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Abstract:  
 
The microflora developing during a continuous enrichment culture from a hydrothermal chimney 
sample was investigated by molecular methods. The culture was performed in a gas-lift bioreactor 
under anaerobic conditions, at 90°C and pH 6.5, on a complex medium containing sulfur as the 
terminal electron acceptor. Archaeal and bacterial diversity was studied. Microorganisms affiliated with 
the genera Pyrococcus, Marinitoga, and Bacillus were detected through DGGE analysis of 16S rDNA. 
Additional sequences phylogenetically related to Thermococcus and -Proteobacteria were detected by 
cloning and sequencing of 16S rDNA from two samples of the enrichment culture. In comparison, the 
sequences retrieved from cloning analysis from an enrichment culture performed in a flask (batch 
condition) using the same culture medium showed that only members of the genus Thermococcus 
were cultivated. Therefore, continuous enrichment culture using the gas-lift bioreactor can be 
considered as an efficient and improved method for investigating microbial communities originating 
from deep-sea hydrothermal vents. 
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Introduction 

Identifying the populations constitutive of microbial communities is still a major challenge. It was estimated that 90 to 

99% of the organisms remained uncultivated [6], due to difficulties in reproducing their physiological niche in the 

laboratory. The results of molecular approaches dedicated to deep-sea hydrothermal systems were mainly obtained by 

16S rDNA analysis. They showed the wealth of microbial diversity [21, 28] and the limitations of traditional cultivation 

techniques in improving our knowledge of the biodiversity inhabiting deep-sea hydrothermal vents. Nevertheless, in 

fine, cultivation remains necessary to describe new microbial representatives thriving in hydrothermal deep-sea vents 

[15, 23] and allows the study of in situ living microorganisms that express their physiological properties as members of 

the natural microflora. Since current culture techniques do not always satisfy the need of providing a good balanced 

picture of the microflora composition, future developments in the study of bacterial diversity should include 

improvements in the culture methods to approach the physico-chemical conditions of natural habitats [22]. Traditional 

culture attempts from hydrothermal samples were usually performed by enrichment cultures in flasks. In this study, an 

enrichment culture was performed in a 2-litre gas-lift bioreactor. This equipment was previously developed to grow 

anaerobic hyperthermophilic microorganisms [24], to study the metabolism of members of the order Thermococcales 

[14], and to develop a minimal medium for growth of these hyperthermophiles [25]. Enrichment culture in the gas-lift 

bioreactor was expected to allow the growth of microorganisms (i) poorly represented in the ecosystem, (ii) exhibiting a 

long latency phase or (iii) having not previously been cultivated so far. This could be induced by the continuous 

substrate supply, gas elimination by N2 sparging, pH regulation, and long incubation time (during several weeks). It has 

already been reported that bacterial and archaeal populations’ dynamics can be monitored in anaerobic digester 

according to 16S rRNA, and 16S rDNA sequences, and changes in the composition of the microflora were then 

highlighted [9, 17]. In this paper, we describe the use of a gas-lift bioreactor to perform an enrichment culture in 

controlled conditions. Amongst molecular tools available, denaturing gradient gel electrophoresis (DGGE) and 16S 

rDNA cloning analysis of two culture samples were chosen to investigate microbial dynamics and diversity. In 

comparison, enrichment cultures in flasks were performed in the same culture medium and the microflora cultivated 

was investigated through cloning and sequencing analysis. 
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Materials and Methods 

Samples. During the ATOS cruise (European project VENTOX) located on the Mid-Atlantic Ridge (MAR), on the 

Rainbow field (36°13’N 33°54W) at 2275 m depth, an active black smoker was collected by the Remote Operated 

Vehicule (ROV) Victor, and brought to the surface in a decontaminated insulated box. On board, subsamples of the 

chimney were crushed into an anaerobic chamber and stored in sterile serum vials filled with sterile seawater containing 

0.5 mg l-1 of Na2S. The subsamples were pooled to represent the whole chimney, and used as inoculum at 2%.  

