Genetic basis for the plasticity of growth and survival in *Crassostrea gigas*

B. Ernande

CREMA - CNRS-IFREMER L'Houmeau, France.

P. Boudry, S. Heurtebise

Laboratoire de Génétique et Pathologie -

IFREMER. La Tremblade, France.

J. Haure, J-L. Martin

Laboratoire conchylicole Pays de Loire -

IFREMER. Bouin. France.

1. Introduction

 Oysters are fixed animals, living in a highly variable environment (temporally and spatially):

A they are not able to avoid environmental variability by movement.

 <u>Hypothesis</u>: oysters should have evolve to develop the capacity to adapt themselves (in the short term) to the environment where they are living:

physiological flexibility for the *temporal* variability of their environment.

Aphenotypic plasticity, the capacity of a single genotype to express different phenotypes according to the environment where it develops and grows, in face of **spatial** heterogeneity of the settlement places.

2. Questions

- What is the degree of phenotypic plasticity in Crassostrea gigas ?
- Can phenotypic plasticity be selected for ?
 - ▲ Is it heritable ?

i.e. is it *genetically based* and *variable* between individuals, families or populations ?

▲ Is it *adaptive* ?

i.e. does it enhance the individual **fitness** (= survival x fecundity) ?

<u>Our study</u>: phenotypic plasticity of growth, survival and fecundity:

- ▲ Fitness depends on survival and fecundity.
- These three traits are often physiologically correlated, since they are the three principal energetic compartments.
- ▲ Growth and survival are of interest for oyster farming.

3.1. Material and method

A) All the genotypes get the same phenotypic plasticity:

$\mathbf{P} = \mathbf{G} + \mathbf{E}$

- Either plasticity is not genetically based or there is no genetic variability for this trait.
- B) The degree of phenotypic plasticity changes between genotypes:

$\mathbf{P=G+E+G\times E}.$

Phenotypic plasticity is genetically based and variable between genotypes.

3.2. Material and method

Mating design:

males

5 half-sibs families, each containing 3 full-sibs families = 15 full-sibs families.

3.3. Material and method

Experimental design : 2 environments x 2 sites

4.1. Results: growth

4.2. Results: growth

4.3. Results: growth

Analysis of variance

Source	DF	Type IV SS	Mean Square	F Value	Pr > F	R-Square
Model	75	25631,90	341,76	39,88	0,0001	0,59
sire	4	1296,70	324,18	37,83	0,0001	
dam/sire	11	1314,21	119,47	13,94	0,0001	
treatment	4	20724,96	5181,24	604,68	0,0001	
treatment*sire	16	591,12	36,94	4,31	0,0001	
treatment*dam/s	sire 40	1238,59	30,96	3,61	0,0001	
Error	2088	17891,31	8,57			
Total	2163	43523,21				

Components of variance

Observed	Causal Components					
Components		Сотр	oonents	e	estimates	%
V sire	0,52	VA			2,07	8,91
V dam/sire	0,89	VN.A			-	-
V treat	11,78	V trea	atment		11,78	50,77
V treat*sire	0,05	V I(A)			0,22	0,94
V treat*dam/sire	0,79	V I(N./	4)		2,74	11,81
V error	8,58	Verror	•		6,39	27,56
V phenotype	22,61	VP			23,20	100,00
		Degre	ee of plas	sticity		63,53
	He	ritabi	lity est	imates		
	Меа	an	h ² n.s.	0,0891		
	Pla	sticity	h ² n.s.	0,0094		
	Tot	al	h ² n.s.	0,0985		_

4.4. Results: survival

Analysis of survival data was performed for both the survival rate over the whole experimental period (overall survival) and the survival rate computed only before the infestation by the Annelid polychete from the genus *Polydora* (b.P. survival).

4.5. Results: survival

4.6. Results: survival (overall)

Analysis of variance

Source	DF	Type lii SS Mear	n Square F	Value	Pr > F	R-Square
Model	34	2,69	0,08	10,16	0,0001	0,90
sire	4	1,21	0,30	38,83	0,0001	
dam/sire	10	0,30	0,03	3,85	0,0011	
treatment	4	0,99	0,25	31,83	0,0001	
treatment*sire	e 16	0,19	0,01	1,51	0,1429	
Error	40	0,31	0,01			
Total	74	3,00				

Components of variance

		Causal Components				
Observed						
Components		Components	estimates	%		
V sire	0,0179	VA	0,07	41,46		
V dam/sire	0,00443	V N.A	-	-		
V treatment	0,01574	V treatment	0,02	9,12		
V treatment*sire	0,00133	V I(G)	0,01	3,09		
V error	0,00779	V error	0,08	46,33		
V phenotype	0,05	VP	0,17	100,00		
		Degree of plas	sticity	12,20		

