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Abstract:  
 
The influence of winding pattern on the mechanical response of filament wound glass/epoxy cylinders 
exposed to external pressure is studied by testing cylindrical specimens having stacked layers with 
coincident patterns in a hyperbaric testing chamber. Different analytical models are evaluated to 
predict buckling pressure and modes of thin wall cylinders (diameter to thickness ratio d/h of 25) and 
satisfactory predictions are obtained which are in the same order of magnitude that those obtained in 
experimental results. Test results show no evident pattern influence on either strength (implosion 
pressure) or buckling behavior (buckling modes) of thin wall or thick wall (d/h of 10) cylinders.  
  
 
Keywords: A. Polymer-matrix composites; E. Filament winding; C. Buckling; C. Cylindrical shells 
 
 
 
 
 
 
 

1. Introduction 
 

 
Marine and oceanographic research uses unmanned instrumented vessels for deep ocean research; 

some of them are made using composite materials and fabricated by the filament winding process. 

These vessels are mainly exposed to external pressure during service. Design and analysis practices 

for this kind of structure use the main assumptions of classical laminate theory [1]. In reality the 

reinforcement structure of filament wound cylinders is more complex than a classical laminate, 

because fibres form a pattern which is absent in laminates. These patterns have some zones of 

undulations and others where the material can be considered as a laminate. Filament wound 
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composite cylinders may have different reinforcement patterns but the same global physical 

characteristics, such as volume fractions, thickness and number of layers. Several works have been made 

in order to evaluate these properties as a function of process parameters, a remarkable research is the one 

made by Koussios [2], other researches concern modification of FEM packages by taking in to account 

process parameters, this is the case in the work of Zhao et al [3]. 

The present work investigates the influence of pattern architecture and dimensions on the mechanical 

behaviour, under external pressure, of filament wound cylinders. Such an influence may be revealed by a 

loss of strength or by a change in buckling or failure modes. 

 

Among the many research papers dealing with buckling of cylindrical shells, those of Donnell [4], 

Flügge [5], and Cheng and Ho [6] are regularly cited. Several studies have shown that buckling behaviour 

is sensitive to geometrical defects. These defects may be thickness variations due to the fabrication 

process. Modification of buckling theories to take into account geometrical defects on the cylinder wall 

was studied for example by Peterson et al [7], Tennyson and Smithses [8] in the 1970’s and 80’s and 

Fuchs et al [9]. In the 90’s, there is the work of Hahn et al [10] concerning compression buckling and 

Messager [11] concerning thickness defects on external pressure buckling behaviour. In those studies, 

imperfections were taken into account as axial thickness harmonic variations. Imperfection sensitivities of 

naval structures have been studied by Elghazouli et al [12] who performed compression. In the same way, 

Carvelli et al [13] tested buckling behaviour for technological demonstrators at sea. Those studies are 

based, mainly, on experimental measurement of thickness or surface topography, some of them also 

represent reinforcement structure through a thickness variation, but in filament wound cylinders material 

heterogeneity is not necessarily coupled with thickness variation. 

 

Hahn et al [10] observed a dependency of buckling modes on winding pattern: when pattern size was 

similar to the expected buckling mode, the critical buckling stress reached a minimum value, Although 

that work deals with pattern influence on composite cylinders [10] under uniaxial compression loading, 

one might suppose that a similar pattern sensitivity exists for biaxial compression (external pressure). In 

order to examine this, in the present study, a series of implosion tests was carried out in a hyperbaric 

chamber, on cylindrical specimens of two pattern sizes and two wall thicknesses, made of continuous 
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glass roving and epoxy resin. In parallel, several theoretical models to predict buckling pressure and 

buckling modes have been evaluated. 

 

In the present paper, the winding pattern architecture produced by the filament winding process is 

presented first. Next, an evaluation of several models is presented using theoretical properties and, finally, 

results from axial compression and hyperbaric implosion tests are presented. 

 

2. Winding and pattern architecture 

The filament winding process consists of winding a glass roving around a cylindrical mandrel. The roving 

is impregnated with resin before being wound, and roving tension can be adjusted in order to control 

composite compaction. The roving dispenser displacement and mandrel rotation are synchronized by 

numerical control equipment similar to that used in machine tools. 