 

Enrichment conditions in bioreactor and  culture monitoring 

Medium. The growth medium was the modified SME medium [29] in which yeast and peptone were replaced by 1 g l-1 

yeast extract; 0.5 g l-1 casaminoacids; 0.4 g l-1 glucose; 0.4 g l-1 dextrin (from corn); 0.2 g l-1 D(+)galactose; 0.2 g l-1 

dextran; 0.1 g l-1 glycogen; 0.2 g l-1 pyruvate, 0.1 g l-1 acetate and 3 g l-1 colloidal sulphur.  

Culture conditions. The medium was sterilized by filtration (Sartroban, 0.22 µm) in 20 l Nalgene bottle containing the 

colloidal sulphur, previously sterilized by heating twice at 100°C for 30 min on two successive days. The culture was 

performed at 90°C and pH 6.5. The temperature was regulated and the pH was controlled by addition of either 1 N 

NaOH or 1 N HCl solutions. Moreover, the culture was sparged with N2 (0.1 v.v-1.min-1) to maintain anaerobic 

conditions, and to eliminate possible volatile fermentation end products that might inhibit the growth of fermentative 

microorganisms.  

Culture monitoring. The culture was maintained during 50 days. Culture samples from the bioreactor were first 

collected every 3 hours during the 34h-batch culture, and then daily during the continuous culture, representing a total 

of 51 samples. Cell concentration of each sample was determined by direct cell counting, using a Thoma chamber (0.02 

mm depth) with an Olympus BH2 phase contrast microscope (×400).  

Sample preservation. For each sampling, eight 1.8 ml-cryotubes of culture were frozen at –20°C in the presence of 5% 

DMSO. Cells were also recovered from 15 ml of culture by centrifugation (30 min at 8000×g), washed with 23 g l-1 

sterile NaCl, and the cell pellets were stored at -20°C. 

 

Enrichment conditions in flask and  culture monitoring. Enrichment cultures were performed in 100 ml serum vials 

as previously described [13], with the same medium, temperature and pH as in the bioreactor. Cell pellets for molecular 

analysis were recovered from 15 ml of culture in flask, after 45h and 65h of incubation, and also after a 20h subculture 

from the first 45h culture.  
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DNA extraction. Extractions were performed on frozen cells pellets following the extraction protocol of Alain et al [2].  

 

16S rDNA PCR-DGGE analysis. The variable v3 region of 16S rRNA gene from extracted DNA was amplified using 

specific primers corresponding to both archaeal and bacterial domains. Archaeal 16S rRNA genes were amplified using 

primers 344F-GC and 915R [7]. Bacterial 16S rRNA genes were amplified using primers 341F-GC and 907R [19, 20]. 

PCR procedure and analysis of the fragments by DGGE using Bio-Rad Dcode apparatus were previously described by 

Muyzer et al. [19]. Samples were loaded onto 8% (w/v) polyacrylamide gels, in TAE-1× with a denaturing gradient 

ranging from 50% to 80% urea-formamide (UF) for archaeal DNA analysis, and from 35% to 80% UF for bacterial 

DNA analysis (100% corresponding to 7 M urea and 40% (v/v) formamide). Electrophoresis was run for 16h at 70V 

and stained with ethidium bromide. DGGE bands were cut out with a sterile blade. The DNA of each fragment was 

eluted overnight at 4°C in 50 µl sterile and purified water. One microliter of the eluted DNA of each DGGE band was 

reamplified, using the same conditions as above. Running an aliquot of the PCR product, in DGGE gels as described 

above, checked the success of this operation. The PCR products, which yielded a single band co-migrating with the 

original band, were then purified on a QIAquick silica-gel spin column (Qiagen) and sequenced.  

 

16S rDNA PCR-cloning analysis. Archaeal and bacterial DNAs were amplified using universal primers and PCR 

procedure previously described [31]. PCR products were then checked on a 0.8% (w/v) agarose gel and directly cloned 

using the TOPO TA Cloning® kit (Invitrogen) according to the manufacturer’s instructions. Clone libraries were 

constructed by transforming E. coli TOP10F’ cells. An archaeal and a bacterial libraries were constructed for two 

culture samples collected after 7 days (T7) and 28 days (T28) of culture. Three archaeal libraries were constructed from 

the enrichment cultures in flask.  

