
P
le

as
e 

no
te

 th
at

 th
is

 is
 a

n 
au

th
or

-p
ro

du
ce

d 
P

D
F 

of
 a

n 
ar

tic
le

 a
cc

ep
te

d 
fo

r p
ub

lic
at

io
n 

fo
llo

w
in

g 
pe

er
 re

vi
ew

. T
he

 d
ef

in
iti

ve
 p

ub
lis

he
r-a

ut
he

nt
ic

at
ed

 v
er

si
on

 is
 a

va
ila

bl
e 

on
 th

e 
pu

bl
is

he
r W

eb
 s

ite
 

 1

Science of The Total Environment   
March 2008, Volume 392, Issue 1, Pages 119-129  
http://dx.doi.org/10.1016/j.scitotenv.2007.11.015 
© 2008 Elsevier B.V. All rights reserved. 
 

Archimer 
Archive Institutionnelle de l’Ifremer 

http://www.ifremer.fr/docelec/ 

 

 
Dissolved and particulate metals (Fe, Zn, Cu, Cd, Pb) in two habitats from 

an active hydrothermal field on the EPR at 13 degrees N 
 
Pierre-Marie Sarradina, *, Delphine Lannuzela, Matthieu Waelesb, Philippe Crassousa, Nadine 

Le Brisa, Jean Claude Capraisa, Yves Fouquetc, Marie Claire Fabria and Ricardo Risob 
 
 
a Département Etudes des Ecosystèmes Profonds, Ifremer centre de Brest, BP70, F-29280 Plouzané, France 
b Laboratoire de Chimie Marine, UBO et UMR CNRS 7144, Place Nicolas Copernic, F-29280 Plouzané, France 
c Département Géosciences Marines, Ifremer centre de Brest, BP70, F-29280 Plouzané, France    
 
 
*: Corresponding author : P.M. Sarradin, email address : Pierre.Marie.Sarradin@ifremer.fr 
 

 
 
 
 
Abstract:  
 
The distribution of Fe, Cu, Zn, Pb, Cd between the dissolved (< 2 μm) and the particulate (> 2 μm) 
fractions was measured after in-situ filtration in two hydrothermal habitats. The total metal 
concentration ranges exhibit a clear enrichment compared with the seawater concentration, 
accounting for the hydrothermal input for all the metals considered. Iron is the predominant metal (5–
50 μM) followed by Zn and Cu. Cd and Pb are present at the nM level. At the scale studied, the 
behavior of temperature, pH and dissolved iron is semi-conservative whereas the other dissolved and 
particulate metals are characterized by non-conservative patterns. The metal enrichment of the > 2 μm 
fraction results from the settlement and accumulation of particulate matter close to the organisms, 
acting as a secondary metal source. The enrichment observed in the dissolved fraction can be related 
to the dissolution or oxidation of particles (mainly polymetallic sulfide) or to the presence of small 
particles and large colloids not retained on the 2 μm frit. SEM observations indicate that the bulk 
particulate observed is characteristic of crystalline particles settling rapidly from the high temperature 
smoker (sphalerite, wurtzite and pyrite), amorphous structures and eroded particles formed in the 
external zone of the chimney. Precipitation of Zn, Cu, Cd and Pb with Fe as wurtzite, sphalerite and 
pyrite is the main process taking place within the area studied and is semi-quantitative. The 
distribution of the dominant observed fauna has been related to the gradient resulting from the dilution 
process, with the alvinellids worms colonizing the hotter and more variable part of the mixing zone, but 
also to the metallic load of the mixing zone. Dissolved and particulate metal concentrations are 
therefore necessary abiotic factors to be studied in a multiparametric approach to understand the 
faunal distribution in hydrothermal ecosystems.  
  
 
Keywords: Metals; Dissolved; Particulate; Habitats; Hydrothermal fauna 
 
 
 
1. Introduction 
 
Deep-ocean hydrothermalism is the meeting point of deep-seated geological processes with the ocean 

above resulting in the transfer of heat and chemicals from the earth's deep mantle and the crust, 

through volcanic and hydrothermal systems. The physical and chemical characteristics of vent 

emissions are initially the result 

http://ees.elsevier.com/stoten/download.aspx?id=93130&guid=173b6837-c9a1-4837-babb-34c4bc06e65c&scheme=1
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of complex rock seawater interactions in the subsurface that form high temperature hydrothermal fluids. 

These fluids can be subsequently modified by subseafloor and near surface mixing with background 

seawater leading to a variety of emitted fluids enriched with gases, metals and radionuclides (Bowers et al., 

1985; Von Damm, 1988; 1998; Cherry et al., 1992). 

Deep-sea hydrothermal communities occupy the interfacial zone where the hot and reduced hydrothermal 

fluid turbulently mixes with the cold and oxygenated seawater. The mixing zone is characterized by steep 

chemical gradients (Johnson et al., 1986; Sarradin et al., 1998; Le Bris et al., 2003) and produces mineral 

precipitation in the rising plume (Feely et al., 1990) or the chimney conduit (Metz and Trefry, 2000). This 

fluctuating environment provides a periodical access to reduced chemical species from the vent fluid (e.g. 

H2S, CH4) and seawater oxidized compounds which are both required for chemolithoautotrophic bacterial 

primary production and associated fauna (Childress and Fisher, 1992). Many authors have suggested links 

between the spatio-temporal distribution of hydrothermal species and the physical and chemical properties of 

the vent fluids: concentrations of hydrogen sulfide (Urcuyo et al., 2003), flow intensity and substratum type 

(Sarrazin et al., 1999), speciation and bioavailability of oxygen, iron and sulfur (Luther et al., 2001), 

particulate fluxes and variability in fluid composition (Desbruyères et al., 2000; 2001).