 

This fabrication process can produce three types of winding, circumferential, helical and polar [14] [15] 

[16] [17]. Here, only the pattern produced by helical winding is treated. 

 

Helical trajectories are used for winding angles between 5 and 80°. With this type of winding it is 

possible to cover cylindrical or conical surfaces but it is not adapted to cover extremities, for example 

hemispherical ends [17]. 

 

For this type of winding, the machine used is horizontal, normally with three degrees of freedom: axial, 

radial and rotation around the central axis (see Figure 1). 

 

 

Fig. 1. Filament winding machine (LGMT PRO2COM) and its displacements. 
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This type of machine has a carriage which moves in the axial direction and is provided with a roving feed 

system [18]. Roving is wound over the mandrel which turns at the same time as the machine spindle. 

Combined rotational and axial movements produce double helical trajectories and a rhomboid shape 

pattern (see Figure 2). When the entire surface is covered, there is, in reality, a double weave ply layer, 

equivalent in volume to two unidirectional layers. 

 

 

Fig. 2. Rhomboid pattern architecture produced by helical winding. 

 

Within each rhomboid, one can distinguish two parts each one comprising half of the rhomboid and 

having one edge with a unidirectional layer. Between both parts there is a circumferential undulation zone 

where rovings cross over. At each rhomboid side, there is a helical undulation zone. Each rhomboid 

constitutes a minimal periodical structure forming the winding pattern, which can be called the unit cell 

(see Figure 2). Detailed information about kinematics and its relationship with design and fabrication can 

be found in Koussios [2]. 

 

3. Specimen characteristics and conditioning 

Cylindrical specimens used in this research were 350 mm long, 125 mm internal diameter, thickness 

4.4 mm (thin walled) or 12.6 mm (thick walled), 250 mm long in the central parallel section, and with 

a 90° winding reinforced section at both extremities. Dimensions are presented on Figure 3. Winding 

angle in the central section has a value of ±55°, which is a classical winding angle for pressure vessels, 

where hoop stress is twice the value of axial stress. Two pattern architectures were selected, 1 or 5 unit 

cells along the circumference (see Figure 4). Specimens were fabricated using a 3.5 mm width continuous 

roving. The resin system was LY 5052 / HY 5052. 
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Fig.3. Specimen dimensions. 

 

 a b 

   

Fig. 4. Specimens showing pattern architecture; (a) 1 unit cell pattern, (b) 5 unit cell pattern. 

 

Layer patterns were placed to be stacked coincident through the thickness direction, in order to amplify 

possible unit cell size influence on mechanical behaviour. Winding angle was strictly maintained for all 

layers, this produced a slight increase in cell size with thickness. Mean measured thicknesses were 

4.4 mm and 12.6 mm for thin walled and thick walled cylinders respectively. The standard deviation for 

thin walled cylinders is 0.16 mm and for thick cylinders is 0.26 mm. Once specimens were wound and 

cured, at 50°C for 15 hours, both extremities were machined flat, in order to obtain final dimensions. 

Fiber volumetric fractions were obtained by burn off method, giving a mean of 51% with a standard 

deviation of 2.1%. 

 

4. Buckling analysis 

4.1 Mechanical properties 

Mechanical properties and constitutive relations are initially calculated, in order to have a first approach 

for the cylinder’s behavior, taking into account as much as possible the winding architecture. For this, a 

unit cell is the starting point (see Figure 5). As was stated in the previous section, the filament winding 

unit cell is actually formed by two layers, each layer has balanced fiber orientations, half of the volume of 

each layer shows a fiber orientation +α and the other half –α, as shown in Figure 5. This characteristic 
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allows a filament wound layer to be considered as composed of two unidirectional plies both acting 

together as an orthotropic layer without extension - bending nor extension - torsion coupling. 

 

 

Fig. 5. Component zones in a filament winding unit cell. 

 

The stiffness matrix for a filament wound layer can be obtained from individual stiffness matrices of 

equivalent unidirectional component layers by a rule of mixtures considering each unidirectional layer as 

having a volume fraction of 0.5 and using equation 1, because a filament winding layer has two fiber 

directions (+55° and -55°) crossed and superposed like a textile composite, where 50% of fibers are lying 

in one direction and 50% in the other direction. 

k
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where (Qij)k is the stiffness matrix element ij  of the k unidirectional layer, and (Qij)fw is the stiffness matrix 

element ij  of the filament wound layer. 

