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Abstract:  
 
A theoretical investigation of the   2A  and Ã  2A  electronic states of the HO2 radical is reported. 
Both electronic states have nonlinear equilibrium geometries and they correlate with a 2  state at 
linear geometries so that they exhibit the Renner effect. In highly excited bending states, there is 
tunneling between two equivalent minima (with geometries where the H nucleus is bound to one, or the 
other, of the two O nuclei), and the two linear geometries H–O–O and O–O–H become accessible to 

the molecule. Thus, HO2 affords an example of the so-called double Renner effect. Three-dimensional 
potential energy surfaces for the   2A  and Ã  2A  electronic states of HO2 have been calculated ab 

initio and the global potential energy surfaces for the states have been constructed. These surfaces 
have been used, in conjunction with the computer program DR [Odaka et al., J. Mol. Structure 795, 14 
(2006); Odaka et al., J. Chem. Phys. 126, 094301 (2007)], for calculating HO2 rovibronic energies in 
the “double-Renner”-degenerate electronic states   2A  and Ã  2A . The results of the ab initio 

calculations, the rovibronic energies obtained, and analyses of the wavefunctions for selected states 
are presented.  



I. INTRODUCTION

The hydroperoxyl radical, HO2, is of crucial importance in the chemistry of the Earth’s

atmosphere.1 It is a key oxidizer, capable of reacting with volatile organic compounds and

efficiently convert NO to NO2 while regenerating OH.2,3 It also plays a role in interstellar

chemistry4 and in combustion processes, for example as an intermediate in the reaction

H+O2 � HO+O.5–7 The first predictions of the properties of HO2 were made by Walsh8 in

1952. He obtained the ground electronic state to have a bent equilibrium geometry and the

first excited electronic state to be very low in energy. These predictions were later confirmed

by more detailed ab initio calculations.9,10 At linear geometries, the electronic ground state

is 2Π, and this state splits into the non-degenerate X̃ 2A′′ and Ã 2A′ states when the molecule

bends. Both of these states have strongly bent equilibrium geometries. Since they correlate

with a 2Π state at linearity, the X̃ 2A′′ and Ã 2A′ states exhibit the Renner effect11 (see also

Refs. 12, 13 and references therein).

The Ã−X̃ electronic band system of HO2 in the gas phase was studied experimentally

in 1974, both in emission and absorption,14,15 and it was realized that forbidden ∆Ka = 0

transitions are present. Tuckett et al.16 suggested that these transitions result from Renner

interaction. Several spectroscopic studies followed.16–22 Fairly recently, Fink and Ramsay22

carried out a high-resolution re-investigation of the X̃/Ã(v1, v2, v3) = Ã(0, 0, 0) → X̃(0, 0, 0)

band. They also observed forbidden ∆Ka = 0 transitions and concluded that these are mag-

netic dipole transitions. The electric dipole transition moment for the electronic transition

was found to be very small.

To confirm the analysis by Fink and Ramsay,22 Osmann et al.23 calculated ab initio the

potential energy, transition electric dipole and transition magnetic dipole surfaces of the

X̃ 2A′′−Ã 2A′ system and simulated the Ã 2A′ → X̃ 2A′′ emission spectrum with the program

RENNER.24–26 Later, Jensen et al.27 calculated more points on the potential energy surfaces,

using the ab initio method of Ref. 23, to cover a wider range of bending geometries. They

adjusted the shapes of the surfaces in a least squares refinement to the energies of rovibronic

states involving both electronic states. Their results provide an accurate representation of

the surfaces in this energy region and confirmed the conclusions by Fink and Ramsay,22 in

particular the assignment of the forbidden ∆Ka = 0 transitions as magnetic dipole transi-

tions. Also, Jensen et al.27 explained a perturbation observed by Fink and Ramsay22 in the
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Ã(0, 0, 0) → X̃(0, 0, 0) band for states with J ≈ 51/2. The theoretical identification of the

perturbing state has been confirmed in a very recent re-analysis of the experimental data.28

In another recent experimental study29 of X̃ 2A′′ HO2, the 2ν1 band has been investigated

by diode laser spectroscopy.

