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Abstract:  
 
Understanding the patterns of spatial and temporal variations in animal abundance is a fundamental 
question in ecology. Here, we propose a method to quantify temporal variations in animal spatial 
patterns and to determine the spatial scale at which such temporal variability is expressed. The 
methodology extends from the approach proposed by Taylor (Taylor, L. R. 1961. Aggregation, 
variance and the mean. Nature 189: 732-735) and relies on models of the relationship between 
temporal mean and variance in animal abundance. Repeated observations of the spatial distribution of 
populations are used to construct spatially explicit models of Taylor's power law. The resulting slope 
parameters of the Taylor power law provide local measures of the temporal variability in animal 
abundance. We investigate if the value of the slope varies significantly with spatial location and with 
spatial scale. The method is applied to seabirds distribution in the Bay of Biscay. We study four taxa 
(northern gannets, large gulls, auks and kittiwakes) that display distinct geographical distribution, 
spatial structure and foraging strategy. Our results show that the temporal variability associated to the 
spatial distribution of northern gannets is high and spatially homogeneous. By contrast, kittiwakes 
present large geographical areas associated with high and low variability. The temporal variability of 
auk's spatial distribution is strongly scale-dependent: at fine scale high variability is associated to high 
abundance, but at large scale high variability is associated to the external border of their distribution 
range. The method provides satisfactory results and useful information on species spatio-temporal 
distribution.  
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1. INTRODUCTION: 
 
Explicit consideration of spatial structure have come to play an important role in efforts to understand 
ecological processes (Fortin & Dale 2005) and design ecologically sound management and 
conservation strategies, since most species present highly variable spatial pattern of distribution 
(Tobin 2004). Furthermore, characterising the temporal variability associated to the spatial distribution 
of a species is an important prerequisite to the study of the ecosystem functioning and to the 
establishment of various management, monitoring or restoration programs (see Southall et al. 2006). 
Together with abundance and variability, a third concept, scale, must be considered to manage 
population efficiently (Fleisher et al. 1999). The joint measure of both spatial distribution of abundance 
and temporal variability allows for the distinction between sites with contrasting characteristics: 
“recurrent sites” correspond to locations where individuals from a particular population are regularly 
found, “occasional sites” are visited but can be empty at given time whilst “avoided sites” are usually 
deprived of individuals from the population under study (Bellier et al. 2007). In addition, the spatial 
extent of these sites must be clearly measured. To this end, measures of spatial structure of densities 
or occurrences have to be coupled to an index providing a local measure of temporal variability. This 
index of temporal variability should be built within a scale-dependent framework, in order to identify the 
spatial scales at which particular types of temporal variability are expressed (e.g. daily, seasonal, 
interannual). Such information may be critical for conservation or management decisions such as the 
design of protected areas. 
Methods and examples of the measure of temporal variability (or its antonym “temporal stability”) 
exists in the field of soil, hydrology or vegetation sciences (Martinez-Fernandez & Ceballos 2003, 
Petrone et al. 2004, Staelens et al. 2006) and in most time follow the methodology developed by 
Vachaud et al. (1985). This method requires assumptions such as normality or independence between 
sampling points that can be more easily satisfied in the field of soil science than in the field of 
ecological surveys of animal populations. Other approaches such as the one proposed by Bjornstadt 
et al. (1999) characterise explicitly the spatial and temporal scale at which ecological processes such 
as dispersion are structured, but are not designed to identify the geographic locations where temporal 
variability is minimal or maximal.  
The dispersal patterns of animal populations can alternatively be analysed using Taylor’s power law. 
Taylor’s power law (Taylor 1961, Taylor & Woiwod 1980) is a power function relationship between the 
variance and mean number of organisms that reflects the spatial heterogeneity of a population within 
its habitat. If the habitat is divided into a number of equal sized regions, or quadrats, and the number 
of organisms is enumerated for each quadrat, then the variance V and the mean M number of 
organisms per quadrat should obey: 