 

The shell constitutive relationships can be obtained using classical laminate theory. Knowing already that 

each filament wound layer is orthotropic, the shell constitutive relation can be written as: 
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where Ni is the force / unit length acting on the shell in the i direction, and Mi is the moment / unit length 

acting on the shell in direction i. ε0
i is the membrane strain following i direction, and κi is the shell 

curvature in the i direction. Elements of the shell stiffness matrix can be obtained using equations 3 and 4: 

∑
=

=
−−=

nk

k
fwijkkij )Q)(hh(A

1
1

 (3) 

∑
=

=
−−=

nk

k
fwijkkij )Q)(hh(D

1

3
1

3

3

1

 (4) 

where hk is the through thickness position of the layer within the laminate, the laminated stacking 

sequence is sketched in Figure 6. 

 

 

Fig. 6. Stacking sequence and layer position. 

 

Table 1 

Mechanical properties of unidirectional layer [19] 

E1 (MPa) 39000 

E2 (MPa) 8600 

ν12 0.28 

ν21 0.0617 

G12 (MPa) 3800 

 

Considering the properties of an unidirectional layer presented in Table 1, taken from reference [19], the 

shell constitutive relations can be evaluated numerically, first by obtaining individual stiffness matrices of 

each unidirectional layer, applying equation 5, considering that Ei is the Young’s modulus in the i 

direction, ν12 and ν21 are the axial and circumferential Poisson ratios respectively and G12 is the shear 
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modulus of the shell, where 1 and 2 are the principal directions in the unidirectional ply. The reference 

coordinate system is shown on Figure 7. 

 

 

Fig. 7. Layer orientation with respect to cylinder coordinates. 
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Equation 5 is written following principal directions (see Figure 7), so these equations must be 

transformed in directions following the composite shell axial and circumferential directions (see Figures 5 

and 7). After transformations the stiffness matrix of each individual unidirectional layer can be written as 

below, equations 6 and 7: 
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Now using equation 1, the filament wound layer stiffness matrix becomes (equation 8): 
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Using the shell stacking sequence and the positions described in Table 2, and equations 3 and 4, the shell 

constitutive relation elements (Aij and Dij) are calculated and presented in Table 3. 
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Table 2 

Specimen layer geometrical data 

layer k orientation θk (°) thickness ek (mm) hk (mm) hk-1 (mm) 

1 ±55 0.63 -1.575 -2.205 

2 ±55 0.63 -0.945 -1.575 

3 ±55 0.63 -0.315 -0.945 

4 ±55 0.63 0.315 -0.315 

5 ±55 0.63 0.945 0.315 

6 ±55 0.63 1.575 0.945 

7 ±55 0.63 2.205 1.575 

 

Table 3 

Calculated and experimental A and D constant values 

Elastic constants Calculated A (N/mm) and D values (Nmm) Experimental A (N/mm) and D (Nmm) values 

A11 55888 59857 

A12 38393 36909 

A21 38393 36936 

A22 102547 98965 

A66 44345 44345 

D11 90577 97009 

D12 62222 59818 

D21 62222 59862 

D22 166196 160390 

D66 71868 71868 (calculated value) 

 

4.2 Calculated buckling modes and pressure 

Buckling modes and pressures were calculated using several different cylindrical shell buckling models 

from the literature, those models are: Flügge’s model [5], a modified Flügge model [20], the Cheng and 

Ho model [6], the Donnell model [4], and a modified version of Sanders’ model proposed by 

Messager [11]. 
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For each model, equilibrium equations are presented, as well as kinematic relationships and a proposed 

buckling solution. Nomenclature and the meaning of variables are presented schematically in Figure 8, 

where equilibrium of forces and moments in a cylindrical shell differential element are represented. 

 

a b c 

 

Fig. 8. Shell differential element equilibrium; (a) force equilibrium, (b) moment equilibrium, (c) pressure 

acting on shell. 

 

Equilibrium equations of the modified Flügge model [20] [5] are presented in equations 9 to 11. 
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where u, v and w are the shell displacements following axial, circumferential and radial directions, r is the 

shell radius (radius of the median shell surface), and p is the external pressure acting on the shell (see 

Figure 8). 