Hydrothermal species are also subjected to potentially toxic material, such as heavy metals, provided in large 

concentrations by the hydrothermal fluid (Douville et al., 2002). However, the main processes controlling the 

metal concentrations in these highly reactive areas and the influence of the metallic load of the mixing zone 

on species distribution have been poorly documented (Desbruyeres et al., 1998; Geret et al., 1998; 2002; Di 

meo-Savoie et al. 2004, Kadar et al., 2005). The main conclusion of ecotoxicological papers dealing with 

hydrothermal vent organisms (Cosson, 1996; Cosson-Manevy et al., 1988; Desbruyères et al., 1998; Ruelas-

Inzunza et al., 2003) is the apparent contradiction between the large amounts of metals present in the 

organisms and the absence of recognizable deleterious effects. These organisms seem to have developed 

efficient adaptations and detoxification processes such as the sequestration of potentially toxic compounds 

into forms that are probably inactive: insoluble forms such as granules or concretions and soluble forms as 

metalloproteins (Cosson and Vivier, 1997; Geret et al, 2002). In consequence, there is a need to assess the 

metallic composition of these peculiar environments in order to understand its potential impact on the 

distribution of hydrothermal organisms and the efficiency of the detoxification processes involved. 

This study was carried out at the Genesis hydrothermal vent field on the East Pacific Rise. Fe, Cu, Zn, Cd 

and Pb were analyzed in the environment surrounding hydrothermal organisms. Their distribution between 

the dissolved (<2µm) and particulate (>2µm) fractions is presented. The objectives were to document the 

content and behavior of these elements in this part of the mixing zone and to assess the potential link

between the metallic load and the faunal distribution in two habitats dominated by alvinellids worms or giant 

tubeworms (Riftia pachyptila).
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2. Material and methods

2.1. The Genesis site (13°N, EPR)

This study was conducted during the HOPE 99 cruise on the East Pacific Rise (1999, N/O L'Atalante/ 

submersible Nautile, Chief scientist F. Lallier) and focused on the Genesis vent field (12°48.63 N, 

103°56.41W, depth 2645 m). This site is characterized by the presence of a black smoker emitting a medium 

temperature (230 – 290°C) hydrothermal fluid (Childress et al., 1993; Sarradin et al., 1998; Le Bris et al., 

2003). The fluid may have undergone sub surface phase separation with a major contribution of vapor phase 

in the emitted fluid, enriched in CO2, depleted in iron (300 µM) and chloride (Le Bris et al., 2003) compared 

to the range previously established at 13°N (Von Damm, 1995a). The black smoker (Fig. 1) is 9 m high and 

is built on the 5 m upright wall oriented NW-SW bordering the western side of the Genesis hydrothermal 

vent field. The dominant species encountered in the vicinity of the smoker were Riftia pachyptila tubeworms 

and alvinellid worms such as Alvinella pompejana, Alvinella caudata, Paralvinella grasslei and Hesiolyra 

bergi (Desbruyères et al. 1998). R. pachyptila tubeworms live in an area (zone R) where the temperature 

ranges from 3 to 25°C (Sarradin et al., 1998; Le Bris et al., 2003). This area is a vertical crack on the 5 m 

upright wall a few meters north of the main chimney. Alvinellid worms were found in zone A (temperature 9 

to 70°C) 5 meters north of the crack and 2 meters away from the bottom of the wall. 

2.2. Sampling and sample treatment

Water samples were collected in the environment surrounding hydrothermal organisms. This environment is 

formed by the fluctuating mixing of cold seawater with hot hydrothermal fluid. Reference samples were 

taken at the periphery (c.a. 500 m) of the active area. The sampling device (Fig. 2) consisted of four 200 ml 

titanium bottles with an autonomous temperature probe (Micrel®) and manipulated by the manned 

submersible Nautile. The bottles were helium purged and set under vacuum (<2*102 Pa) before use. Each 

sample inlet (PEEK tubing, 0.8 mm i.d.) was equipped with a PEEK polymer frit (UPCHURCH®, porosity 2 

µm) to perform in-situ filtration of the sample. In-situ filtration should prevent/lower any modification of the 

sample by oxidation / reduction or precipitation phenomena with cooling. The frit porosity was set to 2 µm 

to overcome a potential explosion of the frit when opening the bottle with a pressure increase of c.a. 250 bars 

in a few msec. Titanium bottles, polymer frits and frit holders were rinsed with HCl 0.1M and ultrapure 

water before use. Subsamples devoted to the analysis of dissolved metal (~ 100 mL) were stored acidified 

(1/1000 V/V HNO3, Merck, suprapur) prior to on shore analysis. The 2 µm frits were dried for 24 h at 85°C 

and stored prior to on shore mineralization and analysis of the particulate fraction. The mineralization step 

was conducted in a 3 ml HCl 30% / 1 ml HNO3 65% / 1 ml HF 40 % mixture by heating for 3 hours at 80°C 

and 1 hour at 100°C. The volume of the obtained solution was corrected by weighing to take into account the 

loss during the mineralization step. Subsamples were analyzed after dilution in 2% HNO3 (ICP-MS) or 

suprapure water (Potentiometric Stripping Analysis). 
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2.3. Analytical methods 

pH of the samples was measured on board after submersible recovery using a combined pH electrode 

(Ingold) for a sulfide rich medium. Measurements were made at 25°C after calibration with NBS buffers 

(pH 4 and 7). Sample temperatures were derived from the data recorded by the autonomous temperature 

probe associated with the sample inlet. Fe concentrations were determined by Flow Injection Analysis 

according to the procedure detailed in Sarradin et al. (2005). Reproducibility and detection limits are 0.8 % 

