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Crassostrea gigas life cycle

The “elm-oyster model”
Williams 1975

Stages Survival

High fecundity and high mortality at early stages



Which consequences of such a life history strategy
for hatchery-based aquaculture production ?
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© Few genitors needed for massive production of juveniles
© Culling (i.e. size selection)

® Low effective population size (Hedgecock et al., 1992)
® Risks of rapid loss of genetic variability and inbreeding in
closed populations

Can specific rearing practices (culling) and/or
environmental conditions (high temperature) lead to a
specific genetic adaptation in C. gigas larvae ?




Genetic variability of early life traits in C. gigas

Larval traits Metamorphic traits Post-metamorphic traits

Genetic correlation
significantly positive

Genetic correlation
significantly negative

Spat weight

(Ernande et al., Journal of Evolutionary Biology 2003

Technical constrains often lead to limit the number of
families and to rear them in a single environment



Mixed-family approach

- More families
- More homogeneous rearing conditions among families
- Different environments (G x E ?)
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Set of PCR- muttiplexed markers allowing efficient parental
assignment of larvae
(Taris et al., Aquaculture Research 2005)



1. Effect of culling
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1.1 Phenotypic effect of culling 50% of the
(smallest) larvae
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Limited effect on yield:
-30 % of ready t ttle larvae (higher survival of fast growing larvae)
-15 % of spat (higher settlement success of fast growing larvae)



1.2 Genetic effect of culling
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effects on the timing of
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2. Effect of temperature
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2.1. « G x E » interaction on larval growth

20 Mean HS larval diameter (day 22)

h*ns) 0,007 £ 0,007 <<< 0,117 0,019



2.2. Paternal contributions in spat (day 80)

Late cohort 20°C

Significantly different
contributions between early
and late cohorts reared at
20°C (26°C: similar result)

(No-Na)/100

Significantly different
contributions between early
cohorts reared at 20°C and
26°C (late cohorts: similar
result)

(No-Na)/100

2 40 55 58 71 74 89 90 168 179 180 199

Temperature significantly affects the genetic
composition of the population and its growth (G x E)



3. Comparison of “domesticated” and “wild” larvae

Oysters from a
commercial hatchery
broodstock following 7
generations of closed
hatchery matings with
high culling and high
temperature

1| Oysters from
a French
natural bed
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Microsatellite markers :

Mean nb. Of allele / locus 10
Observed heterozygosity 0.66
Expected heterozygosity 0.77

Larval rearing:
24°C
no culling
Hatchery HXW WxH Wwild S replicated tanks /
progeny



3.1. Larval growth, survival and settlement
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781 72,3



3.4. Within progeny variation for larval size

Wild progeny Hatchery progeny

Inbred ,::r

larvae ? A

Distribution of
larval length at
Day 15

205 pm
Pairwise relatedness 0,012 + 0,001 Hm 0,068 = 0,005

in the broodstocks

High genetic load (Launey and Hedgecock, Genetics 2001)

Response to h2 = 0.16 (Dégremont, 2003) |‘ Ay ~20um over 7 generations
selection due to S = 20um (Taris et al., 2006) + earlier settlement
culling ? + higher settlement success



4. Conclusions

Methodology =
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- - As individual tagging is impossible at early life stages, marker
based parentage analysis of mixed families represents an efficient
way to study the genetics of larval traits in oysters.

Unintentional selection at larval stage in hatcheries

- Significant differences are observed between families, confirming
the existence of genetic variation for several traits.

- Temperature influences the expression of genetic variability for
growth and survival. It therefore is likely to increase the genetic
effect of culling.

- Intensive rearing practices can lead to the selection of faster
growing larvae and higher settlement rates, despite inbreed

depression.




Qyster ponds along the Seudre estuary, Marennes-Oléron Bay, France