Compared to that of an ‘ordinary’ triatomic molecule with an isolated electronic ground

state, H2O say, the theoretical description of the rotation and vibration in the electronic

ground state X̃ 2A′′ of HO2 is subject to two complications. The first one is the presence

of the Renner effect which causes the X̃ 2A′′ state to be degenerate with the first excited

state, Ã 2A′, at linear geometries. In consequence, the Born-Oppenheimer approximation

(see, for example, Ref. 30 and the references therein) breaks down and the X̃ 2A′′ and Ã 2A′

states must be treated together. The second complication is that in both the X̃ 2A′′ and

Ã 2A′ electronic states, HO2 has two versions, i.e., non-superposable equilibrium structures

that differ only in the numbering of identical nuclei.31 The two versions have the H nucleus

bound to one, or the other, of the two O nuclei, at the strongly bent equilibrium geometries

of the X̃ 2A′′ and Ã 2A′ states. In highly excited bending states there is tunneling between

two equivalent minima corresponding to the two versions, and the two linear geometries H-

O-O and O-O-H, each one associated with a doubly degenerate, 2Π electronic state, become

accessible to the molecule. Thus, HO2 affords an example of the so-called double Renner

effect.32–34

To the best of our knowledge, the first theoretical investigation of the double Renner

effect for X̃ 2A′′/Ã 2A′ HO2 was described fairly recently by Odaka,32 who presented pre-

liminary results only. In the present work, we have calculated, by ab initio methods, new

potential energy surfaces for the X̃ 2A′′ and Ã 2A′ states of HO2, improving the coverage of

configuration space relative to the ab initio data set (from Refs. 23,27) available to Odaka,32

in particular in the region near the tops of the potential energy barriers separating the two

equivalent minima in the two electronic states. In this manner, we obtain more accurate

rovibronic energies and a deeper insight into the effects of Renner degeneracy combined with

tunneling between two equivalent minima on the two potential energy surfaces involved.

We have calculated three-dimensional potential energy surfaces for the X̃ 2A′′ and Ã 2A′

electronic states of HO2 ab initio at the full-valence multi-reference single and double excita-

tion configuration (MR-SDCI) + Davidson correctionQ level of theory including core-valence

correlations, based on the two-state (i.e., one A′ and one A′′ state) averaged, no-core, full-

3
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FIG. 1: The Jacobi coordinates, and the molecule-fixed axis system xyz, for HO2. The O nuclei

are labeled 1 and 2, respectively, as indicated, and the proton is labeled 3. M is the center of

mass of the OO moiety. The O-O internuclear distance is called R, r is the M-H distance, and τ

= ∠(O1-M-H) where O1 is the oxygen nucleus labeled 1. The xyz axis system has origin in the

nuclear center of mass. The z axis is parallel to the O-O bond, and the x axis points into the plane

of the page so that the xyz axis system is right-handed.

valence CASSCF orbitals, with a Dunning cc-pVQZ basis set for H and an aug-cc-pCVQZ

basis set for O. From the results of the ab initio calculations, global potential energy surfaces

for the X̃ 2A′′ and Ã 2A′ electronic states have been constructed. These surfaces have been

used, in conjunction with the newly developed computer program DR,32–34 for calculating

HO2 rovibronic energies in the double-Renner-degenerate electronic states. The rovibronic

wavefunctions for selected states have been analyzed.

II. THEORY

The theoretical model used in the present work is described in detail in Ref. 33 and

summarized in Ref. 34. The reader is referred to these references and to Ref. 32 which gives

extensive details, such as explicit expressions for many matrix elements. The vibrational

motion of HO2 is described by Jacobi coordinates (r, R, τ) which are defined, together with

the chosen molecule-fixed axis system xyz, in Fig. 1. The theoretical model is implemented

in the DR program which determines the eigenvalues and eigenfunctions of the rovibronic

Hamiltonian ĤDR in a standard variational calculation: The matrix representation of ĤDR is

constructed in terms of suitable basis functions32,33 and diagonalized numerically. In the DR

calculations for Ã 2Π MgNC/MgCN reported in Refs. 32,33, and in the HO2 calculations of
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the present work, the diagonalizations are carried out by means of the LAPACK35 driver

DSYEVX, whereas Ref. 34 reported the implementation of a newly developed, highly efficient

matrix diagonalization routine in the DR program and the application of the improved

program to the calculation of high-J energies for Ã 2Π MgNC/MgCN.

For HO2, the eigenstates of ĤDR are labeled by the good quantum numbers J , MJ , S,

and Γrve, where the quantum number J pertains to the operator Ĵ
2 = (N̂ + Ŝ)2 with N̂ as

the total orbital angular momentum and Ŝ as the total electron spin; MJ ~ is the projection

of Ĵ on the space-fixed Z axis (see, for example, Ref. 12); S is associated with Ŝ
2 and Γrve

is the symmetry of the eigenstate in the molecular symmetry group12 of HO2

C2v(M) = {E, (12), E∗, (12)∗} . (1)

Here, E is the identity operation, (12) is the transposition12 (interchange) of the two O

nuclei (which we label 1 and 2 as shown in Fig. 1), the inversion operation12 E∗ inverts all

nuclei and electrons in the molecular center of mass, and (12)∗ = (12)E∗. The operations

(12) and (12)∗ are feasible12 because, as discussed above, we take into account the tunneling

between the two versions of HO2. The character table of C2v(M) is given in Table A-5 of

Ref. 12; the four possible irreducible representations are Γrve = A1, A2, B1, or B2.