For this model kinematic relationships are given by equations 12 to 17: 
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The proposed solution is the system of equations from 18 to 20 and the reference coordinate system for 

this model is presented in Figure 9. 
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where U, V and W are amplitudes of displacements u, v, w respectively, m is the number of half weaves in 

the axial direction, and n is the number of weaves in the circumferential direction. 

 

 

Fig. 9. Coordinate system for the modified Flügge model. 

 

For the Flügge model, the equilibrium equations are: 
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The kinematic relationships are the same as in the modified Flügge model (equations from 13 to 17), the 

solution proposed is presented in equations from 24 to 26, and the coordinate system is presented in 

Figure 10. 
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Fig. 10. Coordinate system for Flügge model. 

 

For the model presented by Cheng and Ho, the equilibrium equations are the same as in Flügge’s model 

with a difference in the last equation, which is modified and takes the form of equation 27. The kinematic 

relations are the same as for the Flügge model: 
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Here the constitutive relations are different however; this model uses the constitutive relations presented 

in equation 28. 
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The proposed solution is given by equations from 29 to 31, with a coordinate system shown in Figure 9. 
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For Donnell’s model the equilibrium equations are: 
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The kinematic relationships are the same as those used in the modified Flügge model (equations from 12 

to 17), and the proposed solution is the same as that used in the Cheng and Ho model (equations 29 

to 31). The reference coordinate system is presented in Figure 9. 

 

The modified Sanders model used by Messager has the equilibrium equations presented in equations: 
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The kinematic relations are equations from 12 to 15, and for curvatures y and xy equations are those 

referenced by 38 and 39. The solution proposed is formed by equations from 24 to 26, and the coordinate 

system used is presented in Figure 10. 
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For each model the substitution of proposed solutions into the kinematical relations, and then into 

constitutive equations, and finally into the equilibrium equations, gives a system of equations with 

3 unknown amplitudes U, V, W and external pressure p. The solution of this equation system for p, gives 

an expression depending on shell stiffness constants Aij, Dij, m and n. Aij and Dij are already known. The 

critical pressure is obtained by an iterative search using given values for m and n, until finding the 

minimum value for p, this p value is the critical pressure and the m and n values represent the longitudinal 

and circumferential modes respectively at which critical pressure appears. The calculated values for all 

models are presented in Table 4. 

 

Here it can be seen that buckling modes for the specimens studied are m = 1 and n = 3 (one lobe in axial 

direction and three lobes around the circumference). A minimum buckling pressure is 6.3 MPa obtained 

by Flügge’s model and a maximum buckling pressure of 8 MPa is obtained by Donnell’s model. 
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Table 4 

Buckling modes and pressures calculated by theoretical models 

Model m n p (MPa) 

Modified Flügge model 1 3 6.9 

Flügge model 1 3 6.3 

Cheng et Ho model 1 3 6.3 

Donnell model 1 3 8 

Messager model 1 3 6.9 

 

5. Experimental results 

 

Fig. 11. Hyperbaric chamber (IFREMER Brest). 

 

External pressure tests (13 tests in total) were carried out in a hyperbaric testing chamber (see Figure 11) 

at the IFREMER facilities in Brest. Four specimens (references 05VE5CNNI-22, 05VE1CNNI-25, 

15VE1CNNI-29 and 15VE5CNNI-30) were instrumented with strain gages; four gages placed in the axial 

direction and four placed around the circumference, at mid-length on the inner wall. An angular 

separation of 45° was specified between consecutive gages, alternating axial and circumferential. 

Instrumented specimens were tested in axial compression under a small load (25 kN for thin walled 

cylinders and 100 kN for thick walled cylinders), on a 20 ton capacity test frame before pressure testing, 

in order to obtain axial mechanical material properties and to check that gages were functioning properly. 

The nomenclature chosen to describe specimens gives important information, and the meaning is as 

follows: The first two digits 05 or 15 (5mm or 15mm) indicate the nominal thickness of the specimen 

which actually is 4.4mm or 12.6mm. The third and fourth characters indicate the composite, in this case 
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VE means glass-epoxy composite. The fifth character (1 or 5) indicates the number of cells along the 

circumference. The sixth and seventh characters (CN) mean a normal curing cycle. The eighth and tenth 

characters indicate if specimens were instrumented with optical sensors or not (II or NI), in this cases all 

tested specimens were not instrumented (NI). The last two digits indicate a consecutive fabrication 

number. 