aV b M= ×       (1) 
The use of Taylor’s power law has been largely discussed, and it provides useful information 
regarding the dispersal patterns of organisms (reviewed in Kendal 2004). With log-transformed data, 
the power law becomes a classic linear model with two parameters, the slope a and the intercept b. 
The model can be fitted with either spatial or temporal data (Taylor et al. 1980, Taylor & Woiwod 
1980). Taylor’s works highlighted the species-specificity of the slope parameter at a given 
environmental scale (Taylor & Woiwod 1982), which was related to intrinsic properties of the species 
behaviour. Later, Downing (1986) demonstrated that the power law exponent could vary both within a 
species and be similar between different species. In a spatial context, the slope is considered as an 
aggregation index. The slope equals unity under the assumption of a random distribution of animals; is 
lower than unity in the case of regular distribution and greater than unity in the case of aggregated 
distributions. In a temporal context, the null expectation for Taylor’s power law is that the slope of the 
log variance versus the log mean equals 2 (see Kilpatrick & Ives 2003 for a demonstration). However, 
in the field, the slope usually ranges between 1 and 2 (Kilpatrick & Ives 2003, Kendal 2004). Several 
mechanisms have been proposed to explain this discrepancy: measurement errors (Titmus 1983), 
stochastic demography (Anderson et al. 1982) and more recently, negative interactions among 
species within a community (Kilpatrick & Ives 2003). Another important property of Taylor’s power law 
is the scale invariance (Kendal 2004, Marquet et al. 2005): whatever the scale at which mean and 
variance data are calculated, their relationships can always be described by the same power law. 
When modelled with temporal data, Taylor’s power law indicates that the temporal variability of 
species abundance increases exponentially with increasing abundance. The strength of this increase - 
reflected by the value of the slope parameter - might or might not change with the spatial location 
considered.  
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Here, we intend to use empirical measures of variations in the slope parameter of Taylor’s power law 
to identify areas of high and low temporal variability, as well as the spatial scale at which these 
variations are expressed. The main idea is to measure, for a given species, the variations of the slope 
(estimated with temporal data) as a function of the spatial location and of the spatial scale (see fig. 1 
for a schematic representation of the analysis carried out in this study). These results are important to 
understand how a population is distributed within its habitat, to identify key areas versus highly 
variables ones and to specify the relevant spatial scale(s). To achieve these goals, we implement the 
classical Taylor’s power law (Taylor 1961, Taylor & Woiwod 1980) within the context of linear mixed-
effect modelling (Pinhero & Bates 2002) and we treat potential variations of slope in space as a 
random effect. The proposed methodology is applied to seabird distribution in the Bay of Biscay. 
Seabirds live in a highly variable environment, with an heterogeneous, patchy and scale-dependent 
(hierarchical) resource distribution (Ashmole 1971). In turn, the factors affecting their spatial 
distribution are also scale dependent (Schneider & Piatt 1986, Russel et al. 1992). At large- and 
meso-scales, marine top-predator habitats are defined by oceanographic features that control prey 
concentrations (Russel et al. 1992, Hunt 1997, Croll et al. 1998). Seabirds thus select broad 
geographical locations for foraging, according to their own experience and to environmental 
characteristics (Hunt et al. 1999, Bonadonna et al. 2001, Pinaud & Weimerskirch 2005), but within 
these large patches, the predictability of predator distribution is low (Fauchald et al. 2002). The 
processes driving the fine scale distribution of the predators (e.g., prey movements and conspecific 
behaviour: Wiens 1989, Fauchald & Erikstaad 2002, Davoren et al. 2002) are highly dynamic and act 
over short temporal scales. The spatial distribution of seabirds presents therefore complex and scale-
dependent patterns and is likely to exhibit important temporal variations. For these reasons, seabirds 
constitute a good model to study the temporal variability of animal distribution. In addition, many 
seabird species are of environmental concern as they are particularly exposed to the environmental 
disasters such as oil spill (see Bretagnolle et al. 2004 for an example in the Bay of Biscay) and can 
serve as indicators of the ecosystem health (Mallory et al. 2006). An accurate description of their 
spatial distribution, with explicit identification of high and low temporal variability areas is required to 
identify key areas for their populations and to a larger extent for ecosystem monitoring and 
management. 

 
 

