a filter of the real height sea surface

function η(r) in the wave number domain. In the case of LCA (see Eq. (15))

and SSA theories, this filter becomes complex for not perfectly conducting

surface and are polarization sensitive.

When the first order is neglected, N1(k, k0; ξ) = 0. It follows for the in-
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coherent radar cross-section at zeroth order under Gaussian statistics (see

appendix A):

σpq =
∣∣∣∣
N0(k, k0)

Qz

∣∣∣∣
2 ∫

e−Q2
z[ρ(0)−ρ(r)]e−iQH ·rdr, (20)

with N0(k,k0) = B0(k,k0) and N0(k, k0) = K0(k, k0), respectively. ρ(r), the

2-dimensions correlation function, is defined up to the second harmonic by:

ρ(r) = ρ0(r)− ρ2(r) cos 2(φ− φw), (21)

where φw is the wind direction and φ the scattered azimuth angle. The isotropic

part ρ0(r) and the anisotropic part ρ2(r) are given by:

ρ0(r) =
∫ ∞

0
S(k)J0(rk)dk (22)

ρ2(r) =
∫ ∞

0
S(k)∆(k)J2(rk)dk, (23)

where S(k) is the omnidirectional elevation spectrum, ∆(k) the spreading

function of the elevation spectrum and Jn the nth order Bessel function of the

first kind.

For LCA-1 or SSA-2, the statistical averaging is not as straightforward (see
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appendix A). Indeed, N1(k, k0; ξ) 6= 0. In the statistical calculation, we neglect

the fourth order term as it represents a second order contribution (in η2),

whereas the series expansion is limited to the first order (in η). For LCA-1,

the following expression for the NRCS is found:

σpq =
1

Q2
z

∫ [
|K(k, k0)|2 + 2Q2

zRe
{
K(k,k0)

[
ρ̃(∆r)− ρ̃(0)

]}]
(24)

e−Q2
z[ρ(0)−ρ(∆r)]e−iQH ·∆rd∆r

We introduced the modified correlation function such as:

< η̃(r)η(r + ∆r) > =
∫

N1(k,k0; ξ)η̂(ξ)η̂∗(ξ)eiξ·∆rdξ

=
∫

N1(k,k0; ξ)S(ξ)eiξ·∆rdξ = ρ̃(∆r), (25)

where S(ξ) is the surface elevation spectrum. To compute ρ̃0(r) and ρ̃2(r), one

just have to apply equations (22) and (23) using the filtered omnidirectional

spectrum and filtered spreading function. The polarized term exists only if

there is a difference between the correlation function of the filtered sea surface

in 0 and ∆r. Assuming N1(k, k0; ξ) to be at least a quadratic form (i.e.

N1(k, k0; ξ) ∝ ξ2), as already assumed by Elfouhaily et al. [11] or Guerin et

al. [15] in the framework of the WCA, the polarization correction shall only

results from differences between the second order derivative of the correlation
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function at 0 and ∆r. This only occurs for multi-scale surfaces. At high

frequency, ∆r is small and this difference relates directly to the mean squared

surface curvature.

Alternatively, it can be stated that Eq (4) could have been chosen to be

expressed using a phase perturbation technique [16]. This method was already

applied in [4] for SSA-2. Under this assumption, the general expansion of the

scattering matrix up to the second term can be re-written as:

S(k, k0) = N0(k, k0)
∫

r
e−iQzΦ(k,k0;η(r))e−iQH ·rdr, (26)

with:

Φ(k, k0; η(r)) =
∫

ξ

[
1 +

N1(k, k0; ξ)
N0(k, k0)

]
η̂(ξ)eiξ·rdξ, (27)

where:

N1(k, k0; ξ) = B2(k, k0;k − ξ) + B2(k, k0;k0 + ξ) + B(k, k0), (28)
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or

N1(k,k0; ξ) = B(k, k0; ξ)−K(k, k0), (29)

for SSA-2 and LCA-1, respectively. Applying this development to the SSA and

LCA, the NRCS given by SSA-2 and LCA-1 can be written as:

σ0(θ, φ) =
∣∣∣∣
N0(k,k0)

Qz

∣∣∣∣
2

e−Q2
z ρ̃(0)

∫

r

[
e−Q2

z ρ̃(r) − 1
]
e−iQH ·rdr, (30)

with:

ρ̃(r) =
∫

ξ

∣∣∣∣1 +
N1(k, k0, ξ)
N0(k,k0)

∣∣∣∣
2

S(ξ)eiξ·rdξ, (31)

where N1(k, k0, ξ) and N0(k, k0) depends on the asymptotic model consid-

ered. ρ̃(r) is again the correlation function of a filtered spectrum.

