Southern Ocean overturning across streamlines in an eddying simulation of the Antarctic Circumpolar Current

Type Article
Date 2007-12
Language English
Author(s) Treguier Anne-Marie1, 6, England M2, Rintoul S3, Madec G4, Le Sommer J5, Molines J5
Affiliation(s) 1 : CNRS IFREMER UBO, Lab Phys Oceans, Plouzane, France.
2 : Univ New S Wales, CCRC, Sydney, NSW, Australia.
3 : CRC, CSIRO Wealth Oceans Natl Res Flagship & Antarct C, Hobart, Tas, Australia.
4 : Univ Paris 06, Lab Oceanog & Climat Expt & Approches Numer, Paris, France.
5 : Univ Grenoble 1, Lab Ecoulements Geophys & Ind, Grenoble, France.
Source Ocean Science (1812-0784) (European Geosciences Union (EGU)), 2007-12 , Vol. 3 , N. 4 , P. 491-507
WOS© Times Cited 44
Abstract An eddying global model is used to study the characteristics of the Antarctic Circumpolar Current (ACC) in a streamline-following framework. Previous model-based estimates of the meridional circulation were calculated using zonal averages: this method leads to a counter-intuitive pole-ward circulation of the less dense waters, and underestimates the eddy effects. We show that on the contrary, the upper ocean circulation across streamlines agrees with the theoretical view: an equatorward mean flow partially cancelled by a poleward eddy mass flux. Two model simulations, in which the buoyancy forcing above the ACC changes from positive to negative, suggest that the relationship between the residual meridional circulation and the surface buoyancy flux is not as straightforward as assumed by the simplest theoretical models: the sign of the residual circulation cannot be inferred from the surface buoyancy forcing only. Among the other processes that likely play a part in setting the meridional circulation, our model results emphasize the complex three-dimensional structure of the ACC (probably not well accounted for in streamline-averaged, two-dimensional models) and the distinct role of temperature and salinity in the definition of the density field. Heat and salt transports by the time-mean flow are important even across time-mean streamlines. Heat and salt are balanced in the ACC, the model drift being small, but the nonlinearity of the equation of state cannot be ignored in the density balance.
Full Text
File Pages Size Access
publication-3713.pdf 17 574 KB Open access
Top of the page

How to cite 

Treguier Anne-Marie, England M, Rintoul S, Madec G, Le Sommer J, Molines J (2007). Southern Ocean overturning across streamlines in an eddying simulation of the Antarctic Circumpolar Current. Ocean Science, 3(4), 491-507. Open Access version :