 

For thin walled cylinders, it was assumed a uniform stress distribution along the thickness. Thick walled 

cylinders were exposed to same mechanical testing; gages were placed in the same positions as the thin 

walled ones, their experimental data was treated in the same way as the data for thin cylinders, and it was 

observed almost the same values for mechanical properties. So it was inferred that even if along the 

thickness of thick cylinders stress distribution is not uniform, for the dimensions of the thick cylinders 

used here, this stress variation along the thickness was not important, and could be neglected only to 

obtain mechanical properties in the elastic region, and assuming that the fiber fraction is almost the same 

in both cases (thin and thick cylinders). 

 

5.1 Instrumented specimen results 

Experimental mechanical properties from instrumented specimens are shown on Table 5. Axial properties 

(Ex, νxy) were obtained from axial compression tests, and circumferential properties (Ey and νyx) were 

deduced using pressure testing data combined with orthotropic laminate assumptions and axial 

mechanical properties. Experimental values were obtained using the mean response of gages. 

 

Table 5 

Experimental global mechanical properties 

Thin walled specimens Ex (MPa) Ey (MPa) νxy νyx 

05VE5CNNI-22 10711 18457 0.367 0.633 

05VE1CNNI-25 10499 18449 0.373 0.656 

Thin walled specimen mean values 10605 18453 0.370 0.645 

           

Thick walled specimens Ex (MPa) Ey (MPa) νxy νyx 

15VE1CNNI-29 9877 15955 0.370 0.598 
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15VE5CNNI-30 10711 16245 0.382 0.579 

Thick walled specimen mean values 10294 16100 0.376 0.589 

 

 Ex (MPa) Ey (MPa) νxy νyx 

Global mean values 10449 17277 0.373 0.617 

 

With experimental mechanical properties (Table 5) A and D constants were calculated (experimental 

values), and results are shown in Table 3. The difference between experimental and calculated values is 

very small, in the range from 4 to 7 %. 

 

Examples of pressure and strain response are presented in Figures 12 and 13 using data provided by 

instrumented specimens. It was noted that thin walled cylinders (05VE1CNNI-25 and 05VE5CNNI-22) 

show a buckling behavior starting at an external pressure between 5 and 6 MPa, for specimen 

05VE1CNNI-25 the buckling pressure seems to be about 6 MPa, and for specimen 05VE5CNNI-22 

buckling pressure is about 5.5 MPa. For the thick walled cylinders (15VE1CNNI-29, 15VE5CNNI-30) no 

buckling behavior is noted. In Figures 12 and 13 the average slope is almost the same between de gages 

placed in the same direction until shell instability begins when buckling modes are responsible for 

dramatic strain changes. During linear response the averaged pressure vs. strain diagram is still a straight 

line, small slope variations may be due to material variations, for example fluctuations in thickness. 

 

 a b 

  

Fig. 12. Curves for thin specimen 05VE1CNII-25; (a) Pressure vs. axial strain, (b) Pressure vs. 

circumferential strain. 
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Fig. 13. Curves for thick specimen 15VE5CNII-30; (a) Pressure vs. axial strain, (b) Pressure vs. 

circumferential strain. 

 

Comparing experimentally observed buckling pressures for thin walled cylinders with calculated 

pressures, it is seen that the models proposed by Cheng and Ho [6] and Flügge [5] provide predictions 

which are closest to experimental values. 

 

5.2 Implosion results 

In Table 6 the measured implosion pressure values are presented, as well as observed buckling modes. It 

may be noted that the mean implosion pressure for the 5 cell pattern specimens is 6.6 MPa, and for 1 cell 

pattern it is 6.5 MPa. The overall thin walled cylinder mean buckling pressure is 6.5 MPa, with a standard 

deviation of 0.4 MPa. It can therefore be stated that winding pattern has no influence on the implosion 

pressure of these thin walled cylinders. 