We tested the two computations for the NRCS and the PR predicted by

LCA-1 model. The PR is defined as the ratio of the NRCS in VV over HH

expressed in linear scale and is presented in dB. This quantity which increases

with the incidence angle (see e.g. [17]) is a key parameter to evaluate the

polarization performances of models and is also widely used in the remote-
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sensing community for the wind speed fields retrieval using SAR images in

HH-polarization (see e.g. [18]). Comparisons between the NRCS and the PR

calculated according the two methods are shown on figure 1. The sea spectrum

used is the one proposed by Elfouhaily et al. [20]. We observe that the results

are very similar using both computations. In the following we use the phase

perturbation technique. The integration over the wave numbers is performed

from 2π/103 to 2π/10−3 rad/m and over the correlation lengths from 0 to

100.1 m. Wave numbers and correlation lengths are defined with a log-scale

using polar coordinates. More Details on the numerical implementation can

be found in the recent work published by our group [19].

[figure 1 about here]

2.4 Comparisons between KA, SSA-1 and LCA-1. Analogy with TSM

and SPM-1

In this section, we compare KA, LCA-1 and SSA-1 for the NRCS predic-

tion of the sea surface. The 2-dimension sea spectrum used to compute the

NRCS is the empirical one proposed by Elfouhaily et al. [20]. We focus on the

backscatter configuration. Our concern is the polarization sensitivity as it is

an important limitation for most standard models as the SPM-1 or TSM (see

appendix B about TSM formulation).

On figure 2, we present the omnidirectional NRCS measured by satellite Ku-
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Band instruments TRMM and NSCAT for a 10 m/s wind speed. These NRCS

parameters are determined using buoy validations to average measurements

for a given wind speed interval. The model results are given by the two zeroth

order models SSA-1 and KA in the case of an isotropic sea surface. TRMM

NRCS range from 0 to 18 degrees, and from 15 to 55 degrees for NSCAT. SSA-1

is polarization sensitive for incidence angles greater than 0 degree. KA is not

polarization sensitive in this configuration for the whole range of incidence

angles. The PR for SSA-1 is 10 dB at 50 degrees whereas KA always gives

0 dB. As frequently used, KA gives satisfactory results to match the data at low

incidence angles. For the largest incidence angles, where there is a polarization

difference, we observe that none of the two models at is able to match the data.

In particular, SSA-1 overestimates the polarization effect. Qualitatively, at

larger incidence angles, a correction to SSA-1 should decrease the polarization

effect whereas it is the contrary for KA. In the range of incidences where

the quasi-specular reflection dominates the backscattering mechanism, KA

and SSA-1 are different, and SSA needs the second-order to match Kirchhoff

asymptotic solution [22]. As compared to a Geometrical Optics (GO) solution,

proportional to a filtered slope distribution, the KA clearly provides much

larger results at large incidence angles. The scalar contribution to the NRCS

discussed in the context of the TSM [5] can certainly gain to consider KA

solutions.
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[figure 2 about here]

On figure 3 (a) and (c), we present NRCS comparisons in VV and HH

polarizations given by KA, SSA-1, LCA-1 and the TSM for a 10 m/s wind

speed, in the case of an isotropic sea surface in Ku-Band and C-Band. KA and

SPM-1 are in solid line. To be not confused by the representation, we recall

here that in backscatter, KA results are always lower (respectively greater)

than those given by SPM-1 in VV (and respectively HH) polarization. SSA-1

is in dotted line, LCA-1 in dashed line, TSM in dashed-dotted line.

[figure 3 about here]

With LCA-1, the polarization effect is less pronounced than with SPM-1 and

SSA-1.

As already reported by Voronovich and Zavorotny [4], thanks to comparisons

with empirical models for the backscatter in Ku and C-Band - respectively

SASS-II and C-MOD2-I3, SSA-1 polarization effect at high incidence angles

are not appropriate to predict of the NRCS of the sea surface. Especially in

HH polarization, for incidence angles larger than 25◦, there is a significant

underestimation of the NRCS given by SSA-1 (and -2) in comparison with ex-

perimental data. Our numerical computations show that SSA-1 tends towards

SPM-1 solution too quickly.

The polarization sensitivity of LCA is found smaller. However, according to
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NSCAT measurements (see figure (2)), this polarization effect to correct the

KA zeroth order is still too strong (about 8 dB at 50◦ instead of 5.5 dB). As

obtained, the LCA-1 results are very close to the TSM results. This agree-

ment between LCA-1 and the TSM can be explained analytically. In LCA-1,

the zeroth order is exactly the Kirchhoff solution. Then, the first order term

provides a curvature correction due to the roughness properties of the surface

associated to short scales. Starting from the general form of LCA-1 (Eq. (11)

and (14-15)), we can divide the sea surface description in longer and smaller

waves as:

ηL(r) =
∫ kc

ξ=0
η̂(ξ)eiξ·rdξ (32)

ηs(r) =
∫ +∞

ξ=kc

η̂(ξ)eiξ·rdξ, (33)

where kc is the cut off wave number such as the curvature contribution for

the longer scales
∫ kc

ξ=0N1(k, k0; ξ)η̂(ξ)eiξ·rdξ is negligible. Following this scale

division, LCA-1 writes:

S(k, k0) =
1

Qz

∫

r
e−iQH ·re−iQz[ηs(r)+ηL(r)] (34)