(n=5, 50 µM) and 70 nM respectively. Cu, Pb and Cd levels were measured by using electrochemical 

methods. Cu measurement was performed by Constant Current Stripping Chonopotentiometry (CCSA) with 

a gold electrode. Pb and Cd were measured by Potentiometric Stripping Analysis (PSA) with a mercury film 

electrode. Reproducibilities are 2, 5 and 4% for Cu, Pb and Cd, detection limits are respectively 0.17, 0.01 

and 0.01 nM. The procedures has been detailed in Riso et al. (1997a, 1997b) and one of their assets is that 

they need no UV irradiation to get the total dissolved metal concentrations. Certified sea waters were 

analysed for metal content prior to the samples (Table 1). Zn concentrations were determined by ICP-MS 

(Université de La Rochelle, Centre Commun d'Analyses, Varian Ultramass 700). The ICP-MS system 

operated in peak hopping mode with a dwell time of 40 ms per isotope. Instrumental conditions were: plasma 

power 1250 W, plasma flow 15 L/min, auxiliary plasma 1.50 L/min, nebulizer flow 0.90 L/min, 15 

scans/replicate, 10 replicates/sample. The instrument was calibrated using commercially available aqueous 

standard solution (Astasol-Mix, Analytika Ltd, purity 99.999%). The quantification was done using the 

standard addition method to overcome the potential matrix effect. Three internal standards (Y, Rh, Eu) were 

also added to the samples to validate the results. Reproducibility and detection limits are 4% and 0.15 nM

respectively. All reagents were prepared in a clean room. 

In order to check whether the samples were free from contamination during sampling and handling, 2 

samples were taken ca. 500 m away from the active area. The concentrations of dissolved metals obtained in 

sample SW1 (Fe < detection limit, Cu 0.01µM, Cd 1.3 nM, Pb 1.5 nM) are close to those currently reported 

for North Pacific deep waters (Fe 0.01 µM, Cu 0.005µM, Cd 1 nM, Pb 0.005 nM, Donat and Bruland, 1995) 

except for Pb. The values obtained in sample SW2 are relatively higher (Fe 1.9 µM, Cu 0.02µM, Cd 1.1 nM, 

Pb 1.5 nM) and can be linked to an input of hydrothermal material or to a limited contamination problem for 

lead. However, these levels remain below those found in the samples taken in the immediate surrounding of 

hydrothermal communities which were measured at the following ranges Fe: 1-33 µM, Cu 0.17-1.13 µM, Cd

1.8-8.56 nM, Pb 10.3-61.9 nM.

2.4. Scanning Electronic Microscope analysis and particle characterization

To determine the raw composition and the morphology of minerals on the particle samples, a Philips XL30 

scanning electron microscope (SEM) equipped with an EDAX detector was used at energy of 15 kV. The 

frits were gold coated prior to their analysis (Balzers SCD 040). The characterization of the particulate 

matter was conducted on 2 frits (corresponding to samples R3, T= 4.3°C and A4, T=12.8°C). These 2 

samples were supposed to give us a snapshot of the minerals present in the cold and warm part of the mixing 

zone. In the first stage, 6 analyses were performed on a frit transect at low magnification to establish the raw 
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composition of the particles and to evaluate the homogeneity of the samples. The second stage was 

conducted at higher magnification in order to recognize and list the dominant mineral structures and to 

establish their elemental composition. Elemental analysis was done using the EDAX detector and was 

followed by a visual recognition of the structures (Y. Fouquet).

2.4. Statistical methods

Statistical treatments were done using the Statgraphics Plus 5.1 software. Principal components analysis 

(PCA) is a technique used to reduce multidimensional data sets to lower dimensions for analysis. PCA is 

mostly used as a tool in exploratory data analysis. A study of the rank correlation (Spearman) was performed 

prior the PCA to identify the independent variables. 

3. Results and discussion

3.1. Temperature and pH

Temperature and pH measurements are shown in table 2. The samples were collected in the cold part of the 

mixing zone with temperature and pH ranging from 3.8 to 20°C and 7.1 to 5.9, respectively. The 

corresponding hydrothermal input estimated from the endmember concentrations is limited to 0.6 to 7.9%. 

The environment of the dominant species colonizing the Genesis vent site is thus not fully represented as the 

hot part of the mixing zone, preferred habitat of Alvinellid worms, with measured temperature up to 70 or 

80°C (Sarradin et al., 1998; Le Bris et al., 2003; Di Meo-Savoie et al., 2004), has not been effectively 

sampled. However, the samples obtained (Fig. 3a) cover the whole temperature range encountered by the 

giant tubeworms Riftia pachyptila and the colder part of the microhabitat of Alvinellids as can be seen in Fig. 

3b. Fig. 3b was obtained using temperature time series measured by autonomous probes (Micrel®) during 2 

cruises on the EPR (HOT96 and HOPE99, n = 10478, unpublished data).

3.2. Fe, Zn, Cu, Cd and Pb concentrations 

Total metal concentration ranges obtained are presented in table 3 along with those reported for other studies 

in environments surrounding hydrothermal organisms. Fe is the predominant element with concentrations in 

the range 5-63 µM. Cu and Zn exhibit levels varying from 0.18 to 1.6 µM and from 0.3 to 27.3 µM, 

respectively. Cd and Pb were measured at the nM level with values in the range 2-47 and 11-260, 

respectively. All these concentrations are well above those reported for deep North Atlantic waters (Donat 

and Bruland, 1995) illustrating a marked metallic enrichment due to hydrothermal inputs. The ranges 

obtained are comparable though lower than those presented by Desbruyères et al. (1998) in the same area 

and by Di Meo-Savoie et al. (2004) at 9°N. These two studies were performed in the hot part of the mixing 

zone colonized by Alvinella pompejana. Compared to the studies carried out on the colder habitats of the 

hydrothermal mussels Bathymodiolus azoricus and the shrimps Rimicaris exoculata on the mid Atlantic 

Ridge (Geret et al., 1998; 2002; Sarradin et al., 1999; Kadar et al., 2005), the ranges were again similar. High 

metallic concentrations were encountered around hydrothermal organisms, bearing in mind the heterogeneity 

http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Exploratory_data_analysis
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of the mixing zone and the chemical diversity of hydrothermal fluids (Von Damm, 1995a). The comparison 

between the dissolved (<2 µm) and particulate (>2µm) fractions indicates that Zn, Fe and Cd are mainly 

associated with particles whereas Cu and Pb are roughly equally distributed between both fractions. The use 

of a 0.45-µm filters should enhance the importance of the particulate fraction by incorporating the small 

particles and large colloids not retained on the 2 µm frits. 