In Refs. 32–34 we described DR calculations for Ã 2Π MgNC/MgCN with the molecular

symmetry group Cs(M) = {E,E∗}. For this molecule, all vibrational basis functions [which

depend on the Jacobi coordinates (r, R, τ) defined in Fig. 1] are totally symmetric in the

molecular symmetry group because the Jacobi coordinates are invariant under E∗. For HO2,

the Jacobi coordinates are also invariant under E∗. However, under (12) and (12)∗ we have

(12) (r, R, τ) = (12)∗ (r, R, τ) = (r, R, π − τ). (2)

Thus, vibrational basis functions for HO2 can have A1 or B2 symmetry in C2v(M). Functions

with A1 symmetry satisfy ψvib(r, R, π− τ) = ψvib(r, R, τ), and functions with B2 symmetry

satisfy ψvib(r, R, π − τ) = −ψvib(r, R, τ).

5



III. POTENTIAL ENERGY SURFACES

A. Ab initio calculations

We have used the MOLPRO36 suite of quantum chemistry programs for carry-

ing out ab initio calculations to determine the potential energy surfaces (PESs) for

the X̃ 2A′′ and Ã 2A′ states of HO2. The corresponding dipole moment and transi-

tion moment surfaces were also calculated. The basis set employed for the hydro-

gen atom was the Dunning37 correlation-consistent valence quadruple-zeta basis set (cc-

pVQZ),(6s,3p,2d,1f)/[4s,3p,2d,1f ], and that for the oxygen atom was the Dunning and co-

workers37–39 augmented correlation-consistent polarized core-valence valence quadruple-zeta

basis set (aug-cc-pCVQZ),(16s,10p,6d,4f ,2g)/[9s,8p,6d,4f ,2g].

Starting from restricted Hartee-Fock (RHF) orbitals for the X̃ 2A′′ state of HO2 as the

initial guess, multi-configuration self-consistent field (MCSCF) molecular orbitals (MOs),

averaged over the X̃ 2A′′ and Ã 2A′ states, have been fully optimized for the full valence

active space (13 electrons in 9 orbitals) with constraint of double occupancy in the oxygen

1s orbitals. Based on these state-averaged MCSCF natural orbitals (NOs), internally con-

tracted MR-SDCI (multi-reference single and double excitation configuration interaction)

calculations, each for the X̃ 2A′′ and Ã 2A′ states, were carried out for the full valence active

space (13 electrons in 9 orbitals), where core-valence and core-core correlations were also

included by single and double excitations from 1- and 2-a′ orbitals (primarily originating

in oxygen 1s-orbitals) in each configuration state function. Dynamical electron correla-

tion due to quadruple excitations was subsequently recovered by the Davidson correction40

+Q. Thus, our method will be denoted as core-valence MR-SDCI+Q/[cc-pVQZ (H), aug-

cc-pCVQZ (O)]. The PESs have been calculated with this method under Cs symmetry, the

nuclear geometries being specified by the Jacobi coordinates defined in Fig. 1.

The actual procedure for carrying out the ab initio calculations is as follows. At the MR-

SDCI+Q level, we first located two transition states (TSs), one at τ = 0 (linear structure)

and the other at τ = 90◦ (T-shaped transition structure for the isomerization between the H-

O-O and O-O-H structures) under C2v symmetry constraint, and then traced the minimum

energy path (MEP) from each of the TS structures down to each equilibrium structure on

the A′′ and A′ PESs under Cs symmetry. We varied τ in steps of 10◦ to 15◦ in the interval

6



TABLE I: Geometries of the stationary points on the potential energy surfaces for the X̃ 2A′′ and

Ã 2A′ electronic states of HO2, derived from the analytical PESs based on the core-valence MR-

SDCI+Q/[cc-pVQZ (H), aug-cc-pCVQZ (O)] ab initio data. See Fig. 1 for the definition of the

coordinates (r,R, τ).