×
[
K(k, k0)− i Qz

∫ +∞

ξ=kc

η̂s(ξ)N1(k, k0; ξ)eiξ·rdξ

]
dr,

where N1(k, k0; ξ) = B(k, k0; ξ) − K(k, k0), which satisfies N1(k, k0; ξ) → 0
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when k → 0. We expand the exponential to first order to obtain:

S(k, k0) =
K(k,k0)

Qz

∫

r
e−iQH ·re−iQzηL(r) (35)

− i

∫

r
e−iQzηL(r)

∫ +∞

ξ=kc

η̂s(ξ)B(k,k0; ξ)eiξ·rdξe−iQH ·rdr (36)

considering relatively large electromagnetic wave numbers, the first term

rapidly decreases away from the specular direction, and the second one simply

describes the SPM-1 solution over tilting longer waves. It is exactly the for-

mulation of a two-scale model. As LCA-1 and TSM yield the same results, the

small waves which participates to the first order correction terms through a

curvature effect cover the same range of wavelength than the tilted small waves

of the TSM theory. Unfortunately, numerous studies (see e.g. [5]) demonstrate

TSM fails to correctly reproduce the NRCS of the sea surface - especially in

HH polarization.

On figure 3 (e) and (d), we present the predicted PR in Ku-Band and

C-Band. As demonstrated in previous works [5, 7] at 40 degree in C-Band,

TSM and SPM-1 overestimate the PR by more than 2 and 3 dB, respectively.

Our study shows that the conclusion is the same if we consider LCA-1 or

SSA-1 as the numerical simulations results are respectively very close to

TSM and SSA-1. In SSA-2 correction, Voronovich takes into account for the

non-local second order effect in a local frame and shows that indeed one of
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the effects is to reduce the polarization sensitivity and to reach the Kirchhoff

limit in the particular Dirichlet case [22]. But, comparisons with experimental

data showed that even this second order effect is not sufficient to reproduce

the NRCS over the ocean surface [4]. Consequently, nor SSA or LCA-1 is able

to reproduce the observed polarization sensitivity of the NRCS of the sea

surface in the backscattering configuration.

As a second step, we present comparisons between KA, SSA-1 and LCA-

1 versus azimuth angle. The upwind configuration corresponds to 0 degree

whereas the downwind and crosswind configurations stand for 180 and

90/270 degree, respectively.

[figure 4 about here]

On figure 4 (a-d), the NRCS is plotted for VV and HH polarizations versus

azimuth angle at 40 degree incidence angle and a 10 m/s wind speed in C and

Ku-Band. The representation conventions for the model results are the same

than in figure 3. As expected, we observe that the level predicted by the KA

is the same in VV and HH polarization. The azimuth variation is the same

for all models with maxima in upwind and downwind configurations, minima

in crosswind. More interestingly, the azimuth behavior is clearly polarization

sensitive with LCA-1 model. In SSA-1 and KA, for the higher incidence angles

where the small perturbation limit is reached, the azimuth modulation comes
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only from the azimuthal spectrum dependency. With LCA-1, this effect is

modified by the second term in Eq. (11) which is polarization and surface

dependent. This is a fundamental property of LCA-1 approach. Indeed, all

data analysis show that the azimuth modulation of the NRCS is polarization

dependent [17,23,24]. On figures 4(a-d), we also give SPM-1 and TSM. SPM-1

results are very similar to SSA-1, TSM very close to LCA-1 predictions.

On figure 4 (e) and (f), azimuth dependencies of the PR are given. The mean

levels are two high in comparisons of radar data (see e.g. [5,7,17]. In particular,

on fig 7 (a-c) and 8 for the C-Band in [17] or fig. 3 and 6 for the X-band in [24]),

but the use of LCA-1 enables to reproduce an azimuth modulation with the

same characteristics as generally revealed by experimental data. As observed

previously on figures 2 (a-d), this is due to the second term of LCA-1 which

takes into account the azimuth distribution of the small roughness on the sea

surface combined with the polarization effects of the curvature correction. If

we follow the phase perturbation method approach (see Eq. (30)), the PR is:

PR(θ, φ) =
KV V

0 (k, k0)e−Q2
z ρ̃V V (0)

∫
r

[
e−Q2

z ρ̃V V (r) − 1
]
e−iQH ·rdr

KHH
0 (k, k0)e−Q2

z ρ̃HH(0)
∫
r

[
e−Q2

z ρ̃HH(r) − 1
]
e−iQH ·rdr

, (37)

and PR is surface description, but also polarization dependent thanks to the

modified correlation function ρ̃pp(r). As a comparison, the PR given by SSA-1
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or KA models is simply:

PR(θ, φ) =
NV V

0 (k, k0)
NHH

0 (k,k0)
, (38)

with N0(k,k0) = B(k, k0) and N0(k,k0) = K(k, k0) for SSA-1 and KA. In

this expression, information on the sea surface roughness properties is lost.