3.3. Metal behavior in the mixing zone

The possibility of using temperature or pH as dilution tracer of hydrothermal fluid by seawater (Le Bris et 

al., 2000) was tested using the T/pH relationship of our samples enriched by published data from Von Damm 

(1995a) and Le Bris et al. (2003) obtained at the same site. The linear trend obtained (confidence level 99%, 

Fig. 4) can explain 96% of the variability in the data. This result confirms that at the scale and in the range 

studied, pH and temperature can be assumed to follow a semi-conservative process and can be used as 

tracers of the dilution, even though conductive cooling in the subsurface can modify its conservative 

behavior during mixing.

The amount of dilution of hydrothermal fluid by seawater in the samples (table 2) was derived from this 

conservative behavior and by using the data published by Le Bris et al. (2003). Assuming a seawater

temperature of 1.9°C with no hydrothermal input and a pure fluid temperature in Genesis of 230°C (Le Bris 

et al. 2003), the amount of hydrothermal fluid in the mixture was estimated as being % fluid = (Temperature 

-1.9)/2.281. 

In order to check whether the concentrations of the metals studied in the mixing zone are controlled by a 

dilution-like process, dissolved and particulate metal concentrations were plotted against temperature (Fig.

5). Theoretical dilution lines were estimated using the two components of the mixture i.e. the concentrations 

and temperature of the pure fluid and seawater presented in Table 3. No endmember value was available for 

Cu. The endmember Fe concentration was taken at 300 µM, most recent value obtained by Le Bris et al. 

(2003) for this particular vent field. 

No trends were observed between metal concentrations and temperature except for dissolved iron. Fed

presents a weak but significant relationship with temperature (confidence level 95%) explaining only 30% of 

the variability. This lack of relationship between metal concentrations and temperature indicates that both 

dissolved and particulate forms are not controlled by a simple dilution process at the scale studied. By 

comparing the values obtained with the theoretical dilution line (Fig. 5), it can be noted that particulate metal

concentrations are mainly located above the dilution line suggesting the presence of a secondary metal input. 

This enrichment, which is particularly important for all the metals studied, should result from the continuous 

settlement and accumulation of particulate matter close to the organisms. These observations are supported 

by the ability of Cu, Fe, Zn, Cd and Pb to form precipitates with sulfides in plumes, chimney or in conduits 

surfaces (Trefry and Trocine, 1985; Von Damm et al., 1995b). Iron will form preferentially fine grained 

sulfides particles that will be exported in the buoyant and neutrally buoyant plume. Cu and Zn sulfides will 

form large sized grains and more crystalline particles that will settle rapidly in the near field region (Feely et 

al., 1994). In the dissolved (<2µm) fraction, enrichments observed for Cd and Pb can be explained by the 

presence of small particles or large colloids not retained on the 2 µm filter. The particles accumulated 
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(mainly polymetallic sulfides) may also undergo dissolution and/or oxidation reaction in this cold part of the 

mixing zone which contains dissolved oxygen (Dunk and Mills, 2006). On the contrary, dissolved Fe and Zn 

are close to or below the theoretical dilution line as observed by Di Meo et al. (2004). This depletion should 

correspond to the precipitation of Fe and Zn sulfides (Di Meo et al. 2004, Luther et al. 2001). Sander et al. 

(2007) also evidenced the presence of organic ligands that will form strong complexes likely to play an 

important role in controlling the behavior of metal ions around hydrothermal vents.

3.4. Particle characterization and origin 

Observations by SEM permitted the determination the elemental composition of particles and the 

investigation of their origin. Measurements indicated that the dominant elements were sulfur (26.2 3 %), 

zinc (19.7 2.2 %), iron (16.5  3 %), sodium (7.1  3.7 %), chloride (5.3  1.4 %) and silica (7.7  1.6 %). 

The presence of residual NaCl can be explained by an incomplete rinsing of the frits before analysis. These 

compositions can be compared to the data obtained by German et al. (2002) within the Totem site (EPR, 

13°N) on particles sampled with traps a few meters from the vent. These authors found higher S composition 

(50 to 80%) and comparable Fe one (11-20%). The Fe/S, Zn/S and Fe/Zn atomic ratio obtained in this study 

are respectively 0.4, 0.4 and 1, leading to a relative stoechiometry of FeZnS2.5. The mean composition of the 

particles was homogeneous along frit transects permitting the second stage of particle identification to be 

performed at a higher magnification. Table 4 lists the dominant structures observed and summarizes 32 

individual observations (Y. Fouquet). No obvious difference was observed between the 2 frits studied. The 

particles were predominantly zinc – iron sulfides (wurtzite and sphalerite) and iron sulfides (pyrite). The 

minerals were present in their crystalline form, with large individual crystals (up to 50µm) and smaller 

crystals (1 to 5 µm) forming stacks reaching up to 20 µm. These crystalline structures were probably formed 

in an area where the chemical conditions are homogeneous, i.e. in the internal part of the chimney. The 

amorphous forms were also frequent. These forms should originate from precipitation in the external part of 

the chimney (cold part of the mixing zone, chimney walls). The presence of microcrystalline structures 

associated with a biofilm-like substance was nearly ubiquitous. This organic material could either be 

exopolysaccharids (J. Guezennec, com. pers.) or mucous excreted by organisms such as alvinellid worms. 