 

Table 6 

Implosion pressure for thin walled cylinders (mean thickness 4.4mm) 

Specimen identification 

 

Pattern 

(number of cells) 

Implosion 

pressure (bar) 
Mode 

05VE5CNNI-10 5 60.0 2 

05VE5CNNI-20 5 70.0 3 

05VE5CNNI-21 5 65.0 3 

05VE5CNNI-22 5 70.7 3 

05VE5CNNI-23 5 64.0 3 
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4.4 mm mean thickness and 5 cell 

pattern specimens 
Mean 65.9  

    

05VE1CNNI-15 1 60.0 2 

05VE1CNNI-24 1 68.0 3 

05VE1CNNI-25 1 64.7 3 

05VE1CNNI-26 1 64.0 3 

05VE1CNNI-27 1 67.0 3 

4.4 mm mean thickness and 1 cell 

pattern specimens 
Mean 64.7  

    

Mean 65.3  

Standard 

deviation 
3.7  

Coefficient of 

variation 
0.1  

Maximum 70.7  

Minimum 60.0  

Maximum - 

Minimum 
10.7  

Thin walled specimens 

Max - Min/Mean 0.2  

 

Results from thick walled cylinders (see Table 7) must be analyzed carefully, because of the small 

number of specimens. At first sight, the implosion value for the only 1 cell pattern specimen tested 

(52 MPa), appears to be higher by about 7 % than the mean value for the 5 cell pattern cylinders 

(48.4 MPa). One might expect the fibre undulations to reduce the compression strength [21] but further 

tests are needed to confirm this result. 

 

After testing a post mortem analysis was made in order to observe morphological characteristics of 

damaged cylinders (buckling modes). Concerning buckling modes, it can be seen that for all thin walled 

cylinders a three circumferential lobe mode is present (see Figure 14). For thick walled specimens no 
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clear buckled shape is noted although the fracture pattern might suggest a mode 2 failure in the 

circumferential direction and mode 1 in the longitudinal direction (see Figure 15). 

 

Table 7 

Implosion pressure for thick walled cylinders (mean thickness 12.6 mm) 

Specimen identification 

 

Pattern 

(number of cells) 

Implosion 

pressure (bar) 
Mode 

15VE1CNNI-29 1 520.6 2 

15VE5CNNI-30 5 500.8 2 

15VE5CNNI-31 5 467.0 2 

12.6 mm mean thickness and 

5 cell pattern specimens 
Mean 483.9 

 

    
Mean 496.1  

Maximum 520.6  Thick walled specimens 

Minimum 467  

 

 a b c 

     

Fig. 14. Damaged thin walled specimen after implosion, showing buckling modes with mode one axial 

and mode 3 circumferential; (a) schematic view, (b) and (c) views of a buckled tube. 

 

Calculated buckling modes from all models give the same result (see Table 4), m = 1 and n = 3, one lobe 

axial and three lobes in circumferential direction, this agrees with experimentally observed buckling 

modes (see Table 6, and Figure 14). 
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Fig. 15. Damaged thick walled specimens; (a) 1 unit cell pattern, (b) 5 unit cell pattern. 

 

6. Conclusions 

Results from this study show no strong influence of the two chosen winding patterns on the implosion 

pressure of filament wound composite cylinders. Buckling behavior does not seem to be sensitive to these 

two winding patterns. Buckling modes for specimen dimensions and characteristics used in this research 

are all of the m = 1 and n = 3 type, independent of winding pattern. Surface damage morphology of thick 

walled cylinders is not influenced by winding pattern. The choice of 1 and 5 unit cells along the 

circumference of cylindrical specimens is made, between several possibilities, for represent extreme cases 

(degree of undulation minimum or very high). Moreover, the coincidence of the unit cells through the 

thickness direction would have amplified the influence, if it had existed, of the unit cell size on 

mechanical behavior. For all that, if there is no clear influence of the winding pattern on implosion 

pressure and buckling behavior, we can think that this parameter don’t have a major role in the resistance 

of filament wound cylinders under external pressure. All theoretical models predicted axial mode one 

(m = 1) and circumferential mode three (n = 3), which corresponds exactly to experimentally observed 

buckling modes. Buckling pressure evaluated using the Flügge [5] and Cheng and Ho models [6] 

provided the closest critical pressure predictions to the experimental buckling pressure. The different 

presented buckling behaviors of tubular structures depend on their thickness, but other geometrical 

parameters (different length-diameter ratios, etc) could have of course a direct influence on the buckling 

response too. 
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