2. MATERIAL AND METHODS: 
 
Seabird data  
Six aerial surveys were carried on a monthly basis on the continental shelf of the Bay of Biscay (fig. 2), 
from October 2001 to March 2002. The sampling strategy was designed to fit multiple constraints: the 
entire shelf area should be covered in a minimal time, and should allow accurate records of every 
species encountered (see Bretagnolle et al. 2004). The study area was covered in 6-8 days. The high 
speed of the plane offers the advantage of minimising availability bias (Southwell 1994) which may 
result from seabird responsive movement (attraction/avoidance). Surveys were carried out only under 
optimal visibility conditions. A systematic sampling scheme composed of 5000 km of transects 
perpendicular to the coast was used to cover the shelf homogeneously (fig. 2). During flights, two 
observers were constantly watching a 460m strip (2*230m each side of the plane). They continuously 
recorded individual species, numbers, position (provided by GPS) and time of observation. The plane 
was a six seats lower wing aircraft, and observers took place in the two rear seats to make 
observations beneath the wings. Environmental data and flight parameters (speed, altitude) were also 
recorded continuously. 
The four most abundant seabird taxa were northern gannets (Sula bassana), large gulls (i.e., herring 
gulls Larus argentatus for 50%, lesser black-backed gulls Larus fuscus for 30%, great black-backed 
gulls Larus marinus for 10%; and yellow-legged gull Larus michahellis for 10%), kittiwakes (Rissa 
tridactyla) and auks (i.e., common murres Uria aalge for 85%, razorbills Alca torda for 15%, and 
Atlantic puffins Fratercula arctica for 5%). Statistical analyses were performed at the level of these four 
taxa. Species were pooled together according to the best identification level obtained from the plane. 
Among these four groups, two (gannets, kittiwakes) are exclusively composed of one species, one 
(auks) is mainly composed of one species and only the large gulls present several species with 
significant proportions of each. A total of 9863 sightings were obtained for these four taxa, adding up 
to 18981 individuals (see table 1). 
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Prior to the analysis, transects were converted into a succession of rectangular quadrats (termed 
“bins”) of 5km length and 460m width. Relative density values (i.e. the number of birds counted within 
each bin and divided by the bin area, 0.46*5 = 2.3 km²) were calculated within every bin for each 
taxon. Densities are given in ‘relative’ because it is not possible to ensure that every bird has been 
counted within each bin. We nonetheless assume that the probability of bird detection was 
homogeneous during the survey. The choice of 5km is a trade off between the proportion of zero 
values in the data set (statistical distribution of seabird density is inflated with zeros, especially when 
finer bins are used) and the spatial resolution of the data.  
 
Spatial modelling of bird’s distribution.  
Before analysing seabird temporal variability, we first attempted to provide detailed maps of their 
distribution for each month, in order to visualize their variation across months (fig. 1b). These maps 
were averaged to obtain mean distribution maps, which will be later compared to temporal variability 
maps. This preliminary goal of visual representation was achieved using the binned data. Monthly 
maps were calculated only for month containing a sufficient number of individuals. We performed 
interpolations in two distinct steps that separates large scale patterns from more local spatial structure. 
In the first step, a deterministic model was used to capture the large-scale component of the seabird 
spatial distribution, modelled with a Generalised Additive Model (Hastie & Tibshirani 1990), using a 
bivariate smooth function of latitude and longitude (see Wood & Augustin 2002). To avoid overfitting of 
the data and to restrict density modelling to the large scale habitat, we imposed a penalty during 
model fitting and constrained the number of knots to a maximum of 8. The second step consisted in 
geostatistical interpolation, using ordinary kriging (Cressie 1993), of the spatial residuals obtained from 
the large-scale model, mainly resulting in fine-scale spatial patterns (local aggregations or gaps). This 
two-step method is known as the regression-based kriging (Miller et al. 2007). Predicted seabird 
densities were calculated into a 10*10km grid. Monthly maps of seabird’s relative abundance were 
obtained by summing large-scale maps (GAM predictions) and residual maps (Geostatistical 
interpolation) for each month. Then, for each taxon, mean density map were calculated from monthly 
maps (mean bird density per grid cell). These analyses were achieved with R freeware (R 
development core team 2003), using mgcv package (Wood 2001) for GAM modelling and Gstat 
package (Pebesma & Wesselin 1998) for geostatistical analysis.  
 
Temporal variability of bird spatial distribution:  
We propose to use the slope parameter of the Taylor’s power law to measure the variability of animal 
abundance with time at a given spatial location (fig. 1c). Under the power law, higher slopes constitute 
an indicator of high temporal variability. The challenge is to be able to detect the potential variations of 
the slope parameter with space, and then to determine whether these spatial variations are significant. 
Such a task requires a flexible modelling framework that allows for variations of the model parameters, 
such as the slope, according to a grouping factor, in our case a spatial block design. In such models, 
fixed effects are parameters associated to an entire population, while random effects are associated 
with individual experimental unit drawn at random from a population, resulting in a mixed-effects 
model (Pinheiro & Bates 2002). By associating common random effects to observations sharing the 
same level of a classification factor (spatial location in our case), mixed-effects models flexibly 
represent the covariance structure induced by the grouping of the data. By associating a random 
effect to the slope parameter of the Taylor’s power law, one can measure the variations of the slope 
with space. The comparison with a simpler model built without random effects allows for testing if 
spatial variations of the slope are significant. 
To estimate the parameters a and b of Taylor’s power law (1) we performed a logarithmic 
transformation of the data, under which Taylor’s Power model becomes: 