Laboratory experiments conducted by Loaec et al. (1997, 1998) reported the biosorption of lead, cadmium 

and zinc by an exopolysaccharid produced by hydrothermal strains through a chemical equilibrated and 

saturable mechanism. The presence of exopolysaccharids has to be verified as this organic material enriched 

in metals could be directly assimilated by organisms through dietary exposure. Particulate matter such as 

anhydrite which is a dominant constituent of the plume was seldom observed. The rare observation of

anhydrite and the absence of observation of iron oxyhydroxide phases suggest that the plume has only a 

limited impact on the environment surrounding hydrothermal communities (Mottl and MacConachy, 1990). 

Zbinden et al. (2003) observed the presence of sphalerite, wurtzite, pyrite and marcasite minerals as major 

constituents of the solid phase associated with alvinellid tubes. These observations are strengthened by the 

statement of German et al. (2002). These authors indicated that sulfides particles carry 80-90% of the Fe fall 

out and also transport most of the Cu, Zn and Pb fluxes, whereas Fe oxyhydroxides were responsible for only 
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10-20 % of the Fe removal. Furthermore, the composition of vent particles in southern Juan de Fuca (Feely 

et al., 1987) was predominately sphalerite, wurtzite and pyrite whereas suspended and settling particles 100 

m away from the vent were mainly sphalerite, anhydrite and Fe oxyhydroxide. The bulk particulate observed 

in our samples is composed of particles formed in the high temperature smoker which settle rapidly 

(sphalerite, wurtzite and pyrite) and of amorphous structures and eroded particles coming from external 

zones of the chimney. This last observation reinforces the hypothesis of particle accumulation in areas where 

hydrothermal organisms have settled.

According to Trocine and Trefy (1988) and German et al. (1991), we used particulate iron concentrations 

(Fep) as an indicator of the trends and factors influencing other particulate metals. High positive linear 

correlations (confidence level 99%, correlation coefficient ranging from 0.918 to 0.972) were obtained 

between particulate Cu, Zn, Cd, Pb vs. Fep (Fig. 6). These correlations can explain between 84 to 94 % of 

the variability observed in the data and indicate that Zn, Cu, Cd and Pb will co-precipitate with Fe as 

wurtzite, sphalerite and pyrite. Moreover, this high correlation underlines that this precipitation is the main 

process involved within the studied area and is nearly quantitative. Mottl and MacConachy (1990) also stated 

that the chalchophile elements released into the water column from vent fluids tend to be quantitatively 

removed from solution very close to their point of origin through precipitation with Fe as polymetallic 

sulfides. In the same way, Cd and Pb will be associated as trace elements, during the precipitation step to 

form Zn-Fe sulfides in the wurtzite and sphalerite phases precipitated below 200°C (Trocine and Trefy, 

1988; Metz and Trefry, 2000).

3.5. Metallic load and faunal distribution

The data were submitted to Principal Component Analysis, a statistical exploratory method to highlight the 

links between the whole set of variables. Study of the rank correlation (Spearman) allowed the identification 

of the independent variables. Significant correlations were found at the 95% level i) between dissolved Cu, 

Cd and Pb, ii) between all the particulate concentrations as stated above (see 3-4) and iii) between pH and 

temperature (see 3-2). The remaining variables to be used for the PCA were temperature (T°C correlated 

with pH), dissolved iron (Fed), zinc (Znd) and cadmium (Cdd correlated with Cud and Pbd) and particulate 

iron (Fep correlated with all the particulate metals). Two components explaining 72% of the variability of the 

data were extracted by the analysis and are presented in Fig. 7. The use of a third axis explained 15% more 

of the variability but did not add new information. The first axis opposes the variables temperature (T°C) and 

dissolved iron (with respective coordinates on the correlation circle of -0.60 and -0.57) to the 3 other 

variables Cdd, Znd, Fep (with respective coordinates of 0.42, 0.29, 0.22). The second axis essentially 

confronts particulate iron (0.51 on the correlation circle) to dissolved Zn and Cd (-0.58 and -0.53 on the 

correlation circle) and temperature and dissolved Fe (0.22 and 0.25). The combination of the 2 axes 

illustrates the complexity of processes occurring in the mixing zone. T°C and Fed are linked to a dilution 

process between the cold seawater and the hot fluid. Particulate (>2µm) metal concentrations result from the 

precipitation and accumulation of polymetallic sulfides. The other dissolved metals (<2 µm) have different 
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behaviors and include the processes that may occur within the 0.45 – 2 µm phase constituted of small 

particles and large colloids. 

A projection of the observations on the biplots highlights their position along the two axes as a function of 

the sampling zone. Samples obtained in areas dominated by the tubeworm R. pachyptila (R) are 

characterized by a limited variability along the 2 components corresponding to the cold part of the mixing 

zone (Childress et al., 1993; Sarradin et al., 1998; Le Bris et al., 2003). Samples collected in areas dominated 

by alvinellid worms (A) showed a higher variability associated with extreme values along the 2 axis (A1 

16°C, Fed 33.7µM; A5 Znd 2µM, Cdd 7.84nM; A6 Fep 57.1µM). The microhabitat of alvinellid worms 

present steeper gradients but is not fully represented in our study. Faunal assemblages dominated by 

alvinellids are present in a temperature range between 9.6-81°C (Desbruyères et al., 1998; Le Bris et al., 

2003; 2005; Sarradin et al., 1998; Di Meo-Savoie et al., 2004). The temperature range and therefore the 

fraction of the mixing zone sampled in this study is only 3.2 to 20°C, leaving the hot part of the mixing zone 

unsampled, even though A. pompejana has developed a specific strategy to cool and modify the fluid mixture 

within its tube (Le Bris et al. 2005).

The faunal distribution in hydrothermal environment has been shown to depend upon fluid dilution process, 

sulfide concentrations and speciation (Luther et al., 2001, Le Bris et al., 2003), flow intensity or substratum 

type (Sarrazin et al., 1999). From this multiparametric descriptive analysis, it can be hypothesized that the 

distribution of the observed dominant fauna is not only constrained by these variables, but also by the 

concentration and speciation of metals which are controlled by complex geochemical processes. 

