Characterization of *Vibrio* isolated from *Crassostrea gigas* spat suffering from summer mortality outbreaks

<u>Mélanie Gay</u>, Tristan Renault, Frédérique Le Roux

LGP, IFREMER La Tremblade, France

Objectives

- Isolation and identification of Vibrio from oysters suffering from summer mortality outbreaks
- Set up of a model of infection trial

Selection of strains potentially pathogenic for C.
 gigas

Disease description

Cohabitation experiments

· Principle

Results

- Mortality transmission in 11 experiments out of 12
- 125 strains isolated belonging to Vibrio:
 - 82 strains isolated from moribund oysters
 - 43 strains isolated from negative controls

Identification of the isolated strains

A polyphasic approach

- Techniques
 - Phenotyping and numerical taxonomy
 - Genotyping and phylogenetic analysis: 165 and gyrB

- Results
 - Biodiversity of the Vibrio flora from the healthy oysters
 - Dominance of the V. splendidus group in the moribund oysters from all the studied outbreaks leading to a transmission of the mortality

Model of experimental infection

Infection trial: injection in the adductor muscle

- MgCl₂ bath
- 3 batches of 30 oysters for each condition
- under static conditions at 20 °C

- Injection in the adductor muscle of 10⁷ Bacteria
- · Results 3 days post injection
- 1st selection on pools of strains

Virulent strains selection: pool H

Highest mortality rate for 31+32

Reproducibility of 31+32

 Original concept: collaboration of two strains to enhance their virulence

Collaboration = Epiphenomenon?

Vibrio anguillarum

Vibrio morestus

Conclusions

- Selection of several strains potentially pathogenic for *C. gigas*
- Original concept: collaboration of two strains to enhance their virulence: study on the couple 31+32 (Vibrio lentus)
- At least two other couples of strains belonging to different Vibrio species also show a comparable collaboration

Disease description

Photonic microscopy
Transmission electron microscopy

Adductor muscle

• 31+32: injection in the adductor muscle

×400

Injected with SSW

Injected with 31+32

Adductor muscle

31+32: Injection in the palleal cavity

×100 ×400

Circulating cells

Injected with SSW

Injected with 31+32

Tissue alterations

Transmission electron microscopy

National Shellfisheries Association, New Orleans, April 2003

Bacteria localizations

• 31+32: injection in the adductor muscle

National Shellfisheries Association, New Orleans, April 2003

Bacteria localizations

31+32: injection in the palleal cavity

Around the muscle

Conclusions

- · Important destruction of the muscular tissue
- Alteration of the nuclei of circulating cells and muscle fibers
- Bacteria localization around the muscle (conjonctive tissue and muscle fibers)
- Identical lesions and bacteria localization after injection in the adductor muscle or in the palleal cavity

Perspectives

- Development of diagnostic tools specific for 31 or 32
- Studies on the other groups of virulent strains (*V. anguillarum* and *V. "morestus"*) to determine the different mechanisms of virulence
- In vitro tests to evaluate the virulence of these bacteria
- Ex vivo models:
 - Nuclei alterations (necrosis or apoptosis?)
 - Hemocytes reaction and genes expression