Genetics in Aquaculture VII, 15-22 July 2000, Townsville, Australia

ANEUPLOIDY AND ITS RELATIONSHIP WITH GROWTH IN DIFFERENT POPULATIONS OF THE PACIFIC OYSTER (CRASSOSTREA GIGAS, THUNBERG).

P. Boudry ¹, A. Leit o², H. McCombie², C. Thiriot-Quiévreux²

¹ IFREMER
Laboratoire de
Génétique et Pathologie
La Tremblade, France

Observatoire Océanologique
 UPMC-CNRS-INSU Villefranche-sur-Mer - France

EU funded project FAIR PL. 95.421 "GENEPHYS"

Introduction

Chromosome number (2n = 20) and gross morphology are highly conserved in oysters (Leit o et al. 1999).

Polyploids (3n, 4n) can be produced by various techniques and are increasingly used in oyster aquaculture.

Cytogenetic abnormalities, such as aneuploidy, are known to be common in bivalve populations

Aneuploidy

- 2 different "types" of aneuploidy:
- 1. Chromosome number differs from the normal 2n= 20 in the whole animal, e.g. by accident during triploid production (Wang et al. 1999).
- 2. Chromosome number differs from the normal 2n= 20 in some cells of the animal, leading to mosaics.
 - Reversion of triploid oysters
 (Allen et al. 1999)
 - Growth retardation in diploid oysters (Thiriot-Quiévreux et al., 1988, 1992; Zouros et al. 1996)

Material & Methods

Chromosome scoring:

- Live animals incubated in sea water + 0.005% colchicine.
- Slides made following the air drying technique (Thiriot-Quiévreux and Ayraud 1982).
- Giemsa staining.
- Chromosome counts on intact and well-spread metaphases.

30 metaphases scored per individual

Populations or families studied:

- 8 previously published data sets
- 15 new data sets

classified as "slow-growing" or "fast-growing" or individually monitored.

2n = 17

2n = 18

2n = 19

2n = 20

Are "small" oysters more aneuploid?

Comparison in 13 populations

In all the populations studied, "slow-growing" oysters are more aneuploid than "fast-growing" oysters.

Are small oysters more aneuploid?

Comparison in 13 populations

The aneuploidy of "fast-growing" oysters relative to "slow-growers" varies between populations.

Are small oysters always more aneuploid?

Individual growth/aneuploidy relationship (36 ind.)

Individual growth is highly correlated with individual aneuploidy

Does an euploidy vary between families?

Comparison between 6 FS families

	First sample				Second sample		
Family	Aneuploidy (%)		Mean family weight (g)		Aneuploidy (%)		Individual weight (g)
1	26	+	0.590	<u> </u>	25	+	0.983
2	15		0.751		16		0.983
3	17		0.906		15		0.983
4	14		1.012		14		0.983
5	13		1.222		11		0.983
6	13	-	1.488	+	14	_	0.983

(10 individuals/sample/family)

The slowest-growing family (1) shows the highest aneuploidy (p < 0.001), even when the individuals studied have the same weight.

Is an euploidy "heritable"?

 Difficulties due to the lack of a nondestructive method for scoring aneuploidy

Parental aneuploidy (%)		Offspring aneuploidy (%)		
male	female	Sample 1: Mean family weight	Sample 2: Common mean individual weight	
20	10	8	9	
20	23	16	18	
7	23	13	13	
7	10	15	14	

(10 individuals/sample/family)

Significant differences (p = 0.017) are observed between progenies but further experiments, based on non-destructive methods, are needed.

What are the causes of aneuploidy?

Environmental causes

- Pollution (Dixon, 1982)
- Viral disease (Maroun et al., 1986)

Genetic basis

Chromosome number instability?

How can the negative growthaneuploidy relationship be explained?

Zouros et al. (1996)

- Introduction of a pseudo-dominance of deleterious genes
- Alteration of the heterozygotic index, induced by aneuploidy
- Low growth rate due to the absence of the same genetic function in a large number of cells
- Size-dependent susceptibility to the causal factors

Future research

- Cell culture in oysters?
- Identification of missing chromosomes (Leit o et al., 1999)

Conclusions

Aneuploidy is a common phenomenon in oysters. Its negative relationship with growth is undeniable.

Further research is needed to determine the environmental/genetic causes of aneuploidy.

Because of its relationship with growth, it should be taken into account in selective breeding programs.

As chromosome number instability has been reported to be a problem in triploid oysters, the relationship between these two phenomena could be investigated.