Hydrothermal organisms will therefore colonize areas where the energy supply (H2S and CH4, flow 

intensity) is sufficient, where the substratum is convenient but also where the environment is suitable i.e. 

where the metals bioavailability can be sustained. This result is particularly important in this area where the

two dominant species present different nutritional strategies and hence different sensitivity to dissolved and 

particulate metals. Alvinella pompejana (Desbruyères et al., 1998) is a grazer (particulate feeding consumer). 

This organism will ingest large quantities of metal rich particulate matter (Cosson and Vivier, 1997) that may 

serve as the main pathway for metal accumulation. Wang (2002) suggested that the metal desorption within 

the acidic gut may be important for the assimilation of easily exchangeable metals but not for metals that are 

bound tightly. Zbinden et al. (2003) observed the presence of mineral gradients between the inner and outer 

part of the alvinellids' tubes suggesting that the tube wall acts as an efficient barrier to external environment, 

including metal compounds. Conversely, Riftia pachyptila is a symbiotic tubeworm devoid of mouth and gut 

that will transfer hydrogen sulfide to its symbiotic bacteria harbored in the trophosome (Goffredi et al., 

1997). The majority of the exchange of this organism with its environment will take place through the 

branchial plume: the metal entry route will be either by adsorption of the particles on the membrane or by 

direct crossing of the membrane by the dissolved fraction i.e. with no direct impact of metallic particles. Cu, 

Cd, Zn have been quantified in the blood and can be transported from the plume to the trophosome (Cosson-

Manevy et al., 1988) yet with limited metallic bioaccumulations in the bacteria present in the trophosome 

(Truchet et al., 1998). Ruelas-Inzunza et al. (2005) observed that Cd and Fe concentrations in the 

vestimentum increased accordingly with the size of specimens and reported an extreme uptake in the case of 
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Cu and Zn. The metal compounds will be stored in the tissues as non toxic mineral compounds or associated 

to metallothioneins known to be involved in detoxication processes (Cosson, 1996). 

Riftia clumps are present in zone R characterized by a limited variability, low temperature and metal 

concentrations whereas Alvinellids worms in zone A are exposed to stronger metal gradients and fluctuations 

than the tubeworms. This distribution along the chemical gradient can be linked both to the availability of 

energy sources but also to the ability of Riftia pachyptila or alvinellids worms to sustain the metallic load, 

alvinellids being potentially more adapted to tolerate harsher conditions. The possible metal entry routes may 

also be different as only the dissolved metal fraction will be available for R. pachyptila, whereas both 

dissolved and particulate fractions will be available for alvinellid worms. The role of metal speciation on 

bioavailability and toxicity towards the different faunal species has to be evaluated to examine if the metallic 

load is a key factor to explain faunal distribution in hydrothermal ecosystems.

4. Conclusion

This study tentatively describes the complexity of the hydrothermal biotope regarding the metal input and the 

relative distribution of Fe, Cu, Zn, Cd and Pb between a dissolved (<2µm) and particulate (>2 µm) fraction. 

The total metal concentration ranges exhibit a neat metallic enrichment accounting for the hydrothermal 

input of this part of the mixing zone for all the metals considered compared with the seawater concentration. 

At the scale studied, temperature, pH and dissolved iron have a (semi-) conservative behavior whereas the 

other dissolved metals and the particulate metals are characterized by non-conservative behaviors involving 

different processes. The metal enrichment of the particulate fraction results from the settlement and 

accumulation of particulate matter close to the organisms. This accumulation can be seen as a significant 

secondary source of particulate metals. The enrichment observed in the dissolved fraction can be induced by 

the dissolution and/or oxidation of particles (mainly polymetallic sulfide) or by the presence of particles or 

colloids which size ranges from 0.45 to 2 µm. 

The bulk particulate observed in our samples is characteristic of crystalline particles settling rapidly from the 

high temperature smoker (sphalerite, wurtzite and pyrite), amorphous structures and eroded particles formed 

in the external zone of the chimney. This observation reinforces the hypothesis of particle accumulation in 

areas where hydrothermal organisms have settled. Precipitation of Zn, Cu, Cd and Pb with Fe as wurtzite, 

sphalerite and pyrite is the main process involved within the studied area for the particles larger than 2µm.

The distribution of the observed dominant fauna can be related not only to the gradient resulting from the 

dilution process and hence the availability of energy sources but also to the metallic load and variability of 

the mixing zone. Distribution between dissolved and particulate fractions of the metals can be a first key to 

estimate metal bioavailability for organisms using different nutritional strategies such as R. pachyptila and 

alvinellid worms. Dissolved and particulate metal concentrations are therefore necessary abiotic variables in

understanding the chemical reactivity of the environment. The study of faunal distribution in hydrothermal 

ecosystem should therefore be undertaken by a multiparametric approach taking into account both the 

necessary compounds available (O2, H2S, …) but also the potential stressors such as metals present in this 
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peculiar environment. The bioavailability of the metal compounds towards the different faunal species has to 

be evaluated to understand the strategies developed by hydrothermal fauna to cope with this environment.
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Figure captions

Fig. 1: 3D schematic representation of the Genesis chimney (from Sarradin et al. 1998). The dark area 

corresponds to the sampling area “zone R”, the grey one to “zone A”.

Fig. 2: Schematic view of the vacuum based sampling device manipulated and actuated by the hydraulic jack of 

the submersible. The initial internal pressure is 0.25 bar (Pint). Temperature is recorded at the extremity of the 

sample inlet by an autonomous probe. The frit holder is connected to the sample inlet.