 

16S rDNA sequencing and phylogenetic analysis. DNA fragments obtained by DGGE were sequenced by Genome 

Express S.A. (Grenoble, France). Clones were cultivated overnight at 37°C on Deepwell microplates, in LB 2X 

medium. Plasmids were extracted using Plasmid Miniprep Kits (Qiagen) and partially sequenced. Sequences were 

compared to those available in databases, using the BLAST [5] network service to determine phylogenetic affiliations, 

aligned with the rDNA sequences from the RDP (Ribosomal Database Project), using the GCG CLUSTALW program 

[30], and refined manually using the SEAVIEW program [12]. Trees were constructed using the PHYLO_WIN 

program, on the basis of evolutionary distance [27] and maximum likelihood methods [11]. The robustness of inferred 

topologies was tested by the bootstrap resampling of trees [10]  calculated on the basis of the evolutionary distance, 

neighbor-joining algorithm with Jukes-Cantor correction [16] and maximum likelihood. If related sequences displayed 
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more than 97% sequence similarity, only one of the sequences was retained for phylogenetic analysis. One 

representative of each unique phylotype was completely sequenced. 

 

Results 

Monitoring of the enrichment culture in bioreactor. The bioreactor was inoculated at 2% (vol/vol) with a chimney 

sample suspension. Very low cell densities were measured during the first 34 hours of batch. Then a dilution rate of 

0.04 h-1 (80 ml h-1) was applied. The period of batch culture was fixed arbitrarily in order to avoid washing out of the 

cells before they had become adapted to the growth conditions. Cell density stabilized at around 5 x 105 cell ml-1 until 

105 h of culture. By 124 h, cell number had increased to 1.8 x 108 cell ml-1. This was associated with H2S production 

(detected using Zn acetate strips). Amongst observed morphologies, coccoid cells, single or in pairs, were dominant 

throughout the enrichment culture. Short rod-shaped cells appeared singly or in chains within an outer sheath-like 

structure, comparable to the ‘toga’ specific to Thermotogales [1]. From 350 h until the end of the culture, only single or 

paired coccoid cells were observed. 

 

DGGE monitoring of the culture in bioreactor. Total DNA was successfully extracted on samples between the 4th to 

the 50th day of culture. From the earlier samples, difficulties in DNA extraction were encountered, probably due to the 

very low cell density. The DGGE procedure was tested with 16S rDNA fragments from reference strains. Conditions 

were optimised to analyse separately archaeal and bacterial fragments. Fragments from the two Pyrococcus species, 

P. abyssi and P. glycovorans, could not be separated (data not shown). Archaeal 16S rDNA gene were amplified with 

the DGGE primers from 29 distinct culture samples covering all the culture duration. One band was obtained for each 

sample, at the same height in all cases. 12 bands were excised, amplified by PCR, checked on a DGGE gel, and directly 

sequenced. A similarity of more than 97% was shared between those sequences on about 320 bp of the variable v3 

region of the 16S rRNA gene. The type sequence Apa10 (Table 1) presented 100% identity on 417 bp with seven 

matching organisms from the BLAST analysis, all belonging to the Pyrococcus genera. As a result only sequences 

related to Pyrococcus could be detected throughout the culture. Using the same procedure, the v3 region of bacterial 

16S rDNAs was amplified with specific DGGE primers (Table 1). Bacterial 16S rDNA genes were amplified 

successfully from nine distinct culture samples, from day 5 to day 35. Several dense bands were obtained at different 

heights. Amongst the 14 sequences obtained from excised bands, five of them represented by the sequence Apb7 (Table 

1), matched by a BLAST analysis with sequences of the Bacillus genus. These sequences were retrieved from samples 

between day 5 and 9. Nine sequences obtained from excised bands were closely related to the genus Marinitoga and 
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were retrieved between day 7 and 35. DGGE analysis revealed the phylogenetic affiliation of the dominant cultivated 

strains and showed a larger diversity among Bacteria than Archaea.  

