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Abstract—Soil Moisture and Ocean Salinity (SMOS) level 2 and5
level 3 products are simulated and characterized over a one-year6
time period. A simulator is first used to evaluate the sea surface7
salinity (SSS) error of level 2 SMOS products. An optimal interpo-8
lation method is then adapted to map the surface salinity in order9
to simulate a level 3 SMOS product. The quality of the simulated10
products is satisfactory. The mean error of the SSS at pixel scale11
is around 1 psu, and the error on the final gridded product fits12
the Global Ocean Data Assimilation Experiment requirements13
(0.2 psu).14

Index Terms—Brightness temperatures, microwave radiometry,15
optimal interpolation, remote sensing, sea surface salinity (SSS),16
Soil Moisture and Ocean Salinity (SMOS).17

I. INTRODUCTION18

THE European Space Agency’s Soil Moisture and Ocean19

Salinity (SMOS) satellite, which is scheduled for launch20

in 2008, will be equipped with the MIRAS instrument, an21

innovative 2-D synthetic aperture interferometer in L-band [1],22

[2]. One of the objectives is to retrieve sea surface salinity (SSS)23

from measured brightness temperatures with a precision of24

0.2 psu (practical salinity unit) with averages taken over25

200 × 200 km areas and ten days [as suggested in the re-26

quirements of the Global Ocean Data Assimilation Experiment27

(GODAE)].28

The primary objective of this paper is to quantify the benefits29

of future SSS measurements from SMOS by measuring their30

impact after the assimilation into an ocean forecasting system.31

This paper deals with the simulation and characterization of32

SSS level 2 and level 3 data. The use of these simulated data33

sets for an impact study in the Mercator Ocean model [3] is34

presented in [4].35

For clarification purposes, we remind that level 2 SMOS36

products will contain instantaneous SSS at pixel scale (around37

40-km resolution), whereas level 3 SMOS products will contain38

averaged SSS in boxes of 200 × 200 km and ten days.39
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This paper is divided into three main steps. 40

1) We use first an SMOS simulator to estimate and charac- 41

terize a level 2 SSS error. This study is conducted for year 42

2001 in the North Atlantic. 43

2) We simulate, for year 2003, SMOS level 2 products by 44

adding to the SSS from the Mercator Ocean model, an 45

error that is consistent with the characteristics obtained in 46

step 1). 47

3) Finally, these level 2 products and their associated errors 48

are used to generate and characterize SMOS level 3 49

products. This gridded product is obtained by using an 50

optimal interpolation technique that takes into account 51

SMOS characteristics (sampling and errors) as well as 52

SSS statistical characteristics (covariance). 53

In this study, the choice of models and data has been done 54

with special care. Nevertheless, it is a first step in the generation 55

of an SMOS level 3 product; several assumptions have been 56

done, in particular, the assumption of uncorrelated instrumental 57

noise, of a perfect theoretical emissivity model, and of perfect 58

correction of the brightness temperatures from external contam- 59

inations. It is obvious that once SMOS flies, it will be necessary 60

to perform an equivalent study with a better characterization of 61

the signal and error covariance models. 62

This paper is divided into four sections. Section II describes 63

the geophysical data sets we used to simulate an SMOS level 2 64

product and its error. In Section III, we present the methodology 65

to derive SSS errors and how these error characteristics are 66

used to simulate a realistic level 2 product for year 2003. In 67

Section IV, this level 2 product, and its associated error, is used 68

to generate and characterize an SMOS level 3 product. This 69

section contains, in particular, the description of the optimal 70

interpolation method we used. The last section contains con- 71

clusions and perspectives for this paper. 72

Fig. 1 shows a flowchart with the successive steps and tools 73

(models and data) used to perform this work. 74

II. DATASETS 75

In this section, we describe the data sets used to build level 2 76

and 3 products and their associated errors. Each data set is 77

related to a specific step of the processing. 78

A. For the Estimation of L2 SSS Errors 79

The SSS errors are estimated from the output of an SMOS 80

simulator by looking at the difference between retrieved SSS 81
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Fig. 1. Flowchart representing the study logic with the different processings,
data, and models: Box 1 represents the TB simulations, box 2 represents the
generation of SMOS L2 SSS for year 2003, and box 3 represents the generation
of SMOS L3 SSS.

