FN Archimer Export Format PT J TI Modeling sun glitter at L-band for sea surface salinity remote sensing with SMOS BT AF REUL, Nicolas TENERELLI, Joseph CHAPRON, Bertrand WALDTEUFEL, P AS 1:1;2:1;3:1;4:2; FF 1:PDG-DOP-DCB-OPS-LOS;2:PDG-DOP-DCB-OPS-LOS;3:PDG-DOP-DCB-OPS-LOS;4:; C1 IFREMER, Ctr Brest, Lab Oceanol Spatiale, F-29280 Plouzane, France. CNRS, Serv Aeron, Inst Pierre & Simon Laplace, F-91371 Verrieres Le Buisson, France. C2 IFREMER, FRANCE CNRS, FRANCE SI BREST SE PDG-DOP-DCB-OPS-LOS IN WOS Ifremer jusqu'en 2018 copubli-france IF 2.344 TC 42 UR https://archimer.ifremer.fr/doc/2007/publication-3565.pdf LA English DT Article DE ;Sun glitter;Sea surface salinity SSS;Rough surface scattering;Ocean remote sensing;Microwave radiometry AB Since the sun is an extremely strong radiation source at L-band, accounting for sun glint over the ocean, i.e., solar radiation reflected by the sea surface toward downward-looking radiometers, raises a significant challenge for the remote sensing of sea surface salinity. This paper describes a dedicated physical model for sun glint at L-band frequencies and provides quantitative and qualitative estimates of the sun glint contamination impinging the antenna of the Microwave Imaging Radiometer with Aperture Synthesis interferometer onboard the future European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission, The sun brightness temperature expected during the mission period is first estimated from past solar flux data with an expected range of 1.1 X 10(5) K to about 9 x 10(5) K. Numerical simulations of the predicted illumination of the SMOS antenna by solar radiation scattered by the rough sea surface are then performed at,key dates of the seasonal cycle using different asymptotic scattering models and several representative surface conditions. Although the center of the sun's glitter pattern will never be located within the useful part of SMOS' synthesized field of view, the expected contamination due to roughness scattering will range between 0 K and about 500 K, depending on the target position, the season period, the roughness state at the target, and the level of solar,activity at the time of measurements. In particular, we find the sun glint contamination to be more intense when SMOS will probe ocean surfaces in the Southern Hemisphere, reaching maxima in descending passes with highest values expected at dates around winter solstices. PY 2007 PD JUN SO IEEE - Transactions on geoscience and remote sensing SN 0196-2892 PU IEEE VL 45 IS 7 UT 000247784400018 BP 2073 EP 2087 DI 10.1109/TGRS.2006.890421 ID 3565 ER EF