Heritability

Mean	h ² n.s.	0,4146
Plasticity	h ² n.s.	0,0309
Total	h ² n.s.	0,4455

4.7. Results: survival (b.P.)

Analysis of variance

Source	DF	Type III SS	Mean Square	F Value	<i>Pr</i> > <i>F</i>	R-Square
Model	34	2,60	0,08	9,29	0,0001	0,89
sire	4	0,79	0,20	23,84	0,0001	
dam/sire	10	0,26	0,03	3,18	0,0043	
treatment	4	1,39	0,35	42,18	0,0001	
treatment*sire	16	0,17	0,01	1,25	0,2740	
Error	40	0,33	0,01			
Total	74	2,93				

Components of variance

Causal Components

Observed						
Components		<u>Components</u> e	stimate	es %		
V sire	0,0112148	V A	0,04	36,90		
V dam/sire	0,00359945	V N.A	0,00	0,00		
V treatment	0,02249255	V treatment	0,02	18,50		
V treatment*sire	0,00069314	V I(G)	0,00	2,28		
V error	0,00824354	V error	0,05	42,31		
V phenotype	0,04624348	V P	0,12	100,00		
		Degree of plasticity	/	20,78		

Heritability

	Mean	h^2 n.s.*	0,3690
High heritability	Plasticity	h ² n.s.	0,0228
of mean survival			
rate.	Total	h ² n.s.	0,3918

4.8. Results: correlations (b.P. survival)

Phenotypic Correlations:

No significant global and within full-sib family correlations

Genetic Correlations	: 3	3 sig	nificar	ntly	positive	values
					-	

	Growth		Survival		
	mean	S.D	mean	S.D.	Correlation
Poor	2.80417	0,52727	0,35053	0,194	-0,03978
15 days	8,66745	1,83087	0,5267	0,1566	0.59484 *
1 month	10,17608	1,40146	0,47684	0,19915	0.69554 **
2 months	10,03512	1,22302	0,40506	0,14557	0,21425
Rich	11,63269	2,20518	0,1948	0,14325	0.58956 *

4.9. Results: correlations (overall survival)

Phenotypic Correlations:

Significant global correlation - 0.38066 *** and 9 out of 15 within full-sib family correlations (all <u>negative</u>)

Genetic Correlations: 3 significantly positive values

	Growth		Survival		
	mean	S.D	mean	S.D.	Correlation
Poor	2.80417	0,52727	0,71266	0,10093	0,15342
15 days	8,66745	1,83087	0,62956	0,13493	0.50485 **
1 month	10,17608	1,40146	0,53805	0,19029	0.65576 ***
2 months	10,03512	1,22302	0,45115	0,14022	0,21682
Rich	11,63269	2,20518	0,32224	0,1612	0.52258 **

4.10. Results: stability of growth performance between treatments

	Poor	15 days	1 month	2 months	Rich
Poor		0.61 **	0.53 **	0.45 *	0.60 **
15 days			0.63 **	0.63 **	0.62 **
1 month				0.63 **	0.69 ***
2 months					0.67 ***
Rich					

4.10. Results: stability of survival performance between treatments

overall survival

	Poor	15 days	1 month	2 months	Rich
Poor		0,43*	0,58 **	0,67***	0,46*
15 days			0,86 ***	0,81 ***	0,78 ***
1 month				0,85 ***	0,82 ***
2 months					0,82 ***
Rich					

b.P. survival

	Poor	15 days	1 month	2 months	Rich
Poor		0,42 *	0,63 **	0,40	0,31
15 days			0,66 ***	0,65 ***	0,61 **
1 month				0,79 ***	0,74 ***
2 months					0,83 ***
Rich					

4.11. Results: stability between the two experimental sites.

	correlation
growth	0,48 *
overall surviva	0,52 *
b.P. survival	0,58 *

5.1. Conclusions

• Growth:

- Very high degree of plasticity: 63.53% of the phenotypic variance.
- Genetic basis of plasticity for growth might be *important* (higher than for the mean itself), but *mainly non additive*.
- ▲ Heritability of mean growth: 0.08.
- Survival:
 - ▲ Small degree of plasticity: 12 to 20%.
 - Genetic basis of plasticity for survival are *weak*.
 heritability of mean survival: XXXX.
- Results about survival contrast with those about growth, perhaps because in case of survival we could not estimate the non additive components for both the mean of the trait and its plasticity. Non additive variance was included in the error term which was very important.

5.2. Conclusions

- Genetic correlation between growth and survival is globally positive, although it varies between treatments → selection programs on one of these two traits could be envisaged without trouble about "bad" correlated responses.
- Phenotypic correlation between growth and overall survival shows no global trends. On the contrary, phenotypic correlation between growth and survival prior to Polydora infestation is globally highly negative. This could have an importance in farming practices: pushing the growth of the individuals could increase mortality at the phenotypic level.

5.3. Conclusions

- Stability of performances between treatments is globally positive. It seems to be higher for survival (mean = 0.71) than for growth (mean = 0.61) confirming the difference of the degree of plasticity observed in the two traits. On the other hand, this difference (0.61/0.71) between the plasticity of the two traits seems to be less important than suggested by the components of variance (63.53% / 12%).
- Stability of performances between experimental sites is *positive* (around 0.5) for both survival and growth, so that experiments under controlled conditions can be considered as quite representative of the behaviour of the oysters in the field.