and the reference SSS used in input (see Section III-A). Bright-82

ness temperatures that are measured in L-band not only depend83

on SSS but also on sea surface temperature (SST) (because,84

together with the SSS, it influences the dielectric constant85

of sea water) and wind speed (WS) (because it provides the86

information on surface roughness). Therefore, during the SSS87

retrieval process, first guess values for WS, SST, and SSS are88

needed. Once SMOS is in flight, these first guess values will89

be provided by auxiliary data. SST and WS will be extracted90

from the European Centre for Medium range Weather Forecasts91

(ECMWF) model, whereas the SSS will be provided by the92

climatology. To avoid geographically correlated errors, we used93

independent data sets for the reference and auxiliary values (see94

[5] for an impact study of potential correlations if this effect is95

not taken into account).96

The reference data sets for SSS and SST are from the97

Mercator Ocean model PSY1-V1, with the SAM1V1 assim-98

ilation system [3], and those for WS are from the ECMWF99

model. The auxiliary data (used as first guess values) come from100

Levitus monthly climatology for SSS, Reynolds for SST, and101

QuikSCAT for WS. ECMWF started assimilating QuikSCAT102

winds after 2001; thus, the analysis had to be performed no later103

than 2001. It happens to be the operational start of PSY1-V1,104

Fig. 2. Functional scheme of the simulator.

which assimilated only sea level anomaly from altimetry (and 105

not SST yet). Thus, year 2001 of PSY1-V1 seemed to be a good 106

candidate for this error study. 107

These data are used to provide a statistical estimation, lead- 108

ing to the characterization of the SMOS L2 SSS error. 109

B. For L2 SSS Estimation 110

One of the goals of this study is the generation of realistic 111

SMOS SSS level 2 and 3 products to be assimilated in the 112

Mercator Ocean model. To have meaningful interpretation of 113

assimilation results, the assimilated SSS should be independent 114

from the one generated by the model itself. Therefore, it was 115

chosen that the SMOS SSS should be estimated from the 116

PSY2-V1 version of the Mercator Ocean model for year 2003 117

and assimilated in another version (PSY1-V2). 118

C. For the SSS Time and Space Correlation Estimation 119

The data set, which is used to estimate the SSS correlation 120

scales needed to parameterize the optimal analysis, is the output 121

of a dedicated CLIPPER model run that did not use any SSS 122

relaxation toward climatology [5]. The available years are 1997 123

to 1999. 124

III. SIMULATION OF SMOS L2 OBSERVATIONS: 125

SSS AND ITS ASSOCIATED ERROR 126

A. Error Characterization 127

1) SMOS Simulating Tool: A detailed description of the 128

tool we used can be found in [6]. This simulator combines 129

the Ph. Waldteufel simulating tool (see [7]) that takes into 130

account SMOS specificities, and a theoretical orbit provided by 131

Y. Kerr (sun-synchronous with a local solar time of 6:00 A.M. 132

and circular with a repetition of about three days). An illustra- 133

tion of the simplified functionality of the simulator is shown 134

in Fig. 2: TBs (3) are calculated with a direct model (2) from 135

a set of reference geophysical parameters (1), and a noise 136

representing the instrumental and reconstruction error is added 137

to the TBs (4). This noise, which is shown in Fig. 3, depends 138

on both the incidence angle and distance across track and is 139

consistent with other simulation studies [8]. These noisy TBs 140

represent the SMOS measurements and are used to retrieve 141

SSS (7) with an inverse algorithm (6) and a set of auxiliary 142
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Fig. 3. Radiometric sensitivity within the SMOS field of view. Color scale
from 1 to 4 K.