 

Cloning-sequencing analysis of the culture in bioreactor. In the two archaeal libraries corresponding to the two 

culture samples T7 and T28, all the sequences belonged to the order Thermococcales (Fig. 2.). Within 59 clones 

partially sequenced from the earlier culture sample T7, two phylotypes were identified and were closely related to the 

genus Pyrococcus. The type sequences T7a-44 and T7a-60 shared 99% of similarity with Pyrococcus horikoshii as well 

as with Pyrococcus abyssi and Pyrococcus furiosus based on about 1500 pb. However, the complete sequences of these 

two representative clones shared only 96% of similarity, so that two distinct Pyrococcus species could have been 

cultivated. Within 49 clones partially sequenced from the second culture sample T28, 4% represented by the sequence 

type T28a-17 were related to the genus Pyrococcus, while 96% were closely related to the genus Thermococcus, 

represented by the sequence T28a-18 (Fig. 2.). The nearest strain according to the BLAST analysis was “Thermococcus 

sulfurophilus” (AF394925). Among the T7 bacterial library, six phylotypes were defined: one within the γ-

Proteobacteria (3% of the sequences), two within the ε-Proteobacteria (38% of the sequences), two within the 

Bacillus/Clostridiales group (36% of the sequences), and one within the Thermotogales order (23% of the sequences) 

(Fig. 3.). Interestingly, all the ε-Proteobacteria sequences were affiliated to uncultured bacteria, all originated from 

deep-sea hydrothermal environments. Within the Bacillus/Clostridiales group and the Thermotogales order, the 

retrieved sequences were related (with 99% of identity) to Caminicella sporogenes and Marinitoga piezophila 

respectively. Within the T28 bacterial library, 17% of the sequences were affiliated to uncultured ε-Proteobacteria. 

Nine per cent of the sequences were closely related to the genus Caminicella, and 61% to the genus Marinitoga. No 

sequences related to γ-Proteobacteria were retrieved in the T28 bacterial library and 13% of the sequences were 

assigned to deep-sea hydrothermal sequences of the Aquificales order, which were not retrieved in the earlier culture 

sample.  

 

Cloning-sequencing analysis of the cultures in flask. The medium was inoculated at 2% (vol/vol) with the same 

suspension of chimney sample. Total DNA was successfully extracted from the enrichment cultures in flask, after 45h 

and 65h of incubation at 90°C, and from a 20h subculture from the 45h culture. Only archaeal 16S rRNA gene could be 

amplified. Three archaeal clone libraries were constructed and 64 clones of each were sequenced. As a result, the 

sequences obtained were all affiliated to the Thermococcus genus. The nearest described species according to the 

BLAST analysis was Thermococcus barophilus (AY099172). No Pyrococcus neither bacteria could be detected among 

the strains cultivated in batch.  
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Discussion 

Compared to conventional enrichment culture in batch, a novel approach was used to investigate the microbial diversity 

of a hydrothermal vent chimney sample. The use of the gas-lift bioreactor technology to perform a continuous culture 

provide a controlled laboratory environment for the enrichment and cultivation of different microbial groups in 

hyperthermophilic conditions (90°C). pH and temperature were continuously monitored and adjusted. In addition, the 

culture was continuously sparged with N2, thus homogenising the medium and also eliminating possible toxic products 

from fermentation processes. Since the medium was continually renewed, the enrichment culture could be maintained a 

long time during which the analysis of the microbial population was performed. A dynamics in the cultivated microflora 

could be highlighted all through the enrichment culture in bioreactor, as it was already observed in anaerobic digestors 

[8, 17]. Actually, an evolution of the cell morphologies including rods and cocci could be observed, and modifications 

of the microbial diversity was ascertained through 16S rDNA sequences analysis. 

The diversity of microbial population was first assessed using the DGGE technique. Here we demonstrate the efficiency 

of the DGGE technique for studying thermophilic Archaea and Bacteria diversity and monitoring the population 

dynamics. Using this technique, we demonstrated that 16S rDNA sequences, retrieved from the continuous culture, 

were closely related to members of the genera Bacillus, Marinitoga and Pyrococcus. Cloning analysis of the microbial 

population was performed on two culture samples at day 7 (T7) and at day 28 (T28). Similarly to the DGGE technique, 

Pyrococcus, Caminicella, and Marinitoga related sequences were detected at day 7, whereas Pyrococcus and 

Marinitoga were detected at day 28. Cloning analysis revealed a larger biodiversity than DGGE, since members of 

Thermococcus, γ- and ε-Proteobacteria and Aquificales were only detected by cloning. Therefore our results confirm 

the need for combining several molecular methods to avoid the bias inherent in each one and to have a better knowledge 

of the microbial diversity.  