r/Å R/Å τ r(H-O)/Å ∠(H-O-O)

eX 2A′′ equilibrium geometry 1.3065 1.3311 45.97◦ 0.9702 104.48◦

eA 2A′ equilibrium geometry 1.3047 1.3986 46.54◦ 0.9676 101.81◦

Maximum at linearity (2Π) on the MEP 1.6060 1.3276 0◦/180◦ 0.9422 180◦

Transition state for isomerization ( eX 2A′′) 0.9172 1.4303 90◦ 1.1630 52.06◦

Transition state for isomerization ( eA 2A′) 0.9489 1.4275 90◦ 1.1874 53.05◦

0◦ < τ < 90◦ and, for each τ -value considered, we calculated two-state averaged CASSCF

NOs for various combinations of the r and R distances perpendicular to the MEP, using the

CASSCF NOs optimized for the corresponding point on the MEP having the given τ as the

initial-guess orbitals for the state-averaged (SA) CASSCF calculation. Then, based on the

SA-CASSCF NOs thus determined, we carried out MR-SDCI+Q calculations. Considering

the symmetry situation we mapped these energies onto the entire configuration space with

0◦ < τ < 180◦. The energies at τ = 0◦, 90◦, and 180◦ were determined by interpolation.

Thus, actual calculations of the X̃ 2A′′ and Ã 2A′ state electronic energies have been done

for 384 geometries with 0◦ < τ < 90◦.

The geometries, at which ab initio calculations were carried out, were selected such that

their energies are less than 25000 cm−1 above the global minimum. Additional points were

calculated to improve the coverage of geometries with energies below 6000 cm−1 and geome-

tries near the global minima and the MEP. Thus, a large fraction of the calculated points

are located in the corresponding regions of configuration space.

The energy variation with τ along the calculated MEPs for the X̃ 2A′′ and Ã 2A′ states,

respectively, are shown in Fig. 2. The energy at linearity (i.e., at τ = 0◦ and 180◦) is 20644.1

cm−1 above the equilibrium energy of the X̃ 2A′′ state and 13478.6 cm−1 above that of the

Ã 2A′ state and the barriers at τ = 90◦, corresponding to T-shaped geometry, are 13449.6

and 11810.9 cm−1 in the X̃ 2A′′ and the Ã 2A′ states. The energy difference between the

global minima of two electronic states is 7165.5 cm−1. The geometries for these stationary

points, derived from the fitted analytical PESs (see Section III B), are given in Table I.
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FIG. 2: The bending minimum energy paths for HO2. The solid curve corresponds to the X̃ 2A′′

electronic state and the dashed curve to the Ã 2A′ state.

B. Analytical potential energy surfaces

We now fit analytical, parameterized representations of the potential energy functions of

X̃ 2A′′ and Ã 2A′ HO2 through the calculated ab initio points; the optimized parameter values

are used as input for the DR program. From the analytical potential energy functions, the

DR program can generate the electronic energies at any nuclear geometry; this is required for

carrying out the numerical integrations producing the matrix elements of ĤDR. We choose

the following analytical functions to represent the potential energy surfaces:

V σ(r, R, τ) =
∑

i,j,k

F σ
ijk (ξr)

i (ξR)j (ξτ)
k, (3)

where

ξr = 1 − exp[−βr(r − rσ
e )], (4)

ξR = 1 − exp[−βR(R −Rσ
e )], (5)

ξτ = 1 − cos 2τ. (6)

In these expressions, σ denotes the electronic state with σ = − and + for the X̃ 2A′′ and

Ã 2A′ states, respectively. The quantities rσ
e and Rσ

e depend on τ and are expressed as the

series

rσ
e =

∑

k

f r,σ
k (ξτ )

k, Rσ
e =

∑

k

fR,σ
k (ξτ )

k . (7)
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The values of the parameters f r,σ
i and fR,σ

i were determined by fitting the analytical functions

in Eq. (7) through the values of R and r determined along the MEP as τ is varied. That is,

for a given value of τ , (rσ
e , R

σ
e , τ) defines the geometry of the local potential energy minimum

for the electronic state σ.

Since we are expanding the PESs in terms of the variable ξτ in Eq. (6), we trivially have

that (12)V σ(r, R, τ) = V σ(r, R, π − τ) = V σ(r, R, τ) as required by symmetry.12 For linear

geometries (τ = 0◦ and 180◦) we have ξτ = 0. By setting F−
ij0 = F+

ij0 in Eq. (3) we achieve

that the degeneracy of the two potential energy surfaces at linear geometries is correctly

described. Since the F−
ij0 parameters are common to the two surfaces, we determine the

values of the potential energy parameters F σ
ijk and the exponents βr and βR in simultaneous

fittings to the ab initio points for both electronic states involved.