Fig 3: a), Distribution of the relative number (%) of temperature measurements of the samples in zones A and R, 

n=19. b) Distribution of the relative number (%) of temperature measurements within different microhabitats

colonized by Riftia pachyptila or by alvinellid worms. This graph was obtained by gathering temperature data 

measured by autonomous probes (Micrel®) during 2 cruises on the EPR (HOT96 and HOPE99), n = 10478.

Fig. 4: Log Temperature vs. pH relationship. The dataset is enriched with endmember concentrations from a) Le 

Bris et al. (2003) and b) Von Damm (1995a). R2 = 96.0 %, pH = 8.02 – 1.81*LogT. The dotted line represents 

the confidence interval at 95%.

Fig. 5: Dissolved (Md, <2µm) and particulate (Mp, >2µm) metal concentrations vs. temperature compared with 

theoretical dilution lines. Theoretical dilution lines were calculated from published high and low endmember

concentrations simulating a simple dilution of hydrothermal fluid with seawater.

Fig. 6: Particulate metal (Mp) vs. particulate Fe (Fep) relationship. The correlation coefficients obtained for 

particulate Zn, Cu, Cd and Pb vs. particulate Fe are respectively 0.939, 0.972, 0.918, 0.957. The dotted line 

represents the confidence interval at 95%.

Fig. 7: Biplot of components 1-2 extracted from the PCA and explaining 72 % of the variability in the dataset. 

The samples (square symbols) are marked according to the sampling zone (R for Riftia clumps, A for colony of 

Alvinellids).



Cu(nM) Pb (nM) Cd (nM)

Certified v. Measured v. Certified v. Measured v. Certified v. Measured v.

NASS-5 4.7±0.7 4.4±0.2 0.04±0.02 0.05±0.02 0.20±0.03 0.17±0.02

CASS-3 8.1±1.0 7.6±0.5 0.06±0.02 0.07±0.01 0.27±0.04 0.26±0.04

SLEW-2 25.7±1.7 27.2±1.4 0.09±0.01 0.08±0.01 0.17±0.02 0.15±0.02

Table 1: Analysis of Cu, Pb and Cd in certified seawater samples: NASS-5 oceanic seawater, CASS-3 coastal 

seawater, SLEW-2 estuarine water. Values (v.) are expressed as mean ± confidence interval (95%)

Table
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Sampling

zone

T°C pH % 

fluid

Fed

µM

Fep

µM

Cud

µM

Cup

µM

Znd

µM

Znp

µM

Cdd

nM

Cdp

nM

Pbd

nM

Pbp

nM

R1 4.4 6.6 1.1 4.1 19.8 0.18 0.742 0.07 7.54 1.62 16.34 10.29 31.43

R2 6.2 6.3 1.9 3.5 1.7 0.40 nd 0.40 nd 3.69 nd 34.13 nd

R3 4.3 6.7 1.1 9.8 nd 0.19 nd 0.13 nd 1.98 nd 7.77 nd

R4 4.4 6.6 1.1 4.1 10.7 1.13 0.353 0.30 3.49 3.96 9.41 24.32 13.39

R5 5.3 6.6 1.5 5.7 11.2 0.22 0.325 0.16 2.30 2.25 4.47 7.52 14.94

R6 4.5 6.8 1.1 1.8 3.4 0.49 0.016 0.21 0.09 8.56 0.20 22.82 0.56

R7 6.0 6.6 1.8 1.0 44 nd 1.393 nd 12.50 nd 33.04 nd 46.22

R8 4.4 6.8 1.1 2.1 18.2 0.36 nd 0.32 nd 1.26 nd 6.55 nd

R9 13.1 6.0 4.9 7.0 1.4 0.44 0.177 0.32 2.95 2.79 4.51 23.54 7.12

R10 3.2 7.1 0.6 nd nd 0.80 0.004 0.65 0.06 3.96 nd nd 0.26

R11 3.7 7.0 0.8 2.9 9.3 0.32 0.383 0.12 1.61 2.34 19.83 nd 7.13

R12 4.8 6.9 1.3 4.5 29.5 0.49 1.122 0.23 7.11 3.87 14.34 14.47 43.33

A1 16.0 6.2 6.2 33.7 2.5 0.17 0.009 nd 0.11 1.80 0.24 10.05 1.20

A2 5.5 6.5 1.6 3.1 10.5 0.24 0.280 0.21 3.06 4.28 7.52 11.70 10.03

A3 13.0 6.0 4.9 8.7 1.3 0.23 0.018 0.40 0.15 nd 9.19 9.85 2.03

A4 12.8 6.1 4.8 9.6 nd nd nd nd nd nd nd nd nd

A5 3.8 7.1 0.8 4.8 14.4 0.39 0.266 2.00 6.98 7.84 11.15 61.89 81.30

A6 5.0 6.9 1.4 5.5 57.1 0.34 0.873 0.29 27.00 2.97 43.7 8.69 251.53

A7 20.0 5.9 7.9 6.1 nd nd nd 0.23 nd 1.89 nd 19.90 nd

SW1 1.9 7.6 0.0 1.9 nd 0.02 nd nd nd 1.1 nd 1.5 nd

SW2 nd 7.6 nd <LD nd 0.01 nd nd nd 1.3 nd 1.5 nd

Table 2: Temperature, pH and metal concentrations measured in the water samples. d refers to dissolved 

concentration, i.e. not retained on a 2µm frit, p refers to particulate concentration, i.e. retained on a 2µm frit. 

The frits corresponding to samples R3 and A4 were used for the MEB studies. Samples SW1 and SW2 were 

taken ca. 500 meters away from the active area. % fluid is an estimation of the content of hydrothermal fluid in 

mixed with seawater (see § 3-3).

nd : not determined, <LD lower than the detection limit.



