Effects of age and environment on the summer mortality in cupped oyster Crassostrea gigas during the first two years.

Lionel Dégremont, Pierre Boudry, Patrick Soletchnik, Edouard Bédier, Michel Ropert, Jean-François Samain

Défi 2001-2005 : MOREST Etude des MORtalités ESTivales chez *C. gigas*Study of summer mortality in *C. gigas*

and face summer mortality

Major genetic finding: selective breeding programs can improve survival for juveniles < 1 year-old

Hatchery spat produced and tested the same year:

- First generation (G1) 2001
- Second generation (G2) 2002
- Third generation (G3) 2003

BDV < Ronce < RA

- 9 families selected 'resistant' ('R') in October 2001
- recorded mortality in October 2002 : 3 sites

G1 – 'R' group

18 months

Year comparison

RA: 2001 (7%) = 2002 (8%); p = 0.13

Ronce: 2001 (4%) < 2002 (5%); p = 0.045

BDV: 2001 (3%) < 2002 (24%); p < 0.0001

Site comparison

2001: BDV = Ronce < RA; p = 0.002

2002: Ronce < RA < BDV; p < 0.0001

Cumulative: Ronce < RA < BDV; p < 0.0001

26%

Site-year interaction: p<0.0001

G1 – 'R' group

- RA and Ronce: high survival performances both years (i.e., 6 and 18 months-old)
- BDV: moderate mortality at 18 months-old

What happened for the 'S' families?

BDV G3 RA G1-G2-G3

- 9 families selected 'resistant' ('R') in October 2001
- 8 families selected 'susceptible' ('S') in October 2001
- recorded mortality in October 2002 : RA

G1 – 'R' and 'S' groups in RA

Group comparison

2001: R (7%) < S (52%); p < 0.0001

2002: R (7%) = S (8%); p = 0.09

Cumulative: R (14%) < S (55%); p < 0.0001

Year comparison

R: 2001 (7%) = 2002 (8%); p = 0.13

S: 2002 (7%) < 2001 (52%); p < 0.0001

Group-year interaction: p<0.0001

6 months-old spat more sensitive than the 18 months-old ones to summer mortality

- 5 families selected 'resistant' ('R') in October 2002
- 5 families selected 'susceptible' ('S') in October 2002
- recorded mortality in October 2003 : RA

G2 – 'R' and 'S' groups in RA

Group comparison

2002: R (6%) < S (48%); p < 0.0001

2003: R (6%) = S (7%); p = 0.28

Cumulative: R (12%) < S (52%); p < 0.0001

Year comparison

R: 2002 (6%) = 2003 (6%); p = 0.72

S: 2003 (7%) < 2002 (48%); p < 0.0001

Group-year interaction: p<0.0001

Confirm G1's results

- 1 pool selected 'resistant' ('R')
- 1 pool selected 'susceptible' ('S')
- recorded mortality in October 2003 : RA

G3 – 'R' and 'S' groups in RA

Group comparison

2003: R (38%) < S (83%); p < 0.0001

'R' and 'S' groups in RA

Deployed in the field the first year

First year (6 months-old): highest mortality for the 'S' group and lowest for the 'R' one

G2

Second year (18 months-old): low and similar mortality for both group

G3

'S': critical sensitive period during the first summer in RA

G1 and G2 – 'R' and 'S' groups in RA 18 months-old

Deployed in the field the first year

Preserved in nursery the first year

G1 and G2 – 'R' and 'S' groups in RA

- Deployed in the field the first year:
 - Δmortality = 45% ↔ Differential expression of *C. gigas* genes between R and S groups during summer mortality event that had affected only the S group the first year (i.e., spat < 1 year-old)
 - Δmortality = 1% ↔ No difference at 18 months-old : culling during the first year
- Preserved in nursery the first year:
 - Δmortality = 10% ↔ Differential expression of *C. gigas* genes
 between R and S groups during summer mortality at 18 months-old

Same or different genes and/or lesser genes involved in summer mortality outbreak at 18 months-old than 6 months-old

G1 and G2 – 'R' and 'S' groups in RA Cumulative mortality – 18 months-old

- 1 pool selected 'resistant' ('R')
- 1 pool selected 'susceptible' ('S')
- recorded mortality in October 2003 and 2004: RA and BDV

G3 - 'R' and 'S' groups in RA

G3 - 'R' and 'S' groups in BDV

Deployed in the field the first year

Preserved in nursery the first year

Conclusions

- Critical period to observe summer mortality:
 - RA: first year
 - BDV: second year
- Decrease mortality at 18 months-old by preserving spat the first year:
 - no emersion, high trophic level: BDV and culture in deeper water

Oyster management strategy according to the batch, age and environment

Perspectives

Identification of genes involved in summer mortality event

- Quantitative Trait Loci
- Suppressive Substractive Hybridation

RA and BDV, 6 and 18 months-old

Acknowledgements

Hatchery, Nursery and Field teams:

Laboratoire de Génétique et Pathologie

Laboratoire Conchylicole des Pays de Loire

Laboratoire Environnement Ressources de Poitou-

Charentes

Laboratoire Conchylicole de Bretagne

Laboratoire Environnement Ressources de Normandie