All the archaeal sequences, detected by DGGE and by cloning, were phylogenetically related to the order 

Thermococcales, and more specifically to the genera Pyrococcus and Thermococcus, known as heterotrophic and 

hyperthermophilic microorganisms. Interestingly, 16S rDNA sequences analysis showed that the Thermococcus strain 

enriched in flask was different from the one detected in bioreactor. Actually, the closest relative of retrieved 

Thermococcus 16S rDNA sequences from cultures in flask was Thermococcus barophilus [18], whereas sequences 

retrieved from the bioreactor were close to “Thermococcus sulfurophilus”, a sulphur-reducing archaeon also originated 

from the Rainbow site. These results emphasise the interest of using a continuous bioreactor to enrich cultures since 

providing evidence of a different diversity of Thermococcus strains as compared to that obtained in batch conditions. 

Beside their detection in the continuous bioreactor by molecular techniques, the two novel archaeal strains belonging to 

the genera Pyrococcus and Thermococcus have also been isolated by the dilution-to-extinction technique [1]. 
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Experiments conducted to look for the occurrence of microorganisms of the domain Bacteria indicated that no bacterial 

sequences could be obtained from the batch cultures in flask. In contrast, studies within the continuous bioreactor 

revealed a large bacterial diversity through the cloning-sequencing analysis of 16S rDNA (Fig. 2.). This again confirms 

the interest of using a different methodological approach to investigate the biodiversity of microorganisms inhabiting 

deep-sea hydrothermal vents. Amongst the 16S rDNA sequences detected in this study, close relatives of Caminicella 

sporogenes [3] and Marinitoga piezophila [1] were found. These species are known to grow at temperatures much 

lower than 90°C (maximal growth temperature of 65°C and 75°C respectively). The presence of these bacteria at 90°C 

may indicate (i) the existence of unknown species belonging to both genera and thriving in these conditions, (ii) a 

possible growth of close representatives of previously isolated Caminicella and Marinitoga spp. under 

hyperthermophilic conditions due to thermoprotective molecules released by the other members of the enrichment 

culture, or (iii) unknown interactions between bacteria and archaeons. Many sequences retrieved during this study were 

affiliated to uncultivated microorganisms belonging to the ε-Proteobacteria. They were in particular closely related to 

the hydrothermal sequences VC2.1 Bac31 and VC2.1 Bac1, from the Snake Pit deep-sea vent site, on the Mid-Atlantic 

Ridge [26]. In all the deep-sea vent microbial communities studied to date, ε-Proteobacteria phylotypes were shown to 

be dominant, accounting for 40-98% of the bacterial clone libraries. The ε-Proteobacteria detected in our enrichment 

culture at 90°C were adapted at higher temperatures than those described for all ε-Proteobacteria characterised so far, 

which do not grow over 70°C in pure culture [4]. These results confirm the importance of pursuing efforts for isolating 

new populations of hyperthermophiles from their natural environments. With regards to numerous reports, it is now 

more and more obvious that the combination of both molecular approach and cultivation is the best way so far to assess 

the microbial diversity of hydrothermal vent chimney. Molecular studies suffer from the drawback that metabolic 

properties can only rarely be inferred from the 16S rRNA sequences data alone. Likewise, limitations of molecular tools 

must be kept in mind [2]. In this respect, the use of both cultivation and molecular methods may help to answer these 

questions. 

The gas-lift bioreactor technology appears therefore to be an improved method to perform enrichment cultures. During 

the enrichment culture in the continuous bioreactor, different microorganisms were cultivated and a much larger 

diversity was exhibited as compared to cultures performed in flasks (batch conditions). Even new microorganisms 

inhabiting deep-sea hydrothermal vent could be evidenced, and isolation of two strains by subcultures in flask has 

already been successful. The use of the bioreactor for further enrichment experiments should contribute to better 

simulate hydrothermal physiological niches in the laboratory, and to reproduce environmental perturbations in vitro 

(temperature, pH, O2, nature and concentration of the substrates ...). This should improve our understanding of the key 

ecological roles played by microorganisms in the hydrothermal ecosystems. 
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Figures and tables 

 

Table 1. Identification of bands obtained from DGGE after BLAST analysis. 

 

Fig. 1. Phylogenetic relationship of archaeal 16S rDNA sequences as determined by neighbor-joining analysis. 