References T°C Fe (µM) Cu (µM) Zn (µM) Cd (nM) Pb (nM)

Endmember, 

13°N

Cosson (1996), Von Damm 

(1995a), Le Bris et al. (2003)

230-359 600-10800 2-102 55-70 14-135

Surrounding organisms

EPR, 13°N This study * R, A 3.8-20 5.2-62.6 0.18–1.6 0.3–27.3 2.0-46.7 11-260

EPR, 13°N Desbruyères et al. (1998) A 1.38-3.27 16-133

EPR, 9°N Di Meo-Savoie et al. (2004) A 7.5-40 72-730 0.08-1.94 2.9-41.3 2.8-33 20-520

Mid Atlantic 

Ridge

Geret et al. (1998) Sarradin et 

al. (1999), Geret et al. (2002), 

M, S

4.7-25 58-1470 0.02-3.2 0.96-120

Mid Atlantic 

Ridge

Kadar et al. (2005) M, S 4.3-8 3.8–10.3 0.5-1.99 0.25-1.64 1.6-20

North Pacific 

deep waters

Donat and Bruland (1995) 0.001 0.005 0.008 1 0.005

Table 3: Temperature and composition of endmember vent fluids from 13°N, EPR, diluted fluids surrounding 

hydrothermal organisms and North Pacific deep waters. 

* Total metal concentration (dissolved + particulate).

R: Riftia pachyptila clump, A: colony of alvinellids, M: mussel bed, S: shrimps



Structure Composition Size µm n Comment

Wurtzite ZnFeS 1-10/50 9 hexagonal, individual or stacked crystals 

Collomorphous (wurtzite) ZnFeS 20 5 spheres, stacked

Sphalerite ZnS/ ZnFeS 15 2 crystal + stacked

Pyrite FeS2 20 3 cubic

Collomorphous (pyrite) FeS2 5-20 5 sphere, stacked

Sulfur S 2-5 1 globule, stacked

Anhydrite CaSO4 60 1 not eroded crystal

"Biofilm" 32 microcrystalline assemblage associated to biofilms

Organic fragments 4

Table 4: Mineralogical composition of the particles, n is the number of observations for a total of 32. 



Sarradin
STOTEN-D-07-00750R1
We have followed all the reviewer's comments. Our modification start with a < in the following text

Reviewers' comments:

2. Unclear relationship between observed metal data and faunal association with the microhabitats; 
While I have no concern about using PCA for a statistical evaluation of the data, I am still not 
completely satisfied with the discussion and conclusion from the statistical results. It would be nice to 
have some concluding sentences about the different metal composition of the two microhabitats and 
possible explanations, why tubeworms may favor this environment and the alvinellid worms the other. 
Does the limited variability in area R indicate a more homogeneous microenvironment (and possibly 
lower tolerance limits for metals) of the tubeworms, and the higher variability of the values in area A 
that the alvinellid worms are exposed to stronger metal gradients and/or fluctuations than the 
tubeworms?

<Concluding sentences have been added to section 3.5
Riftia clumps are present in zone R characterized by a limited variability, low temperature and metal 
concentrations whereas Alvinellids worms in zone A are exposed to stronger metal gradients and 
fluctuations than the tubeworms. This distribution along the chemical gradient can be linked both to 
the availability of energy sources but also to the ability of Riftia pachyptila or alvinellids worms to 
sustain the metallic load, alvinellids being potentially more adapted to tolerate harsher conditions. The 
possible metal entry routes may also be different as only the dissolved metal fraction will be available 
for R. pachyptila, whereas both dissolved and particulate fractions will be available for alvinellid 
worms. 

I also have a few specific comments:
Page 1, Line 39, 40, abstract: I doubt that coprecipitation with Fe is the correct expression for the 
formation of the listed mineral phases. Wurtzite, sphalerite and pyrite are discrete phases that 
precipitate from hydrothermal solutions, as well as Cu-bearing phases such as chalcopyrite. 
< co precipitation has been replaced througout the text by precipitation

Page 1, Line 42,43: Say how the distribution of the fauna is related to the gradients.
<added in the text
The distribution of the dominant observed fauna has been related to the gradient resulting from the 
dilution process, with the alvinellids worms colonizing the hotter and more variable part of the mixing 
zone, but also to the metallic load of the mixing zone. 

Page 3, Line 50: What is PSA? 
<added in the text potentiometric stripping analysis

Page 4, Lines 28-29: Fed, Cud etc. need to be defined somewhere in the text. I would suggest to make 
the d for "dissolved" subscript.
< done in the text
The concentrations of dissolved metals obtained in sample SW1 (Fe < detection limit, Cu 0.01µM, Cd 
1.3 nM, Pb 1.5 nM) are close to those currently reported for North Pacific deep waters (Fe 0.01 µM, 
Cu 0.005µM, Cd 1 nM, Pb 0.005 nM, Donat and Bruland, 1995) except for Pb. 

Page 6, lines 4-18. Is the temperature really a conservative parameter? Has the calculation of the fluid 
percentage been checked with the endmember data of a conservative element? Comparative 
calculations by Koschinsky et al. (Geochimica et Cosmochimica Acta 66, 1409-1427) had shown that 
conservative elements such as Li and Rb are better parameters for endmember calculations than 

* Responses to Reviewers' Comments



temperature, because conductive cooling in the subsurface can make temperature behave non-
conservative during mixing.
< a sentence has been added in the text
This result confirms that at the scale and in the range studied, pH and temperature can be assumed to 
follow a semi-conservative process and can be used as tracers of the dilution, even though conductive 
cooling in the subsurface can modify its conservative behavior during mixing. 

Page 7, line 40: Cu sulfide is a typical high-temperature precipitate, and not something that forms in 
the cold part of the chimneys.
< deleted in the text
Line 58: delete one "settle"
<done

Page 8, line 17: correct "calchophile" to "chalcophile"
<done

Figure 5: Legends of the Zn and Pb graphs: what does "Zn high µM, Zn low µM, etc. mean? 
< done in the legend 

Figure caption, figure 6: Include "(Fep)" after "particulate Fe"
< done