The expansions of Eq. (3) have proved adequate for fitting the ab initio data for the X̃ 2A′′

and Ã 2A′ states of HO2. However, when we wish to describe not only the PESs in the vicinity

of the potential energy minima, as done in Refs. 23 and 27, but also the detailed shapes of

the barriers to linearity and the barrier to H-O-O ↔ O-O-H tunneling, we find that terms of

very high order must be included in the series expansions of Eq. (3). To obtain reliable values

for the corresponding high-order expansion coefficients F σ
ijk, we would require an extremely

extensive set of ab initio points which, with the computer resources available to us, we

cannot calculate in practice. Consequently, in accordance with our strategy for selecting the

nuclear geometries for the ab initio points, we have chosen a fitting strategy which favours

the regions of configuration space near the minima and near the MEPs while still producing

physically sound PESs of an acceptable accuracy in other regions. In particular, we give

lower weights to ab initio points at high energy since the accuracy of the ab initio calculation

at such points, where the molecule is strongly displaced from its equilibrium geometry, is

known to be less than that of points near the minima.

According to our fitting strategy, the ab initio points available for each of the two elec-

tronic states are divided into two subsets. The first subset contains all points with energies

below a chosen value, Eσ
max say, measured relative to the energy of the global minimum,

and the points in the immediate vicinity of the MEP. The second subset consists of the

remaining data points. Thus, the points in the first subset define the PES in the regions of

configuration space sampled by the wavefunctions of the states that have been characterized

experimentally. By adjusting the weights of the points in the second subset of data, and
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the value of Eσ
max, we can achieve a satisfactory reproduction of the energy values of the

first subset while - since the points in the second subset are not discarded - we obtain PESs

with physically correct shapes also in the regions of configuration space corresponding to

the second subset. Owing to the fact that we are describing with good accuracy the regions

of the MEPs, we expect satsfactory results for highly excited bending states and, therefore,

a correct description of the double Renner effect and the H-O-O ↔ O-O-H tunneling.

The potential energy parameter values resulting from the final fitting are listed in Table II.

The values of Eσ
max were taken as 6000 cm−1 for the X̃ 2A′′ state and 12300 cm−1 for the

Ã 2A′ state. The final fit included 339 X̃ 2A′′-state data points and 327 Ã 2A′-state data

points, some of the 384 data points initially available for each surface having been discarded

since they correspond to extremely high energies. The corresponding weighted standard

deviations are 12 and 10 cm−1, respectively. The root-mean-square (rms) deviations for the

first subset of data are 17 and 13 cm−1, respectively, for X̃ 2A′′ and Ã 2A′ states, and the

corresponding rms deviation for all data points are 270 and 250 cm−1. Thus the global PESs

have correct shapes and reasonable accuracy so that they can be used for qualitative studies

of highly excited vibrational states.

IV. ROVIBRONIC ENERGIES

A. Computational details

With the DR32–34 program, we have computed rovibronic energies and wavefunctions for

X̃ 2A′′ and Ã 2A′ H16O2. As input for this calculation, we used the values of the parameters

in the functions of Eqs. (3)-(7); these parameter values were obtained by fitting to the ab

initio data as described in the preceding section.

The size of the vibrational basis set was determined by the parameter values (see Ref. 33)

(va
2)

(max) = 23, (vb
2)

(max) = 15, N
(max)
R = 15, and N

(max)
r = 7. In calculating integrals over

τ , we have employed 4000 integration points for the Numerov-Cooley integrations, and 120

integration points for the Gauss-Laguerre integrations.

For the stretching basis functions |NR,ΓR〉 and |Nr,Γr〉 (see Ref. 33) we have used the

parameter values Re = 2.539041 a0 and re = 2.484028 a0, D
(R)
e = 0.175 Eh, D

(r)
e = 15 Eh,

h c ω
(R)
e = 0.004 Eh, and h c ω

(r)
e = 0.0125 Eh. The number of integration points for Gauss-

10



TABLE II: The potential energy surface parameters for the X̃2A′′ and Ã2A′ electronic states of

HO2, obtained by fitting to the ab initio data.