( ) ( )log logV a M B= × +  where log( )B b=     (2) 
Mean and variance of animal abundance were obtained using raw data from the 5-km bins (i.e., 
interpolated data were not used). For each spatial location (bin), the mean and the variance of the bird 
density was calculated from the six repeated surveys. Our aim is to explore possible variations in 
space of Taylor’s power law parameters. To this end, we divided the Bay of Biscay into blocks. 
Different block widths were successively used, from 20km to 100km width, with 5km increment. For a 
given block scale, we obtained i blocks, and within each, j bins. In other words, our blocks correspond 
to the zones of the figure 1, and in the same way the bins correspond to the stations. Using the j bins, 
a power law could be fitted for each block. The lower block size was set to 20km so that each block 
contains a sufficient number of bins (data) to fit the power law. A block of 20km width contains j = 8 
bins, i.e. 8 mean values and 8 variances. Power laws were only fitted for blocks with j >= 8 (i.e. when 
the number of stations is >= 8 in the fig 1a). Our aim is to test if, for a given scale, the slope parameter 
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of the power law varies significantly between blocks. In order to account for inter-block variability in 
model parameters (i.e. power law parameters), a general function is fitted to the data (i.e. all blocks 
combined) and adjusted for inter-block variability in the model parameters. Linear mixed-effect models 
are intended for grouped data in which the response can be modelled as a linear function of a set of 
co-variables (Pinhero & Bates 2002), which is the case for the present Taylor’s power law. Here the 
data are grouped by blocks representing spatial location, the response variable is the temporal 
variance and the covariable is the mean. Mixed-effect models allow some parameters to be fixed for 
all groups (fixed effects) and other to vary between groups (random effects). According to these 
criteria, two models have been defined and compared for each block scale. The first mixed-effects 
model is formulated as follows:  

, ,log( ) log( )i j i j i i jV A M B b ,ε= × + + +      (3) 

where ,i jM is the mean seabird abundance for the ith block and the jth bin and  its associated 

temporal variance. 

,i jV

A  and B are fixed effects corresponding to the conventional parameters 
(respectively slope and intercept) of Taylor’s power law. In addition, one random effect is defined as 
follows: ~ ib 2(0, )bN σ .  is a random effect for the intercept which correspond to random variations 
of the intercept values in the ith block. The formulation of the mixed-effect model ends by a random 
error term, 

ib

,i jε ~ 2 )ε(0,N σ . This first, reduced model (3) is compared to a second one (4) that allows 
random variations for the slope parameter: 

, ,log( ) ( ) log( )i j i i j i i jV A a M B b ,ε= + × + + +      (4) 

The random effect for the slope ~ ia 2(0, )aN σ  corresponds to random variations of the slope in the ith 
block. 
For each scale used, both models were compared. The comparison was achieved according to the 
Akaike Information Criterion (AIC), with an ANOVA (see Pinhero & Bates 2002). Both models were 
built and compared for each scale, and each time a p-value was extracted indicating whether the 
second model performed better than the first; i.e., whether slope variations between blocks (i.e. with 
spatial location) were significant or not. In both models, we assumed a random effect for the intercept 
parameter, because it has already been observed that this intercept may vary among sampling 
location and landscape (Taylor et al. 1980). We therefore allowed it to vary each time, to make sure 
that observed variations of the slope among blocks could not be an artefact due to true variations in 
the intercept not being stated in the model formulation. The intercept is usually considered as a 
scaling factor related to sample size (Southwood 1978) and its variations are difficult to interpret in 
ecological terms (Taylor & Woiwod 1982).  
 
3. RESULTS: 
 
Spatial modelling of bird distribution: 
The proportion of deviance explained by the GAMs varied strongly among taxa (table 2). For gannets 
and kittiwakes, the large scale trends explained 5-15% of total model deviance (table 2). By contrast it 
accounted for 16-50% total deviance in auks and Large Gulls. Ranges of the variogram models varied 
from 15-50km, though most were at 20-30km. No detectable differences could be found between 
auks, kittiwakes and gannets. Except in February 2002, the variogram models could not be fitted for 
the Large Gulls. Therefore we used a “nugget” model (i.e. a flat, unstructured variogram), and 
restricted the interpolation of the gull density at a spatial location to its four nearest neighbours.  
Some differences in the level of spatial structuring however appeared among species: the auks and 
the large gulls had the most significant spatial trends, and the residuals from the GAM were spatially 
structured for auks, gannets and kittiwakes. Auks presented both an important large scale trend and a 
high degree of spatial structuring in the GAM residuals, and displayed therefore the strongest spatial 
structure at any given date.  
Monthly maps are constructed by adding the large-scale trends obtained from a GAM and the local 
spatial structure obtained from kriging interpolation of the residuals of the GAM (see fig. 3 for an 
illustrated example). Monthly interpolations for all taxa show very high variability of seabird distribution 
throughout winter (fig. 4).  
 