To summarize, the comparisons presented in this section showed that the po-

larization sensitivity for SSA-1 and LCA-1 at incidences larger than 30 degrees

are too high to reproduce the NRCS of an ocean-like surface and can be as-

sociated with the results of SPM-1 and TSM. However, the LCA-1 formalism

enables to reproduce an azimuthal behavior for the NRCS in line with obser-

vations (see e.g. [17, 24]). We discuss in the next section a first order solution

able to better resolve the polarization sensitivity issue of LCA-1 keeping the

polarization and surface dependence of the azimuth description of the NRCS

of this approach.
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3 A simplified asymptotic electromagnetic model

3.1 Presentation of the model

Considering the general expansion of the scattering matrix given by Eq. (11)

and the conclusions given in the previous part, we simply consider the kernels:

N0(k,k0) = K0(k, k0) (39)

N1(k,k0; ξ) = −i [B(k, k0; ξ)−K(k, k0)]δ(ξ = QH), (40)

where δ is the dirac function.

By construction, this first order expansion of the scattering matrix fulfills

the two conditions given by equations (6) and (7). Indeed, in the small per-

turbations limit, the expansion of the exponential term in Eq. (11) leads to

the SPM-1 solutions. In opposite, when QH → 0, B(k, k0; ξ) = K(k, k0).

In backscatter, for a given wave number the immediate consequence is that

this solution tends toward the KA when the incidence angle decreases. Al-

ternatively, for a given incidence angle, when the incident electromagnetic

wavelength tends towards infinity, the high frequency limits is also reached.

In order to establish an analogy with the LCA-1 approach, the second term

in LCA which takes into account the small roughnesses effects thanks to the

integral over ξ, is now solely evaluated for one value of wave number. This
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value corresponds to the Bragg resonant condition: ξ = QH . Thus, our first

order term can be seen as a correction to the Kirchhoff solution due to the

resonant curvature effect of the sea surface. This model, the Resonant Cur-

vature Approximation (RCA), reduces the polarization correction. A lower

polarization sensitivity for RCA than for LCA-1 is indeed simply expected.

To keep the consistency between SSA and LCA expressions, the scattering

matrix from RCA writes:

S(k,k0) =
K(k, k0)

Qz

∫

r
e−iQzη(r)e−iQH ·rdr

− i

∫

r

∫

ξ

[
η(ξ)[B(k, k0; ξ)−K(k,k0)]δ(ξ = QH)eiξ·rdξ

]
(41)

e−iQzη(r)e−iQH ·rdr.

This also writes:

S(k, k0) =
K(k, k0)

Qz

∫

r
e−iQzη(r)e−iQH ·rdr

− i [B(k,k0; QH)−K(k,k0)]η(QH)
∫

e−iQzη(r)dr (42)

and may be compared to the improved Green’s function method proposed
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by [25]:

S(k, k0) =
K(k, k0)

Qz

∫

r
e−iQzη(r)e−iQH ·rdr

− i [B(k,k0; QH)−K(k,k0)]η(QH). (43)

The difference simply lies in the weighting of the resonant correction term in

η(QH). In particular, as compared to the improved Green’s function method,

this difference between Eq. (42) and (43) helps to preserve the required shift

and tilt invariance properties.

3.2 Comparison with existing models: KA, SSA-1 and LCA-1

We now compare the performances of the RCA model with SSA-1, LCA-1 and

KA. As in the previous section, we start with the backscatter configuration.

On figures 5 (a) and (b), we present the NRCS for a 10 m/s wind speed

versus incidence angle in the upwind configuration for the Ku and C-Band.

KA results are plotted in solid line. SSA-1 is in dotted line, LCA-1 in dashed

line and RCA in dashed-dotted line. As expected, the polarization sensitivity is

reduced between RCA and LCA-1. This change in the polarization sensitivity

mostly occurs for HH-polarization. Between C and Ku-Band, we also observe

that with RCA, the influence of the polarization correction term added to

the Kirchhoff solution decreases for a given incidence angle. This behavior is
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expected as the first order correction is wavelength sensitive - decreasing when

the wavelength decreases to match KA in the high frequency limit regime.

[figure 5 about here]

On figures 5 (c) and (d), we present the PR versus incidence angle for

the same models and with the same configuration of wind. The PR given

by RCA increases with the incidence angle but is always lower than with

SSA-1 and LCA-1, reaching a value of 8 dB and 7 dB respectively for C-

and Ku-Band at 60 deg. For an ocean-like sea surface with a 10 m/s wind

speed, the backscattered power predicted by the RCA model is less polarization

sensitive which is the precise issue not resolved with the existing asymptotic

electromagnetic models.

Using SSA-1, LCA-1, KA and RCA, we further compare the NRCS and the

PR versus azimuth angle. On figure 6 (a-f), the NRCS in both co-polarizations

and the PR are presented versus azimuth angle for a 10 m/s wind speed at

40 degrees incidence angle. The representation conventions are the same than

for figure 3. Concerning the NRCS, RCA reproduces an azimuth modulation.

Looking more precisely, we note, as for LCA-1 and as observed in many ex-

periments [17, 17, 24], RCA provides an azimuth modulation which depends

on the polarization and the electromagnetic wavelength. Thus, the strength

of the resonant correction seems sufficient for an ocean-like surface. The two

models give different azimuth modulations. They do not come from the sur-
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face description (same sea spectrum as input in the two models) but from the

chosen kernels used to establish LCA and RCA.