i j k F
(−)
ijk

/cm−1 F
(+)
ijk

/cm−1 i j k F
(−)
ijk

/cm−1 F
(+)
ijk

/cm−1

0 0 0 21206.48113145 21206.48113145 2 0 2 211649.64011518 41788.60551767
0 0 1 -59459.18302920 -35026.96131759 2 0 3 -228768.32950999 -38544.38529305
0 0 2 85855.52252558 45558.18176458 2 0 4 72371.62881977 19299.64435247
0 0 3 -94051.77609981 -51226.63452353 2 1 0 -367380.83606892 -367380.83606892
0 0 4 66769.76385630 39511.65394772 2 1 1 562480.78072702 641989.41256431
0 0 5 -23418.32245940 -15082.22586525 2 1 2 -280601.55811472 -344328.23204363
0 0 6 3136.63361043 2279.57755816 2 1 3 44547.94845415 57706.40222997
0 1 0 1937.15853020 1937.15853020 2 2 0 119997.17740321 119997.17740321
0 1 1 -26831.77879725 -15538.52779630 2 2 1 -419552.49119302 -420620.01638522
0 1 2 143993.16434417 93984.25692585 2 2 2 172680.54692549 187300.24068235
0 1 3 -229025.95173558 -162417.82990095 3 0 0 -34134.65591864 -34134.65591864
0 1 4 138873.43686970 105139.21406030 3 0 1 -406347.10510604 -403274.08034957
0 1 5 -28527.40897826 -22787.95235211 3 0 2 357358.16041934 422322.22831898
0 2 0 93301.91281253 93301.91281253 3 0 3 -81858.12717462 -119113.20399838
0 2 1 -121101.07003965 -47012.39783079 3 1 0 -38481.38832433 -38481.38832433
0 2 2 191012.40528087 57613.96903909 3 1 1 270782.45735030 206244.16017026
0 2 3 -129619.93498473 -49796.85586540 3 1 2 -138281.29375835 -104408.89942642
0 2 4 29541.85670368 12739.51896704 4 0 0 -209017.97799512 -209017.97799512
0 3 0 -76397.11449462 -76397.11449462 4 0 1 404062.31629245 393208.55685193
0 3 1 84287.58472590 132585.88551437 4 0 2 -167493.64422687 -146964.65147580
0 3 2 -23257.22298714 -80977.76241407

0 3 3 736.06454530 17900.39091859 k f
R,(−)
k

/Å f
R,(+)
k

/Å
0 4 0 -25986.95332542 -25986.95332542
0 4 1 45614.44682279 20286.51395863 0 1.31765641 1.31765641
0 4 2 -26834.64497559 -1916.37979036 1 -0.00743986 0.06478911
1 0 0 -4901.34371741 -4901.34371741 2 0.19913595 0.02615624
1 0 1 37919.92156565 5756.27543673 3 -0.91724319 -0.31436057
1 0 2 -197429.14954232 -86425.03536019 4 1.29731165 0.58554018
1 0 3 286810.84998363 162426.79829496 5 -0.68266057 -0.35673168
1 0 4 -147641.03139948 -95807.70958980 6 0.12116049 0.06948613
1 0 5 24572.53012016 17968.99540680

1 1 0 -150625.82906308 -150625.82906308 k f
r,(−)
k

/Å f
r,(+)
k

/Å
1 1 1 267647.77244035 128476.13233165
1 1 2 -236642.00314947 32900.90843857 0 1.60720702 1.60720702
1 1 3 128000.65115221 -48706.34858305 1 -0.12335863 -0.13944872
1 1 4 -26281.37181955 12052.38337157 2 -0.65289033 -0.56475817
1 2 0 316505.73443545 316505.73443545 3 1.36497455 1.20887929
1 2 1 -404318.88055143 -517601.40763006 4 -1.49587995 -1.36894866
1 2 2 131759.16520604 247485.09134230 5 0.76337930 0.72041450
1 2 3 -10818.40549357 -41839.87935608 6 -0.14433651 -0.13970290
1 3 0 -21091.50420203 -21091.50420203
1 3 1 181257.49180234 190716.98433218
1 3 2 -88584.85435677 -103898.85148800 β1 = 1.03 Å−1 β2 = 1.53 Å−1

2 0 0 225793.14584855 225793.14584855
2 0 1 -133918.44496176 -138674.35038837

Laguerre integration over the R and r coordinates were 15 and 35, respectively. The spin-

orbit interaction constant for HO2 was set to −160.1 cm−1 (Ref. 27). The threshold limit

energy constant for K-block contraction,32–34 Econt, is taken to be 18000 cm−1. All program

parameters were adjusted to get the best fit to the ab initio PESs and MEPs and, at the

same time, to achieve satisfactory convergence for the computed rovibronic energy values.
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B. Results

The calculated rovibronic energy levels with NKaKc
= 000 (and J = 1/2) are listed in

Table III.

Following Refs. 32–34, we analyze the wavefunctions of selected states by calculating

probability distributions f1(τ) and f2(r, τ). The probability density function f1(τ) [Eq. (37)

of Ref. 33] is defined such that the differential probability dp1 of finding the molecule with

the bending coordinate in the infinitesimal interval between τ and τ + dτ is given as

dp1 = f1(τ) dτ. (8)

This function can be expressed as

f1(τ) = f−(τ) + f+(τ) (9)

where fσ(τ) dτ , σ = − (+) for the X̃ 2A′′ (Ã 2A′) state, is the differential probability of

finding the molecule in the Born-Oppenheimer electronic state ψ
(σ)
e (i.e., ψ

(−)
e for the X̃ 2A′′

state and ψ
(+)
e for the Ã 2A′ state) with its bending coordinate between τ and τ + dτ . The

functions f−(τ) and f+(τ) measure the extent of the mixing of the two electronic states ψ
(−)
e

and ψ
(+)
e in the total rovibronic wavefunction at a given value of τ .