Combining spatial distribution and temporal variability: 
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The comparison of spatially explicit full model (eq. 4) versus the spatially averaged reduced model 
(eq. 3) as a function of spatial scale is summarized in fig. 5 which indicates whether both models 
differs significantly or not for every block size tested. This analysis shows contrasting results for the 
four taxa considered. For gannets, the full model performed better than the reduced model only at the 
finest scales (up to 30km). For gulls and kittiwakes, the full model performed better at all tested scales 
(from 20 to 100km). For auks, the full model performed better cyclically at specific scales (around 40, 
60 and 85 km).  
We then reported average maps of seabird distribution in winter 2001-2002 (fig. 6a) together with the 
spatial repartition of slopes value issued from the model (4), at two different scales (30km, fig. 6b and 
60km, fig. 6c). The figure 6 illustrates that the temporal variability associated to seabird distribution 
varied among taxa and across spatial location and scale. Among taxa, high slopes are reported in 
almost all spatial location in gannets and large gulls, low slopes in auks, and both high and low slopes, 
depending on the spatial location, for kittiwakes. This indicates that auks present the most temporally 
stable spatial patterns among the four taxa studied. 
The temporal variability pattern of gannets presents a smooth north-south gradient of slope values, 
with highest slopes observed in the northern part of the Bay. The gradient is however apparent only at 
fine scales as at 60km scale, the slope values are homogeneous across the study area. We then 
conclude that this gradient is not sufficiently strong to be considered significant for the northern 
gannet, and will retain that its spatial distribution is highly variable, can present “core” areas of 
distribution associated locally to lower temporal variability (see fig. 6a&b), but presents strong and 
spatially homogeneous temporal variability at scales higher than 30km. 
In the large gulls, we found that their temporal variability changed with space at any scale (see fig. 5b). 
However the joint interpretation of maps of distribution and variability is not straightforward, possibly in 
relation to the fact that (i) among the four taxa studied, large gulls provided fewest data (table 1) 
making the fit of Taylor’s power law into each block more sensitive to random errors, and (ii) the 
pooling of several species together makes the pattern revealed hardly interpretable. In the Bay of 
Biscay, large gulls are mainly distributed in the northeast of the Bay (near Brittany coast, fig. 6a) which 
also harbours numerous fishing fleets (Léauté 1997). Temporal stability maps suggest that their 
spatial distribution during winter is highly variable and that they can be encountered punctually in any 
point of the Bay (fig. 6 b&c). 
The distribution pattern observed in auks is very well structured, with high abundances into coastal 
areas, particularly in front of Loire and Gironde estuaries where specific hydrological structures 
develop as a result of important river runoff (Puillat et al. 2004). The abundance patch in front of Loire 
is associated with important temporal variability at both scales, whilst the area located in front of the 
Gironde estuary presents a scale-dependent temporal dynamics, with higher variability (greater slope 
values) at a scale of 30km, and lower variability (smaller slope values) at a scale of 60km (fig. 6b&c). 
Therefore, a change in the spatial scale considered leads to the reversion of the temporal variability 
pattern, with fine scale variability of auk’s distribution masked at broad scale. 
In the case of kittiwakes, the north-south gradient of temporal variability is obvious at small scale and 
discriminates clearly between the two kittiwakes patches (north-west and central part of the Bay, fig. 
6a&b). The gradient remains significant at a larger scale, but the temporal variability pattern is 
modified, as only the northern coastal area (near Brittany coasts) is associated to very important 
temporal variability (fig. 6c). 
 