parameters (5). Independent data sets used for reference and143

auxiliary parameters are described in Section II-A.144

Once the measured TBs (4) are simulated (they correspond145

to the SMOS measurements), an iterative method that is based146

on the Levenberg–Marquardt algorithm retrieves the SSS. Dur-147

ing the inversion, auxiliary data (5) are used as the first guess to148

compute the TBs which are then compared to the “measured”149

ones. These first guess values are adjusted to minimize a cost150

function. This cost function contains the sum of the squared151

difference between the “measured” and simulated TBs plus152

the squared difference between the retrieved and auxiliary153

parameters (SST and WS). All differences are weighted with154

their respective uncertainties. When the minimum is reached,155

the modified auxiliary data become the retrieved data. Then, the156

error is obtained by taking the difference between the reference157

SSS and this retrieved SSS.158

2) Estimation of the Instantaneous SSS Error for Year 2001:159

The need to estimate a statistical SMOS L2 error is twofold.160

First, it is used to build an instantaneous error field to create161

synthetic SMOS L2 SSS, and second, it is the SSS error162

introduced later in the objective analysis and in the ocean model163

during assimilation [4]. When SMOS is in flight, validation164

activities should allow us to estimate a statistical error on the165

SSS field, which could be used the same way.166

The rms of the difference between the retrieved and reference167

L2 SSSs gives an estimation of the error on the SSS as retrieved168

from the SMOS measurements. By construction, this error in-169

cludes the error due to noise on brightness temperatures (box 4170

in Fig. 1) that depends on the position of the pixel within the171

field of view.172

The SMOS simulating tool presented in Section III-A-1173

is used over one full year (2001) using the data presented in174

Section II-A. Fig. 4 shows an example of the error (retrieved–175

reference SSS) map obtained for January 10, 2001. As ex-176

Fig. 4. Error (retrieved–reference SSS) for January 10, 2001–PSY1-V1 area.
Color scale from 0 to 2 psu. 4/C

Fig. 5. Estimated level 2 SMOS SSS rms error on monthly bins for
January 2001. Color scale from 0 to 3 psu. 4/C

pected, the error is often lower than 1 psu and increases in 177

high-latitude regions, where the SST is lower, and thus, the 178

sensitivity of the measurement to SSS is weaker. 179

Then, these instantaneous results are gathered in monthly 180

bins to allow a decent statistical representation of the error. 181

The rms SSS error field found is filtered to conserve only the 182

large-scale structure observed by the future SMOS instrument 183

(see Fig. 5 for the month of January 2001). As previously 184

mentioned, the error is strongly dependent on SST. The case 185

of the January month is extreme for this geographical area, and 186

the errors obtained for the month of July are, for example, much 187

lower (figure not shown). 188

The smoothing performed allows a more general estimate 189

since we estimate the rms errors from 2001, and we will apply 190

them for the estimation of instantaneous error for 2003. The 191

errors in the Gulf Stream, for example, will not be strongly 192

dependent on a very “accurate” position of the jet, thus allowing 193

for interannual variation of the position of the front. 194

To estimate the error to add to the SSS daily fields from 195

the Mercator Ocean model PSY2-V1 (that will simulate SMOS 196

SSS for year 2003), the monthly SSS statistical error obtained 197

over 2001 was linearly interpolated every day, and then, a 198
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Fig. 6. Reconstructed SMOS L2 SSS error for January 2003. Color scale from
0 to 2.5 psu.4/C

Gaussian noise [called term b in (6)] was generated every day199

for each point using the local characteristics of the statistical200

noise (Fig. 6). As an example of the simulation, an instanta-201

neous SSS error at pixel scale is 0.855 psu for January 15,202

2001 (using the simulating tool) and is 0.858 psu using our203

noise reconstruction method for January 15, 2003. Therefore,204

one can see that the error field is well approximated. One can205

also see the strong error gradient between warm areas (around206

the equator) with an increasing error as the temperature cools207

off toward the northern pole.208

B. Generation of SMOS L2 SSS209

Since the SMOS errors can now be estimated in a fairly210

trusting fashion, the generation of L2 SMOS SSS is computed211

from the daily SSS fields from the Mercator Ocean model212

PSY2-V1 sampled at a 1/3◦ (roughly the 40 × 40 km from213

an SMOS mean pixel size) to which we add a Gaussian noise214

with the characteristics calculated in the previous section. This215

field is then interpolated on the pixel location for each day. An216

example of the simulated daily SMOS SSS field for January 15,217

2003 is shown in Fig. 7. The top panel represents the SSS field218

extracted from the Mercator Ocean model, the middle panel219

represents the error field estimated using the method presented220

in Section III-A, and the bottom panel represents an L2 SMOS221

field to be used either in input to generate an L3 product to be222

directly assimilated in the ocean forecasting system.223

IV. QUALITY ASSESSMENT OF SMOS224

GRIDDED PRODUCTS (L3)225

A. Method Description226

The L3 SMOS gridded product is defined as a 200 ×227

200 km × 10 days product with an accuracy requirement of228

around 0.2 psu. One of the main interests of such a product229

is a synthesis of the information as well as the reduction of230

the observation error. This is particularly important in the case231

of SMOS measurements that exhibit relatively strong errors232

(around 1 psu with maximum values that can reach 2.5 psu233

for high-latitude regions). It also presents the advantage to be234

easy to use for scientific investigation such as the long-term235

monitoring of the surface salinity variability.236

Fig. 7. Steps of the construction of the synthetic SMOS L2 SSS for
January 15, 2003. (Top) Mercator model SSS (color scale from 28 to 38 psu),
(middle) estimated SSS noise (color scale from −1 to 1 psu), and (bottom)
estimated SMOS L2 SSS (color scale from 28 to 38 psu). 4/C