Palaeococcus ferriphilus was used as the outgroup. The numbers at the nodes are the bootstrap values (as percentages). 

Bootstrap values above 70% are displayed. For the analysis, 1402 sites were used, with 500 bootstrap replicates. Scale 

bar indicates the expected number of changes per sequence position.  

 

Fig. 2. Phylogenetic relationship of bacterial 16S rDNA sequences as determined by neighbor-joining analysis. The 

outgroup used was Aquifex pyrophilus. The numbers at the nodes are the bootstrap values (as percentages). Bootstrap 

values above 70% are displayed. For the analysis, 404 sites were used, with 500 bootstrap replicates. Scale bar indicates 

the expected number of changes per sequence position.  
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Table 1. 

 

Band Number of bands associatedd Closest relative % similarity 

Apa10a 12 Pyrococcus abyssi  L19921 100 

Apb7b 5 Bacillus sp. USC14  AF346495 99 

Apb9c 9 Marinitoga piezophila  AF326121 99 

 

a 417 bp used for BLAST analysis 

b 553 bp used for BLAST analysis 

c 555 bp used for BLAST analysis 

d more than 97% of similarity between the sequences of a same group 
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Fig. 1. 
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 Fig. 2. 
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	Anne Postec,1 Laurent Urios,1 Françoise Lesongeur,1 Bernard Ollivier,2 Joël Querellou,1 Anne Godfroy1 
	Culture conditions. The medium was sterilized by filtration (Sartroban, 0.22 µm) in 20 l Nalgene bottle containing the colloidal sulphur, previously sterilized by heating twice at 100°C for 30 min on two successive days. The culture was performed at 90°C and pH 6.5. The temperature was regulated and the pH was controlled by addition of either 1 N NaOH or 1 N HCl solutions. Moreover, the culture was sparged with N2 (0.1 v.v-1.min-1) to maintain anaerobic conditions, and to eliminate possible volatile fermentation end products that might inhibit the growth of fermentative microorganisms.  
	16S rDNA PCR-cloning analysis. Archaeal and bacterial DNAs were amplified using universal primers and PCR procedure previously described [31]. PCR products were then checked on a 0.8% (w/v) agarose gel and directly cloned using the TOPO TA Cloning( kit (Invitrogen) according to the manufacturer’s instructions. Clone libraries were constructed by transforming E. coli TOP10F’ cells. An archaeal and a bacterial libraries were constructed for two culture samples collected after 7 days (T7) and 28 days (T28) of culture. Three archaeal libraries were constructed from the enrichment cultures in flask.  
	DGGE monitoring of the culture in bioreactor. Total DNA was successfully extracted on samples between the 4th to the 50th day of culture. From the earlier samples, difficulties in DNA extraction were encountered, probably due to the very low cell density. The DGGE procedure was tested with 16S rDNA fragments from reference strains. Conditions were optimised to analyse separately archaeal and bacterial fragments. Fragments from the two Pyrococcus species, P. abyssi and P. glycovorans, could not be separated (data not shown). Archaeal 16S rDNA gene were amplified with the DGGE primers from 29 distinct culture samples covering all the culture duration. One band was obtained for each sample, at the same height in all cases. 12 bands were excised, amplified by PCR, checked on a DGGE gel, and directly sequenced. A similarity of more than 97% was shared between those sequences on about 320 bp of the variable v3 region of the 16S rRNA gene. The type sequence Apa10 (Table 1) presented 100% identity on 417 bp with seven matching organisms from the BLAST analysis, all belonging to the Pyrococcus genera. As a result only sequences related to Pyrococcus could be detected throughout the culture. Using the same procedure, the v3 region of bacterial 16S rDNAs was amplified with specific DGGE primers (Table 1). Bacterial 16S rDNA genes were amplified successfully from nine distinct culture samples, from day 5 to day 35. Several dense bands were obtained at different heights. Amongst the 14 sequences obtained from excised bands, five of them represented by the sequence Apb7 (Table 1), matched by a BLAST analysis with sequences of the Bacillus genus. These sequences were retrieved from samples between day 5 and 9. Nine sequences obtained from excised bands were closely related to the genus Marinitoga and were retrieved between day 7 and 35. DGGE analysis revealed the phylogenetic affiliation of the dominant cultivated strains and showed a larger diversity among Bacteria than Archaea.  
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