4. DISCUSSION 
Methodological comments and perspectives. 
The method proposed provides a practical tool for measuring the temporal variability associated with 
animal’s spatial distribution at different scales. The method is based on the spatial and/or temporal 
variations in the slope parameter of Taylor’s power law which are used to characterise the temporal 
variability of the ecological processes which control animal abundance.  
In the present study, a number of methodological choices were made according to the type and the 
structure of the dataset analysed. We discuss below the possible implications of these choices. 
First, grouping of several species into unique taxa should be avoided when possible. In our case, 
grouping was due to uncertainty in the taxonomic identification of some species (e.g., auks, sub-adult 
and juvenile plumages in gulls). Two taxa were mono-specific, one was mainly composed of one 
species and only one, the large gulls, contained several species with probable different ecological 
characteristics. This implies that the pattern of temporal variability observed for large gulls is a mix of 
different specific patterns. It does not describe accurately each specific pattern but rather represent a 
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global pattern common to the species grouped into the taxa. Hence, ecological interpretation based on 
the pattern revealed for large gulls must be carried out with caution. 
Also, further methodological developments could be needed to better match different ecological 
questions. For example, the question of temporal scales is also a major concern for conservation 
(Fleisher et al. 1999) and could be investigated. For our study, we had only six repetitions of the 
survey, a minimum to compute Taylor’s power law trough time. However, with more repetitions and 
especially with inter-annual surveys, the results could be extended to characterize inter-annual 
variability, an important topic to provide useful guidelines for management purposes. The question of 
temporal scale could be explicitly incorporated into our modelling framework by considering temporal 
blocks as an additional random effect. However, these improvements require long time series to 
extract relevant information on the specific temporal scales at which animal abundance are stable or 
variable. 
Another point that could be explored is the presence and the structure of spatial auto-correlation in the 
slopes. Indeed, spatial autocorrelation is a key component of ecological processes (Koenig 1999). In 
our analysis, we have partially handled this by using geographical blocks at different spatial scales. 
However, the issue of spatial autocorrelation could be more directly addressed. A geostatistical 
analysis of the structure of the spatial variance (Cressie 1993) in the slopes could lead to the definition 
of the shape and size of particular areas (using kriging interpolation), for example hot spots of low 
temporal variability. However, modelling spatial autocorrelation should be carried out only in the cases 
where the slopes are truly varying in space. Our results show that for some species, this latter 
condition depends on the spatial scale of the analysis. Moreover, such development would require 
numerous data on temporal variability at the smallest possible spatial scales, in order to model the 
autocorrelation in the slopes (see Fortin & Dale 2005 for guidelines). In the case presented in this 
paper, the minimum grain into which slopes are calculated is 20km which leaves few possibilities for 
an accurate definition of areas of interests. 
 
An hypothesis to explain scale-dependent temporal variability patterns. 
Depending on the species and ecosystems considered, the kind of factors influencing their spatial 
distribution will change. Most seabird species present scale-dependent distribution pattern related to 
the hierarchical properties of the marine environment (Schneider & Piatt 1986, Fauchald 1999, 
Fauchald et al. 2002). The scale at which environmental factors influence bird spatial distribution 
changes also with the nature of the factor: the broad scale distribution of predators is often related to 
bio-climatic variables when the fine scale distribution is influenced by prey distribution (Fauchald et al. 
2002; Davoren et al. 2003). To explain the scale-dependent pattern of temporal variability observed in 
animal distribution, we could hypothesize that the spatial scale at which the temporal variability 
change significantly with space reflect the scale at which the environment influence animal’s spatial 
distribution. Under this hypothesis, if the temporal variability of spatial distribution of a given species is 
expressed at large scale, this means that the process controlling the spatial distribution of this species 
is influenced by a large-scale environmental factor. 
Inside our study area, changes in temporal variability of gannet’s distribution across space have only 
been detected at the smallest scales. Thus, within the Bay of Biscay, the environmental controls 
influencing their distribution should mainly be structured at small scale (prey distribution and/or local 
oceanographic structure such as up-wellings or eddies). The high and spatially homogeneous 
temporal variability of gannets spatial distribution suggest that their population is highly mobile, with 
individuals exploring the Bay of Biscay over large distance to find local areas suitable for feeding. It is 
therefore possible that large-scale environmental control occurs on gannet populations, but at a wider 
spatial scale than the spatial extent of our study area, since gannets are widely distributed in the north 
Atlantic. 
Auks presented scale-dependent temporal variability patterns. Theoretical considerations about the 
hierarchical spatial structure of top predators (in which high density patches at fine scales are nested 
within low density patches at broader scales) have been developed by Fauchald (1999) and empirical 
descriptions have been provided for auks (Mehlum et al. 1999, Fauchald et al. 2002, Davoren et al. 
2003). In addition, diving birds such auks have restricted dispersion abilities and high metabolic costs. 
They must stay close to their feeding resource (Ainley et al. 2005). Our analysis suggests that at 
broad scale, auk‘s densities in coastal areas are more stable than in offshore area. This can 
correspond to a first level of hierarchical distribution that reveal broad-scale habitat (60 km). However, 
at finer scales, much variability is expected in high density areas rather than in intermediate density 
areas. The observed variability at fine scale (around 30km) can be related to the successive 
movements of auks between the large scale patches, perhaps in response to prey movements. 
Fauchald & Tveraa (2003, 2006) developed a method (First Passage Time, FPT) to identify the scale 
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of hierarchical patches on the basis of foraging behaviour of predators, collected with individual 
loggers. It could be useful to compare the scales identified by the analysis of Taylor’s power law 
(based on repeated surveys and populations movements) to those obtained by data acquired at the 
individual level. 
The temporal variability of kittiwakes spatial distribution is characterized by differences between the 
north-west and the central patches of abundances. These differences are much clear at smaller scale. 
Kittiwakes are the only species widely distributed in the central part of the bay, a less productive area 
than the north-western shelf break (Genin 2004) - were gannets are found - or the southern Brittany 
(Lazure & Jegou 1998) were large gulls are distributed. Ballance et al. (1997) hypothesised that at 
sea, the seabird community was structured by two factors, the competition and the energetic 
constraints, that operate at the opposite ends of a productivity gradient. The competitive species with 
high energetic requirements would exclude other species from highly productive area. The kittiwake is 
a small species, less competitive than larger gulls (which often engage aggressive interactions with 
other birds) or gannets (that can dive and are more efficient at capturing preys). The observed 
differences between the two kittiwakes patches in term of variability could be explained by the 
mechanism proposed by Ballance et al. (1997): kittiwakes which try to exploit the most productive 
areas must compete with other birds and are sometimes excluded, which in turn increase their 
variability in term of abundance in the area where competition is important. Even if less productive, the 
central part of the Bay is also less subject to competition, that can reduce the temporal variability of 
kittiwakes abundance. This hypothesis implies that the effect of competition on the spatial process of 
kittiwakes distribution is mainly acting at local scales because it is at these scales that the differences 
between north and central areas in term of temporal variability are the most important.  
 