[figure 6 about here]

Therefore, LCA-1 or RCA are the only models among those presented here

able to reproduce an azimuth modulation for the PR.

[figure 7 about here]

Considering these results, a description of the sea surface which would

not consider all the surface scales could have consequences on the predicted

NRCS and in particular on the PR. To illustrate this, we present on figure 7

(a) and (b), the NRCS in both co-polarizations and the PR as a function of

incidence angle in Ku-Band given by two different sea surface descriptions. In

one case (dashed line for LCA, dashed-dotted line for RCA), we consider the

correlation function defined on the wavelength range: λ ∈ [0.001, 1000] m. λ0

is the incident electromagnetic wavelength and λ the sea surface wavelength.

In a second one (dashed line with stars for LCA, dashed-dotted line with

circles for RCA) the wavelength range of the waves is defined such as

λ ∈ [0.001, 48×λ0] m. This interval is chosen to match the sea surface descrip-

tion used for Monte Carlo simulations by several authors. We observe that the

NRCS predicted is completely different using the whole or the high-pass part
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of the wave spectrum. As a first consequence, using a truncated surface yields

to a smoother surface description which gives higher non-realistic values for

the NRCS near the nadir configuration. In the contrary, at higher incidence

angles, the resonant Bragg scattering over dominates. The NRCS predicted

tends toward the SSA-1 solution at large incidence angles when the sea

surface description is truncated. This is because the weight of the KA part is

reduced. Then, on figure 7 (b), the PR predicted by RCA or LCA-1 increases

when the largest waves are ignored. If we still consider the backscatter case,

this phenomena is explained by the fact that in RCA or LCA, all the waves

contribute to the zeroth order of the model through the ”non-polarized”

Kirchhoff solution (i.e. σV V
KIR = σHH

KIR), whereas only the small scales provide

the first order ”polarized” (by opposition to the ”non-polarized” Kirchhoff

term) correction term. Therefore, in the backscatter case, the PR level is the

result of the relative contribution of these ”polarized” and ”non-polarized”

parts. When a part of the longer waves are removed in RCA or LCA, the

relative ”polarized” contribution increases which leads to the high values of

PR. As a consequence, using a Monte-Carlo scheme to predict the NRCS

given by RCA or LCA-1 with a too small range of surface scales will lead to

an approximative result.
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3.3 Comparisons with experimental data

We propose to test the model against data in Ku and C-Band. To avoid the

asymmetry dependency issues strongly affected by the 2-D description of the

wave spectrum and by the skewness effects not accounted for here, we focus on

the omnidirectional A0 parameter of the NRCS. The data-derived scatterom-

eter wind speed models, the NRCS is decomposed in a three terms Fourier

model:

σpp
0 (U10, θ, φ) = A0(U10, θ) + A1(U10, θ) cos(φ) + A2(U10, θ) cos(2φ), (44)

where U10 is the ten-meters wind speed, φ the wind direction relative to the

radar’s azimuth look direction and θ the radar’s incidence angle. In such kind

of decomposition, A1(U10, θ) and A2(U10, θ) allow to reproduce respectively

the upwind to downwind and the upwind to crosswind asymmetry. Using a

dataset which provides NRCS values in upwind (φ = 0 deg), crosswind (φ =

90 or 270 deg) and downwind (φ = 180 deg), we simply deduce A0(U10, θ) by

combining these NRCS in linear scale:

A0(U10, θ) =
1
4

[
σpp

0 (U10, θ, φ = 0◦) + σpp
0 (U10, θ, φ = 180◦) (45)

+σpp
0 (U10, θ, φ = 270◦) + σpp

0 (U10, θ, φ = 90◦)
]
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[figure 8 about here]

In Ku-Band, we use collocation of NRCS measurement in HH and VV polar-

izations from NSCAT with the European Center for Medium-Range Weather

Forecasts (ECMWF) model surface wind analysis. NSCAT data were collected

from may 14, 1997 to June 25, 1997. The surface quality flags within the

NSCAT level 1.7 product are used to check the quality of the backscatter

coefficients and thus be free from atmospheric, sea ice, or sensor calibration

effects. These data were already used by Quilfen et al. [26] study to discuss

the up to downwind and up to crosswind asymmetry of the NRCS in C-

and Ku-Band. In C-Band, we use the data set in VV and HH polarizations

obtained with the full-polarimetric STORM radar developed at CETP [17].

These data are collocated with PHAROS buoy (48◦31′42 N, 5◦49′03 W) which

provides wind measurements (speed and direction). The data-set was acquired

during the VALPARESO experiment. It was carried out by CETP, in col-

laboration with IFREMER and Météo-France in the context of the ASAR

(Advanced Synthetic Aperture Radar) geophysical calibration and validation

exercise performed and supported by ESA. It took place from October 19, 2002

to November 21, 2002 off the coast of France and UK (near Atlantic coast of

France and English Channel). This instrument and the field experiment are

described in details in [17]. We just recall here that the NRCS from STORM

after processing are representative of surface areas of about 4 km× 10 km or
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5 km× 5 km depending on the acquisition mode used.