The approach chosen to generate the SMOS L3 product is 237

based on optimal interpolation, a methodology firstly intro- 238

duced in oceanography by Bretherton et al. [9] and widely 239

applied to other ocean variables such as sea level altimetry [10], 240

SST [11], or ocean color [12]. The method estimates a value of 241

a field at a given point in space and time from the observations 242

unevenly distributed in space and time. It is based on the 243

a priori knowledge of the statistical properties of the field and 244

of the observations covariance errors. 245

1) Optimal Interpolation Method: In practice, the L3 246

SMOS SSS value θest is estimated from the L2 SMOS observa- 247

tions φobs as follows: 248

θest(x) =
N∑

i=1

N∑
j=1

A−1
ij CxjΦobsi (1)
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where249

Φobsi = Φi + εi the observed measurement, where Φi250

is the true value of SSS, and εi is the251

measurement error;252

Aij the covariance matrix between the obser-253

vations, as in (2);254

Cxj the covariance vector between the obser-255

vations and the point to be estimated,256

as in (3).257

Aij = 〈Φobsi ,Φobsj 〉 = 〈Φi,Φj〉 + 〈εi, εj〉 (2)

Cxj = 〈θ(x),Φobsj 〉 = 〈θ(x),Φj〉 . (3)

The variance of the error associated to the estimation is258

given by259

e2 = Cxx −
N∑

i=1

N∑
j=1

CxiCxjA
−1
ij . (4)

The implementation and the configuration of the method are260

defined by specific parameterizations that are described next.261

B. Adaptation and Parameterization of the Method262

1) Preprocessing of the Data: The input data of the objec-263

tive analysis algorithm are expected to be centered. A practical264

way to center them is to use a “first guess.” Different options265

are possible, starting from the previous analysis, as far as266

removing a local mean or a climatological field. This problem267

was already addressed for SST [11] for instance. Both solutions268

present advantages and drawbacks. However, we choose to269

use climatology for two reasons. First, it allows us to have270

consistent statistics for the covariance function calculation, and271

second, the SMOS mission is not yet launched, and in this case,272

it seems preferable to use a climatology. The first guess consists273

in the 2003 yearly mean SSS computed from the Mercator274

Ocean PSY2-V1 simulations. Then, the L2 SSS observations275

are used in terms of anomalies with respect to this mean.276

Note that the choice of signal covariance functions, as well277

as errors, should take into account the scales to be resolved278

in the SMOS level 3 products. For example, if the objective279

is to map an SSS signal on a 2◦ × 2◦ × 10 days grid, the280

signal covariance function should represent only the large-scale281

SSS signal, and measurement errors should include subgrid282

representation errors (i.e., variability smaller than 2◦ × 2◦ and283

10 days).284

2) Variance: The signal variance is deduced from the year285

2003 PSY2-V1 runs (Fig. 8) estimated at GODAE scales.286

Low variability (< 0.05 psu2) characterized the North Atlantic287

Ocean. Values greater than 0.5 psu2 correspond to the Gulf-288

stream extension and North Atlantic current. At lower boundary289

of our area, we can distinguish the high tropical variability.290

Signature of ice melting (0.3 psu2) is found in high latitudes.291

3) Correlation Scales: The estimation of the correlation292

scales is performed from the CLIPPER free run model293

ATL6-V7 [5]. This simulated SSS, which is not constrained294

Fig. 8. SSS variance fields deduced from year 2003 of the daily PSY2-V1
Mercator Ocean model simulations. Color scale from 0 to 0.5 psu2. 4/C

to climatology, is free to reproduce the natural SSS variability 295

related to the forcing fields (evaporation, precipitation, and 296

runoff) and to the ocean dynamics. Although the atmospheric 297

forcing and the model have known errors, it is expected that the 298

space and time scale variations of SSS are enough realistic to 299

characterize the correlation scales of SSS field. 300

Time and space correlation scales are calculated on 1/3◦ grid 301

from three years of data (1997–1999). The observations are 302

selected within a radius of 250 km and 30 days. The empirical 303

correlation function is modeled by using the following classical 304

function: 305

Corr(x, y, t)=
(
1+ ar+

1
3
(ar)2− 1

6
(ar)3

)
e−are−( t

Lt )
2

(5)

