FN Archimer Export Format PT THES TI Modélisation bioénergétique de la croissance, du développement et de la reproduction d'un petit pélagique : l'anchois du golfe de Gascogne OT Bioenergetic modelling of the growth, development and reproduction of a small pelagic fish : the Bay of Biscay anchovy BT AF PECQUERIE, Laure AS 1:; FF 1:; UR https://archimer.ifremer.fr/doc/2007/these-3505.pdf https://archimer.ifremer.fr/doc/2007/sup-3505.pdf LA French DT Thesis DE ;inter individual variability;environmental scenarios;link fish metabolism otolith;larval survival;spawning windows;Engraulis encrasicolus;Dynamic Energy Budget theory;life cycle;bioenergetic;modelling;variabilité inter individuelle;scénarios environnementaux;lien métabolisme otolithe;survie larvaire;fenêtres de ponte;Engraulis encrasicolus;Energy Budget;théorie Dynamic;cycle de vie;bioénergétique;modélisation AB Comprendre la variabilité du recrutement est une problématique majeure en halieutique. Dans ce travail, nous explorons une nouvelle approche pour étudier les facteurs qui déterminent le recrutement, dans le cadre de la modélisation biophysique. Le schéma de ponte des adultes peut influencer la survie des larves car il détermine les conditions environnementales qu'elles rencontrent pendant cette période critique. Notre cas d'étude est l'anchois du golfe de Gascogne Engraulis encrasicolus, qui est une espèce à pontes multiples. L'objectif de la thèse est de comprendre l'effet de l'environnement vécu par un individu i) sur l'énergie disponible pour la reproduction et ii) sur l'étalement des pontes et ses conséquences sur la croissance, le développement et la survie des larves. Pour appréhender les processus métaboliques en jeu, la théorie Dynamic Energy Budget est un outil particulièrement adapté. Cette théorie permet d'identifier les processus communs et les spécificités de chaque stade. Nous apportons tout d'abord une révision de la courbe de croissance de l'anchois du golfe de Gascogne. Nous reproduisons la croissance des juvéniles en tenant compte du fait qu'ils expérimentent en moyenne une température plus élevée durant cette phase que celle vécue ensuite par les adultes. La croissance larvaire diffère de la croissance des juvéniles et des adultes. Nous proposons de considérer la relation entre prise de nourriture et longueur de l'individu pour expliquer cette croissance. Ce travail nous permet ensuite de mieux comprendre et de quantifier l'effet des conditions environnementales vécues par un individu sur la durée de sa saison de reproduction. Ces conditions déterminent d'une part la taille de l'individu donc son potentiel reproducteur et d'autre part la quantité d'énergie qu'il peut effectivement mettre en réserve pour la reproduction. En conditions limitantes de nourriture, cette énergie peut en effet être mobilisée pour sa survie. Ainsi la structure en taille de la population et les conditions limitantes rencontrées par les individus sont des facteurs déterminants des fenêtres de ponte. La thèse permet enfin d'identifier les conditions de nourriture nécessaires à la survie jusqu'au stade juvénile, pour des larves issues de fenêtres de pontes différentes. Nous obtenons ce résultat à partir de la sélection des scénarios environnementaux qui reproduisent l'âge et la taille de l'otolithe à la métamorphose en fonction de la date d'ouverture de la bouche. Le lien entre métabolisme du poisson et formation de l'otolithe (une pièce calcifiée de l'oreille interne) est explicitement modélisé. Nous démontrons le potentiel du modèle pour la reconstruction de la quantité d'énergie assimilée par un individu au cours de sa vie à partir des variations observées de l'opacité dans l'otolithe. L'approche développée dans ce travail est une approche déterministe du lien environnement – individu, au travers des processus bioénergétiques. Cette approche nous permet de proposer des mécanismes originaux sous-jacents à certaines observations classiques en halieutique telles que le découplage entre la croissance de l'otolithe et la croissance en longueur du poisson et la phase exponentielle de la croissance pendant le stade larvaire. Une meilleure compréhension des cycles de vie requiert également la prise en compte du comportement et des stratégies individuelles. Ce travail peut constituer la base sur laquelle de telles études pourront à l'avenir s'appuyer. AB Understanding the recruitment variability of fish populations is a major challenge in fishery sciences. In the present work, we explore a new approach to study the potential factors that determine this recruitment in the context of biophysical modelling. The adult spawning pattern might influence the survival of the larvae as it determines the environmental conditions they experience during this critical period. We apply our study to the Bay of Biscay anchovy Engraulis encrasicolus, which is a multiple-batch spawner. The objective of the study is to understand the effect of the environmental conditions experienced by an individual i) on the energy available for reproduction and ii) on the temporal distribution of the spawning events and its consequences on larval growth, development and survival. To study these processes, the Dynamic Energy Budget (DEB) theory is particularly suitable. This theory allows us to identify the common processes and the specificities of each life stage. First, we actualise the growth curve of Bay of Biscay anchovy. Juvenile growth is reproduced by taking into account they experience in average a higher temperature during this stage than the adults thereafter. Larval growth in fish typically deviates from later juvenile and adult growth. We suggest to consider how food intake depends on body length to explain the observed growth patterns. Second, the present work allows us to better understand and quantify the effect of environmental conditions experienced by an individual on the length of its spawning season. These conditions determine on one hand the length of the individual and thus its reproduction potential, and on the other hand the amount of energy that it can actually store for reproduction. In limiting conditions, this energy can be mobilised for survival. Hence, the length structure of the population and the limiting conditions encountered by the individuals are determinant factors of the spawning windows. Third, we are able to identify the food conditions that allow survival until the juvenile stage for larvae issued from different spawning windows. We obtain this result from the selection of environmental scenarios that reproduce the observed age and otolith radius at metamorphosis according to first feeding date. The link between fish metabolism and otolith formation (a complex crystal in the inner ear of the fish) is explicitly modelled. We show the potential of the model to reconstruct individual life history from the observed variations of opacity in the otolith. The approach we used is a deterministic approach of the link between the environment and the individual, through bioenergetic processes. It allows us to formulate original mechanisms underlying classical observations in fishery sciences. As a better understanding of fish life cycles requires the study of individual behavior and strategies in response to environmental variations, we suggest the present work can be used as a basis for such studies. PY 2007 PD DEC UV Agrocampus Rennes DS Halieutique DO BACHER Cedric CO PETITGAS Pierre ID 3505 ER EF