The sea surface spectrum used as input in the surface description is still

the unified one [20].

On figure 8, we present the PR versus incidence angle for a 10 m/s wind

speed in C- and ku-Band predicted by the asymptotic electromagnetic models

used above and by the STORM and NSCAT DATA. The comparison shows

clearly the benefit of the RCA formulation to reproduce the polarization sensi-

tivity induced by the small resonant roughness. Indeed, we observe that RCA

leads to a PR level in very close agreement with the data. This agreement is

conserved in both VV and HH polarizations for the two bands.

[figure 9 about here]

On figure 9, we present the PR versus wind speed in C- and Ku-Band. The

incidence angle considered here is 37.5 deg in C-Band and 40 deg in Ku Band.

As expected from the previous comparison, the PR mean levels predicted by

SSA-1 and LCA-1 are to high. RCA PR level is in very good agreement with

the data in both C- and Ku- Band for the whole range of wind speed presented

here, excepted the light wind speeds below 5 m/s. This result is really satisfying

since no electromagnetic model was able to predict simultaneously the correct

trend of the PR versus wind speed and incidence angle.



32 Resonant Curvature Approximation.

4 conclusion

This paper applies the latest improvements suggested by Elfouhaily and

Guerin [2] in the field of the asymptotic modeling. In particular, we present for

the first time the NRCS of the sea surface statistically derived using LCA-1

approach [11].

As firstly suggested by Elfouhaily et al. [11], the sea surface curvature con-

trols the polarization sensitivity of the NRCS. Indeed, we show that the PR

predicted by LCA-1 was lower than SSA-1 but greater than KA models which

do not take into account the sea surface curvature correction. Analytically we

demonstrate that the LCA-1 model formulation could be decomposed in two

contributions coming from two distinct scales of the sea surface. This yields

to a TSM-like formulation where the curvature correction term only applies

on the higher frequency sea surface wave spectrum. Numerical tests confirm

that in terms of polarization sensitivity, TSM and LCA-1 lead to very close

results. Thus, the use of LCA-1 model could help to study the dividing pa-

rameter which is implicit and not arbitrary in LCA-1. But, concerning the

polarization sensitivity, this study demonstrates that the first order of LCA is

not sufficient to reproduce the NRCS from the sea surface.

In the case of a 2-D sea surface description, the LCA-1 approach induces an

azimuth modulation dependency of the predicted NRCS which is polarization

and surface description dependent as the sea surface curvature correction is
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itself wind direction and polarization dependent. Consequently and in opposite

with other existing models presented, LCA-1 predicts an azimuth modulation

for the PR. This property of LCA-1 is a major improvement for asymptotic

electromagnetic models as several microwave measurements already exhibited

this azimuth polarization dependent behavior.

From model comparisons and the failure of SPM-1, TSM, KA, SSA-1 and

LCA-1 to reproduce the PR of the sea surface in the microwave domain, we

presented a new asymptotic electromagnetic model. The zeroth order term of

the model is given by the KA. The first order term is also based on the sea

surface curvature correction term but applied only to the resonant scale to limit

the correction effect of LCA-1. Accordingly, the RCA expression represents a

slight correction to the improved Green’s function method [25] that preserves

shift and tilt invariance properties. We show that this RCA model predicts

a PR in agreement with experimental data versus incidence angle and wind

speed. As dynamically surface dependent, RCA allows to predict a PR with

an azimuth modulation.
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Appendix A: Statistical averaging

From Eq. (16-18), we can decompose the scattering matrix product

Spq(k,k0)S∗pq(k, k0) given by a first order asymptotic electromagnetic model

relying on an series expansion such as in Eq. (11) into four terms:

< Spq(k, k0)S∗pq(k, k0) > = < Spq(k, k0)S∗pq(k,k0) >
∣∣
0

+ < Spq(k, k0)S∗pq(k,k0) >
∣∣
1

+ < Spq(k, k0)S∗pq(k,k0) >
∣∣
2

+ < Spq(k, k0)S∗pq(k,k0) >
∣∣
3
, (A1)
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where:

< Spq(k, k0) S∗pq(k,k0) >
∣∣
0

=
∣∣∣∣
N0(k,k0)

Qz

∣∣∣∣
2

×
∫

< e−iQz[η(r)−η(r+∆r)] > e−iQH ·∆rd∆r, (A2)

< Spq(k, k0) S∗pq(k,k0) >
∣∣
1

=
N0(k, k0)

Qz

×
∫

< (i)η̃∗(r + ∆r)e−iQz[η(r)−η(r+∆r)] > e−iQH ·∆rd∆r (A3)

< Spq(k, k0) S∗pq(k,k0) >
∣∣
2

=
N∗0(k, k0)

Qz

×
∫

< (−i)η̃(r)e−iQz[η(r)−η(r+∆r)] > e−iQH ·∆rd∆r (A4)

< Spq(k, k0) S∗pq(k,k0) >
∣∣
3

=
∫

< η̃(r)η̃∗(r + ∆r)e−iQz[η(r)−η(r+∆r)] >

× e−iQH ·∆rd∆r (A5)