where r is such that r2 = x2/L2
x + y2/L2

y , and a = 3.336912. 306

Lx and Ly are the space correlation radii mentioned previously, 307

and t and Lt are, respectively, the time and the space correlation 308

radius. 309

This a priori correlation function is then fitted to retrieve the 310

spatial structure of the zonal, meridional, and time correlation 311

scales for SSS. 312

The zonal [Fig. 9(a)] and meridional scales [Fig. 9(b)] are 313

the highest at the equator and in the tropics (at around 380 and 314

170 km, respectively) which correspond to the typical equato- 315

rial ocean dynamics. The length scales are lower away from 316

the equator due to the mesoscale activity. Some specific areas 317

have large scales, for example, at roughly 32◦ S–35◦ W, where 318

zonal length scales reach 450 km above the Rio Grande Rise. 319

The temporal decorrelation scales [Fig. 9(c)] along the equator 320

are low at 10–15 days, which relate well with the equatorial 321

dynamics. It rises at midlatitude from 20 days in region of 322

mesoscale activity (such as the Gulf Stream) up to 40 days in 323

regions of low eddy activity. Large time scales are expected 324

in zones of low variability; however, it is not quite clear why 325

large scales are found in areas such as west of Gibraltar or in 326

the Labrador Sea where the variability is not specifically weak. 327

This could be due to the seasonal cycle. 328

The derived space and time scales of SSS can be used 329

to define sampling requirements for the observation of SSS 330

mesoscale variability from SMOS. A ten-day time sampling 331

seems appropriate for most of the areas. A 2◦ × 2◦ spatial scale 332
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Fig. 9. (a) Zonal (color scale from 50 to 380 km), (b) meridional (color scale
from 40 to 280 km), and (c) time (color scale from 10 to 58 days) correlation
scales deduced from three years of CLIPPER free run model.4/C

is, however, adequate only in tropical regions: in mid and high333

latitudes, a spatial sampling that is better than 100 km is needed334

to resolve a significant part of the mesoscale variability.335

Fig. 10. Top: Annual rms of the SSS mapping error, Bottom: Absolute value
of difference between the L3 product (color scale from 0 to 0.5 psu) and
reference field (color scale from 0 to 0.5 psu). 4/C

Fig. 11. Mapping error relative to the signal variance observed by Mercator
PSY2-V1 (a ratio of 0.6 corresponds to an error of 60% of the signal variance).
Color scale from 0 to 1.2. 4/C

Clearly, the scales are varying in space. However, for simpli- 336

fication purposes, we will first look at spatially and temporally 337

constant scales in this paper. We thus choose mean values for 338

the North Atlantic, with a zonal scale of Lx = 300 km, merid- 339

ian scale of Ly = 200 km, and temporal scale of Lt = 10 days. 340

4) Observations Error Covariance: The a priori error co- 341

variance needed for the objective analysis scheme is described 342

in Section III-A2. Due to the important seasonal variability of 343

the measurement noise intensity, we used the monthly estima- 344

tions. However, it is important to note that this study allows 345

us to estimate only the white noise part of the measurement 346

errors of the future SMOS data. It did not take into account 347
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all the different possible sources of error and, in particular,348

the long wavelength correlated errors that may affect the349

SMOS level 2 product (galactic noise, correlated errors of the350

auxiliary data, calibration errors on the brightness temperatures351

field. . .). The computation of the error covariance will be352

calculated as follows:353

〈εi, εj〉 = δijb
2 + E (6)