Discrimination of temporal variability patterns 
For two species (auks and kittiwakes) the discrimination of stable versus variable areas had been 
made, with respect to spatial scale: for kittiwakes, the central patch of abundances is less subject to 
small-scale variation in abundance than the northwestern one. For auks, coastal areas and particularly 
the one in front of Gironde estuary were stable at large scale but were associated to higher temporal 
variability at small scale. The use spatial pattern identified as variable in time should be avoided for 
management purpose. In the Bay of Biscay, recurrent areas (i.e; areas associated to important 
abundance and low temporal variability) for seabirds were mainly identified at broad scale, suggesting 
that management decision focusing on seabirds population at sea would be more effective and robust 
if they concern broad-scale habitat. The case of large gulls allows us to warn the reader of applying 
our method when no sufficient data are available or when several species with different ecological 
characteristics are pooled together. The case of northern gannets highlights the possibility that a 
species does not present stable and variable areas at large scale in a given study area. In this case, 
the information derived from temporal variability maps built during a unique season is limited, because 
small-scale sectors identified as the most stable during a given season are more likely to exhibit inter-
annual variations than broad scale habitat. The application of our methodology to inter-annual surveys 
would increase the inference that can be drawn from temporal variability maps. 
 
 
5. CONCLUSION: 
 
Starting from population census and distribution patterns, we described the way seabirds use the 
space available in the Bay of Biscay and we were able to develop a hypothesis to explain the 
observed scale-dependent patterns of temporal variability of their spatial distribution. These results 
provide insights into the fundamental ecology of seabirds and may be used to support applications 
such as spatial management or conservation. Our work incorporates explicitly spatial effects into 
Taylor’s model fitted with spatio-temporal data. We showed that for a given species the parameters of 
Taylor’s power law can vary with spatial location, which enabled the identification of key areas and 
their characteristic scale.  
Further steps could be achieved by quantifying the relative importance of each environmental factors 
on the temporal variability of a given species. To this end, joint recording of seabird distribution and 
environmental data is needed. The local variation of the slope parameter appears smooth and 
continuous in our application focusing on marine environment. A different picture could emerge from 
the analysis of terrestrial data where the environmental mosaic is much more discontinuous with clear 
boundaries (Steele 1989). 
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Table 1: Summary statistics of sightings performed between October 2001 and March 2002. 
 