The over-all probability of finding the molecule in the Born-Oppenheimer electronic state

ψ
(σ)
e , σ = − or +, is

Pσ =

∫ π

0

fσ(τ) dτ (10)

with P− + P+ = 1.

The probability density function f2(r, τ) is given by Eq. (41) of Ref. 33. It is defined such

that

dp2 = f2(r, τ) dr dτ (11)

is the differential probability of finding the molecule with the bending coordinate in the

infinitesimal interval between τ and τ + dτ and the M-H distance (Fig. 1) in the interval

between r and r + dr.

In the set of calculated rovibronic energy levels for HO2 we can readily identify pairs

of states resulting from H-O-O ↔ O-O-H tunneling. In Table III, we give the rovibronic

symmetries Γ′′
rve/Γ′

rve of both partner states in such pairs (for example as A1/B2 when the

two partner states span the C2v(M) representation12 A1 ⊕ B2). Here, Γ′′
rve is the rovibronic
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symmetry of the lower partner state with term value E given in the table, while Γ′
rve is the

rovibronic symmetry of the upper partner state with term value E + ∆, where the tunneling

splitting ∆ is also given in the table. In low-lying states, the tunneling is negligible, the

partner states are effectively doubly degenerate, and ∆ = 0. In the table, we also list the

value of P+ for the lowest-energy partner state of each state pair; P− can be obtained as

1 − P+.

In Table III, we compare the computed energies for the lowest rovibronic states with

values obtained in the calculation by Jensen et al.27 These authors correctly described the

Renner effect by means of the program RENNER24–26 but neglected the H-O-O ↔ O-O-H

tunneling. They used potential energy functions optimized in fittings to the experimen-

tally available vibronic energies, and so their theoretical energy values are very close to the

available experimental counterparts. The agreement between the DR energy values of the

present work and the RENNER values from Ref. 27 is rather satisfactory and in keeping with

the accuracy of the ab initio calculations. For the fundamental vibrational energies in the

X̃ 2A′′ state, the differences are about 3 cm−1 for ν3, 9 cm−1 for ν2, and 19 cm−1 for ν1. We

conclude that the accuracy of the present calculations is satisfactory for the purpose of the

present work: it is possible to make realistic investigations of the double Renner effect with

the calculated potential energy surfaces. We note that, as mentioned above, the RENNER

results are very close to the available experimental energy values, and so the purely ab initio

results of the present work reproduce the experimental results well.

Figure 3 shows probability density functions f2(r, τ) for the selected states indicated by

(a)-(d) in Table III. The f2(r, τ)-function for the X̃(0, 0, 0), J = 1/2 state (marked (a) in

Table III) is shown in Fig. 3(a). As expected, in this state (which originates completely

in the X̃ 2A′′ electronic state) the probability density is localized near the two equilibrium

geometries of the X̃ 2A′′ state, the one version having (req, Req, τeq) = (1.3065 Å, 1.3311 Å,

45.9703◦) and the other version having the same values of Req and req but τ
(2)
eq = π − τeq.

In general, the C2v(M)-symmetry of HO2 requires that f2(r, τ) = f2(r, π − τ) as seen in

the figure. The probability density function of the Ã(0, 0, 0), J = 1/2 state, calculated

7033.68 cm−1 above the X̃(0, 0, 0), J = 1/2 state and originating entirely in the Ã 2A′

electronic state, is very similar to that in Fig. 3(a) since the equilibrium geometries of the

X̃ 2A′′ and Ã 2A′ states are very close. The Ã 2A′-state equilibrium geometry has (req, Req, τeq)

(1.3047 Å, 1.3986 Å, 46.5443◦).
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TABLE III: Calculated term values E/hc (in cm−1) for the J = 1/2, NKaKc = 000 levels of X̃ 2A′′

and Ã 2A′ HO2 up to 12750 cm−1 above the vibronic ground state. Probabilities P+ of finding the

molecule in the Ã 2A′ state, tunneling splittings ∆ (in cm−1) and rovibrational symmetry labels

Γrve are given (see text). For the states indicated by (a)-(d), probability density functions f2(r, τ)

(see text) are shown in Fig. 3.