for points i and j, where b2 is the variance of the white354

measurement noise (see Section III-A2 for b determination). E355

is an additional term, not used here, that will allow to take into356

account the correlated SSS error or the bias between different357

sensors in order to provide an homogeneous level 4 SSS field,358

combining SMOS, Aquarius [13], and in situ (from ARGO359

network) observations.360

C. Results and Discussion361

SMOS L3 SSS maps and associated errors are calculated362

with the methodology described previously. At a 2◦ regular grid363

(corresponding to the GODAE product), 51 weekly maps are364

thus obtained for the whole year 2003.365

One way to verify the accuracy of the SSS estimation is366

to look at the consistency between the formal error deduced367

from the objective analysis and the differences between the368

estimated field and the reference field. The annual rms of the369

SSS mapping error (top) and the absolute value of the difference370

between the L3 product and the reference field filtered at the371

GODAE scales (bottom) are shown in Fig. 10. One can note372

the very good consistency between the two maps both for the373

amplitude of the error and its spatial structure. Some important374

differences are situated in high latitudes close to the coast375

(Greenland and Nordic Sea) where the formal error underesti-376

mates the error. This is probably due to local processes, such as377

ice melting and advection of fresh water from river runoff, that378

are not well described in our covariance model. In contrary, it379

seems that the error is overestimated in the western part of the380

tropics.381

On average, the error associated to the L3 product cor-382

responds to the GODAE product accuracy requirement with383

values that are lower than 0.2 psu almost everywhere, except384

in the Gulf-Stream area where the error can reach 0.3–0.4 psu.385

It is important to note that the error of 0.2 psu represents a mean386

value which does not take into account the local variability of387

the salinity. Indeed, 0.2 psu could correspond to 10% or 100%388

of the signal variance. It is shown in Fig. 11 representing the389

ratio between the mapping error and the signal variance. The390

error is lower than 40% of the signal variance in the main part of391

the North Atlantic Ocean, with value smaller than 10% in area392

of mesoscale variability. On the other hand, highest errors are393

found in the Northeast Atlantic. This area is characterized, first,394

by very low variance (< 0.03 psu) and, second, by important395

error in the SMOS data [Fig. 7(b)] due to the low sensitivity of396

the SMOS measurement in cold waters. However, the accuracy397

of the L3 product seems satisfactory in the Labrador Sea despite398

the large error contained in the L2 SMOS data.399

V. CONCLUSION AND PERSPECTIVES 400

In this paper, we described a methodology used to simulate 401

realistic SMOS level 2 and level 3 products that are to be 402

assimilated in the Mercator Ocean forecasting system. We first 403

used an SMOS mission simulator to estimate the SSS error of 404

level 2 SMOS products. An optimal interpolation method was 405

then used to generate and simulate level 3 products. 406

The quality of the simulated products is satisfactory. The 407

mean error of the level 2 SSS is around 1 psu, and the error 408

of the level 3 SSS fits the GODAE requirements (0.2 psu). 409

The proposed methodology is used here to simulate SMOS 410

level 3 products. However, the addition of other SSS observa- 411

tions coming from other satellites (e.g., Aquarius) and in situ 412

instruments (Argo and thermosalinograph) is already possible, 413

and a similar Observing System Simulation Experiment study 414

with these new data sets should be led in a near future [4]. 415

It would be interesting, in particular, to analyze the consis- 416

tency and the complementarities between SMOS satellite and 417

Argo array. Indeed, one of the applications of SMOS product 418

concerns the provision of salt fluxes information similarly as 419

the SST does for net heat fluxes. The two observing systems 420

provide a large-scale information of the surface salinity field 421

with specific characteristics: good coverage with relatively high 422

error (both white noise and bias) for SMOS and accurate 423

measurements for Argo but with aliasing of mesoscale signals 424

induced by the sparse sampling of the array. The merging of 425

the two types of observations should allow us to reduce the bias 426

contained in SMOS data and to provide unbiased maps of SSS, 427

which is crucial for modelers. 428

In this study, geophysical data have been chosen with special 429

care. In particular, we decided to provide the independence 430

between geophysical data used to simulate the TBs and those 431

used as auxiliary parameters in the retrieval process by using 432

two different existing data sets, whereas most of past studies 433

are content with only adding a white noise. 434

Nevertheless, important error sources have been omitted. The 435

major one is probably the error in the theoretical emissivity 436

model. We used the same theoretical model to simulate and 437

invert the TBs. This implies the assumption that the model is 438

perfect. 439

The second assumption concerns the instrumental noise. We 440

created a noise with quite realistic variations in the field of 441

view, but assumed uncorrelated values. When SMOS flies, we 442

will probably face with correlated noise (between polarization, 443

from one pixel to the other. . .). The third assumption concerns 444

the contamination of the brightness temperatures by exter- 445

nal sources (sun glint, galactic noise, atmospheric effect, and 446

Faraday rotation). When neglecting entirely these terms in the 447

TBs, we assume that these effects will be perfectly corrected, 448

which is surely not true. 449

The optimal interpolation provides a formalism to introduce 450

the full covariance errors matrix associated to the observations. 451

Therefore, the main challenge will remain in our capacity to 452

characterize the spectrum of the SMOS measurement errors. In 453

the same time, it will be necessary to improve our represen- 454

tation of the SSS covariance functions by taking into account 455

local processes such as ice melting or advection of fresh water. 456
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