(A6)

When the first order is neglected, N1(k, k0; ξ) = 0. We simply have:

< Spq(k, k0)S∗pq(k,k0) > = < Spq(k,k0)S∗pq(k,k0) >
∣∣
0

(A7)

Using the fact that the height function η(r) is an assumed zero mean gaus-

sian variable, < eη >= e<η2>/2. By definition, the correlation function is:

< η(r)η(r + ∆r) >= ρ(∆r). And, it follows for the incoherent radar cross-
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section at zeroth order:

σpq =
∣∣∣∣
N0(k, k0)

Qz

∣∣∣∣
2 ∫

e−Q2
z[ρ(0)−ρ(r)]e−iQH ·rdr, (A8)

For first order expansion solutions, the statistical averaging is not as

straightforward. Indeed, N1(k,k0; ξ) 6= 0. And, we have to consider <

Spq(k,k0)S∗pq(k, k0) >
∣∣
i∈[1,3]

in Eq. (A1). Using the statistical relation

< η1e
η2 >=< η1η2 > e<η2

2>/2, we have:

< Spq(k, k0) S∗pq(k, k0) >
∣∣
1

= −N0(k, k0)

×
∫

[< η̃∗(r + ∆r)η(r) > − < η̃∗(r + ∆r)η(r + ∆r) >](A9)

× e−Q2
z[ρ(0)−ρ(∆r)]e−iQH ·∆rd∆r

< Spq(k, k0) S∗pq(k, k0) >
∣∣
2

= N∗0(k, k0)

×
∫

[< η̃(r)η(r) > − < η̃(r)η(r + ∆r) >] (A10)

× e−Q2
z[ρ(0)−ρ(∆r)]e−iQH ·∆rd∆r

We neglect the fourth order term < Spq(k,k0)S∗pq(k, k0) >
∣∣
4
. Indeed, it

represents a second order contribution (in η2), whereas we limit the series

expansion to the first order (in η). Using Eq. (A8), (A9) and (A10) and LCA

kernel basic properties of reciprocity (see Eq. (6) in [11]), the expression for
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the NRCS is :

σpq =
1

Q2
z

∫ [
|N0(k, k0)|2 + 2Q2

zRe
{
N0(k,k0)

[
ρ̃(∆r)− ρ̃(0)

]}]
(A11)

× e−Q2
z[ρ(0)−ρ(∆r)]e−iQH ·∆rd∆r

Appendix B: Two-Scale Model expression

The expression of the NRCS given for the TSM [1]:

σ0(θ, φ) =
∫ ∞

−∞
d(tanΨ)

∫ ∞

−∞
d(tan δ)σbr

0 (θi)P (tanΨ, tan δ), (B1)

where P (tan Ψ, tan δ) is the joint probability density of slopes for the long

waves, θi the local angle, and σbr
0 the NRCS given by the SPM-1 due to the

small roughness elements modulated by the longer waves. In our calculation

this probability density is assumed Gaussian. The calculation of σbr
0 is done

considering the angles corrections given by Elfouhaily et al. [21] instead of

initial Valenzuela’s results [1]:

θi = − cos−1[cos(θ + Ψ) cos(tan−1 δ cosΨ)]

with Sx = tan Ψ and Sy = tan δ.
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Figures captions

Figure 1: Left: NRCS versus incidence angle in HH and VV polarization.

VV signal is larger than HH. Right: PR versus incidence angle. Results

were obtained for a 10 m/s wind speed in the case of an isotropic surface at

Ku-Band and are predicted using LCA-1 using the two methods (see Eq. (31)

and Eq. (24) proposed for the NRCS expression.

Figure 2: Left: NRCS versus incidence angle in HH and VV polariza-

tion. VV signal is larger than HH. Right panel: PR versus incidence angle.

Results of models were obtained for a 10 m/s wind speed in the case of an

isotropic surface at Ku-Band using KA and SSA-1. Date are from TRMM

and NSCAT sensors.
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Figure 3: Top panel: NRCS versus incidence angle in HH and VV po-

larization for a 10 m/s wind speed in the case of an isotropic surface. VV

signal is larger than HH. Bottom panel: PR versus incidence angle for a

10 m/s wind speed in the case of an isotropic surface. Results are in in

C-Band (left) and Ku-Band (right) and are predicted using SPM-1, KA,

TSM, SSA-1 and LCA-1.

Figure 4: Top panel: NRCS versus azimuth angle in VV polarization

for a 10 m/s wind speed and a 40 degrees incidence angle. Middle panel:

same but for HH-polarization. Bottom panel: same but for the polarization

ratio. Results are in in C-Band (left) and Ku-Band (right) and are predicted

using KA, SSA-1, LCA-1, TSM and SPM-1(or Bragg) (see legend).

Figure 5: Top panel: NRCS versus incidence angle in HH and VV po-

larization for a 10 m/s wind speed in the upwind configuration. VV signal

is larger than HH. Bottom panel: PR versus incidence angle for a 10 m/s

wind speed in the upwind configuration. Results are in C-Band (left) and

Ku-Band (right) and are predicted using SPM-1, KA, TSM, SSA-1 and LCA-1.