 

  gannets large gulls auks kittiwakes 

number of sightings  3354 499 2005 3564 

number of individuals 6999 1549 3279 6406 

largest sighting 200 110 40 400 

mean group size 2.08 3.1 1.64 1.79 
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Table 2: Model parameters associated with the monthly interpolation of seabird densities. % of 
explained deviance (dev.) and estimated degree of freedom (edf) are given for each GAM (large trend 
maps). For the geostatistical interpolation of GAMs residuals, the parameters of the variogram are 
given: Nugget (nug.), Sill and Range (ran., given in km). The type of variogram model is indicated; 
Spherical (Sph), Gaussian (Gau), Exponential (Exp) or pure Nugget (Nug) 
 

Species Date dev.  edf nug. sill ran. Model 

Oct 2001 8.07 6.38 3.05 0.66 31.6 Sph 

Nov 2001 5.26 4.70 3.39 0.62 45.4 Gau 

Dec 2001 7.69 5.37 2.05 0.47 22.8 Sph 

Jan 2002 11.50 5.91 3.09 1.31 49.8 Gau 

Feb 2002 10.10 6.64 1.05 0.87 15.5 Sph 

gannets 

Mar 2002 6.75 5.61 0.91 0.14 24.6 Gau 

Oct 2001 25.50 6.07 0.19 0.00 0.0 Nug 

Nov 2001 49.70 6.35 0.24 0.00 0.0 Nug 

Dec 2001 37.00 6.20 0.27 0.00 0.0 Nug 

Jan 2002 32.30 5.65 0.23 0.00 0.0 Nug 

Feb 2002 16.60 2.29 0.21 0.05 23.3 Sph 

large Gulls 

Mar 2002 8.37 2.00 0.98 0.00 0.0 Nug 

Nov 2001 46.20 4.82 0.29 0.18 51.0 Gau 

Dec 2001 36.70 5.59 0.20 0.26 17.4 Exp 

Jan 2002 51.90 6.76 0.83 0.28 23.0 Sph 

Feb 2002 24.50 5.61 0.70 0.45 20.0 Sph 

auks 

Mar 2002 50.10 4.60 0.93 0.66 25.1 Sph 

Nov 2001 13.60 5.77 1.64 0.72 37.9 Sph 

Dec 2001 8.98 5.58 0.94 0.16 32.4 Gau 

Jan 2002 8.32 6.58 1.36 1.89 35.8 Sph 
kittiwakes 

Feb 2002 16.00 6.93 1.09 1.87 29.6 Gau 
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fig. 1.  

 

fig. 1. Schematic representation of the analyses carried in the present study. Within a given 
geographical area, animal abundance is monitored by repeated survey (a). The spatial distribution of 
animals can be modelled using a combination of Generalized additive models and Geostatistics (b). 
temporal variability of animal abundance may change with space and with scale. Modelling Taylor’s 
power law for different locations and scales can be used to identify and quantify these variations (c). 
Mean abundance distribution maps (b) and cartography of Taylor's slopes (c) can be use jointly (d) to 
identify the spatio-temporal dynamics of marine birds. 
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fig. 2. 

 

fig. 2. Study area: The Bay of Biscay, 100 000 km² of continental shelf on the French Atlantic coast. 
The sampling scheme, 5000 km of transect, composed of 24 transect parallel to the equator over the 
continental shelf and the upper shelf break. 

 14



fig. 3.  

 

fig. 3. Example of construction of monthly maps for auks in February 2002. a) binned raw data 
(number of birds/bin). b) large scale pattern (number of birds/km²) modelled with a Generalized 
Additive Model and c) residual small scale patterns modelled with geostatistics. Large scale 
distribution (b) and residual small scale patterns (c) are summed to obtain the monthly map (d) of 
seabirds relative density (number of birds/km²).  
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fig. 4. 

 

fig. 4. Monthly interpolation of seabird data (relative density expressed in number of birds/km²) 
following the procedure in fig. 3 for gannets, large gulls, auks and kittiwakes for all cruises (October 
2001 to March 2002) 
 

fig. 5. 

 

fig. 5. Summary of the comparison between the full model (eq. 3) and the reduced model (eq. 4) as a 
function of spatial scale (x axis). Large grey circles indicate that both models differs significantly (i.e. 
the temporal variability of animal abundance exhibit significant variations with space) and black dots 
indicates that both models are equivalent (i.e. the temporal variability of animal abundance is 
homogeneous across the studied area). Results are given for the four taxa studied. 

 16



fig. 6. 

 

fig. 6. Average seabirds’ density (Number of individuals/km²) during winter, calculated by averaging 
monthly maps (a) ; Spatial distribution of slopes values estimated with the full model (eq. 4) with a 
block scale of 30km (b) and with a block scale of 60km (c). Highest slopes reveal important temporal 
variability. “x” indicates the position of blocs where no sufficient data were available to estimate a 
slope value for Taylor's power law. 
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