Figure 6: Top panel: NRCS versus azimuth angle in VV polarization
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for a 10 m/s wind speed and a 40 degrees incidence angle. Middle panel:

same but for HH-polarization. Bottom panel: same but for the polarization

ratio. Results are in C-Band (left) and Ku-Band (right) and are predicted

using KA, SSA-1, LCA-1, TSM and SPM-1 (see legend).

Figure 7: Left panel: NRCS versus incidence angle in VV polarization

for a 10 m/s wind speed in the case of an isotropic surface. Middle panel:

Same in HH polarization. Right panel: PR versus incidence angle for a 10 m/s

wind speed in the case of an isotropic surface. Results are in Ku-Band and

are predicted using RCA and LCA-1 coupled with a truncated (larger waves

than 48× λ0 are removed) and a complete wave spectrum.

Figure 8: PR versus incidence angle for a 10 m/s wind speed in the

case of an isotropic surface. Results are in C-Band (left) and Ku-Band (right)

and are predicted using KA, SSA-1, LCA-1 and RCA. C-Band data are from

STORM radar. Ku-Band data are from NSCAT data.

Figure 9: PR versus wind speed in the case of an isotropic surface. Re-

sults are in C-Band for a 37.5 deg incidence angle (left) and Ku-Band for

a 40 deg incidence angle (right) and are predicted using SPM-1, KA, TSM,

SSA-1 and LCA-1. C-Band data are from STORM radar. Ku-Band data are
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from NSCAT data.
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(a) (b)

Figure 1. Left: NRCS versus incidence angle in HH and VV polarization. VV signal is larger than
HH. Right: PR versus incidence angle. Results were obtained for a 10 m/s wind speed in the case of

an isotropic surface at Ku-Band and are predicted using LCA-1 using the two methods (see
Eq. (31) and Eq. (24) proposed for the NRCS expression.

(a) (b)

Figure 2. Left: NRCS versus incidence angle in HH and VV polarization. VV signal is larger than
HH. Right panel: PR versus incidence angle. Results of models were obtained for a 10 m/s wind
speed in the case of an isotropic surface at Ku-Band using KA and SSA-1. Date are from TRMM

and NSCAT sensors.
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(a) (b)

(c) (d)

Figure 3. Top panel: NRCS versus incidence angle in HH and VV polarization for a 10 m/s wind
speed in the case of an isotropic surface. VV signal is larger than HH. Bottom panel: PR versus

incidence angle for a 10 m/s wind speed in the case of an isotropic surface. Results are in in
C-Band (left) and Ku-Band (right) and are predicted using SPM-1, KA, TSM, SSA-1 and LCA-1.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Top panel: NRCS versus azimuth angle in VV polarization for a 10 m/s wind speed and
a 40 degrees incidence angle. Middle panel: same but for HH-polarization. Bottom panel: same but
for the polarization ratio. Results are in in C-Band (left) and Ku-Band (right) and are predicted

using KA, SSA-1, LCA-1, TSM and SPM-1(or Bragg) (see legend).
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(a) (b)

(c) (d)

Figure 5. Top panel: NRCS versus incidence angle in HH and VV polarization for a 10 m/s wind
speed in the upwind configuration. VV signal is larger than HH. Bottom panel: PR versus

incidence angle for a 10 m/s wind speed in the upwind configuration. Results are in C-Band (left)
and Ku-Band (right) and are predicted using SPM-1, KA, TSM, SSA-1 and LCA-1.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Top panel: NRCS versus azimuth angle in VV polarization for a 10 m/s wind speed and
a 40 degrees incidence angle. Middle panel: same but for HH-polarization. Bottom panel: same but
for the polarization ratio. Results are in C-Band (left) and Ku-Band (right) and are predicted using

KA, SSA-1, LCA-1, TSM and SPM-1 (see legend).
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(a) (b) (c)

Figure 7. Left panel: NRCS versus incidence angle in VV polarization for a 10 m/s wind speed in
the case of an isotropic surface. Middle panel: Same in HH polarization. Right panel: PR versus

incidence angle for a 10 m/s wind speed in the case of an isotropic surface. Results are in Ku-Band
and are predicted using RCA and LCA-1 coupled with a truncated (larger waves than 48× λ0 are

removed) and a complete wave spectrum.

(a) (b)

Figure 8. PR versus incidence angle for a 10 m/s wind speed in the case of an isotropic surface.
Results are in C-Band (left) and Ku-Band (right) and are predicted using KA, SSA-1, LCA-1 and

RCA. C-Band data are from STORM radar. Ku-Band data are from NSCAT data.
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(a) (b)

Figure 9. PR versus wind speed in the case of an isotropic surface. Results are in C-Band for a
37.5 deg incidence angle (left) and Ku-Band for a 40 deg incidence angle (right) and are predicted
using SPM-1, KA, TSM, SSA-1 and LCA-1. C-Band data are from STORM radar. Ku-Band data

are from NSCAT data.