State E Ref. 27 Γrve P+ ∆ E Γrve P+ ∆ E Γrve P+ ∆

eX 2A′′(0,0,0) 0.00(a) 0.0 A2/B1 0.00 0.00 8603.44 B1/A2 0.00 0.00 10972.93 B1/A2 0.00 0.07
eX 2A′′(0,0,1) 1100.87 1097.2 A2/B1 0.00 0.00 8626.76 B1/A2 0.00 0.06 11046.66 B1/A2 0.00 0.01
eX 2A′′(0,1,0) 1400.14 1391.5 A2/B1 0.00 0.00 8732.55 B1/A2 0.00 0.00 11164.30 A2/B1 0.00 0.04
eX 2A′′(0,0,2) 2181.55 2178.9 A2/B1 0.00 0.00 8852.90 B1/A2 0.00 0.17 11203.87 B1/A2 0.00 0.01
eX 2A′′(0,1,1) 2494.16 2472.6 A2/B1 0.00 0.00 8870.75 A1/B2 1.00 0.00 11219.37 B1/A2 0.00 0.40
eX 2A′′(0,2,0) 2781.64 2747.1 B1/A2 0.00 0.00 8880.14 B1/A2 0.00 0.01 11239.90 A1/B2 1.00 0.03
eX 2A′′(0,0,3) 3241.47 3245.8 A2/B1 0.00 0.00 8896.05 B1/A2 0.00 0.27 11283.47 B1/A2 0.00 0.11
eX 2A′′(1,0,0) 3454.06 3435.8 B1/A2 0.00 0.00 8962.38 B1/A2 0.00 0.00 11372.86 B1/A2 0.00 0.03
eX 2A′′(0,1,2) 3567.88 3538.4 B1/A2 0.00 0.00 9064.50 B1/A2 0.00 0.01 11405.62 B1/A2 0.00 0.89
eX 2A′′(0,2,1) 3866.74 3812.1 B1/A2 0.00 0.00 9153.07 A2/B1 0.00 0.17 11446.80 B1/A2 0.00 0.14
eX 2A′′(0,3,0) 4144.02 4071.0 B1/A2 0.00 0.00 9161.26 A1/B2 1.00 0.00 11484.57 A1/B2 1.00 0.00
eX 2A′′(0,0,4) 4280.19 4298.4 A2/B1 0.00 0.00 9164.79 B1/A2 0.00 0.00 11524.73 B1/A2 0.00 2.36
eX 2A′′(1,0,1) 4550.58 4529.2 B1/A2 0.00 0.00 9188.57 B1/A2 0.00 0.10 11533.08 A1/B2 0.99 0.08
eX 2A′′(0,1,3) 4620.92 4589.6 B1/A2 0.00 0.00 9290.77 B1/A2 0.00 0.01 11534.18 B1/A2 0.07 0.18
eX 2A′′(1,1,0) 4832.88 4793.7 B1/A2 0.00 0.00 9369.67 B1/A2 0.00 0.02 11545.33 A1/B2 1.00 0.06
eX 2A′′(0,2,2) 4932.14 4862.4 B1/A2 0.00 0.00 9421.00 A2/B1 0.00 0.34 11588.86 B1/A2 0.00 0.28
eX 2A′′(0,3,1) 5217.84 5119.4 B1/A2 0.00 0.00 9450.87 A1/B2 1.00 0.01 11610.06 B1/A2 0.00 0.01
eX 2A′′(0,0,5) 5297.33 5338.0 A2/B1 0.00 0.00 9481.67 B1/A2 0.00 0.37 11647.42 B1/A2 0.00 0.00
eX 2A′′(0,4,0) 5487.64(b) 5366.4 A2/B1 0.00 0.01 9548.99 B1/A2 0.00 0.00 11676.36 A2/B1 0.00 0.05
eX 2A′′(1,0,2) 5623.71 5605.2 B1/A2 0.00 0.00 9591.50 B1/A2 0.00 0.04 11716.97(c) A2/B1 0.00 6.13
eX 2A′′(0,1,4) 5655.11 5630.1 B1/A2 0.00 0.00 9653.26 B1/A2 0.00 0.10 11792.67 A1/B2 1.00 0.01
eX 2A′′(1,1,1) 5917.75 5864.1 B1/A2 0.00 0.00 9723.37 B1/A2 0.00 0.00 11810.81 A1/B2 1.00 0.06
eX 2A′′(0,2,3) 5978.17 5900.6 B1/A2 0.00 0.00 9758.75 A1/B2 1.00 0.00 11843.18 A2/B1 0.00 0.04
eX 2A′′(1,2,0) 6189.55 6113.2 B1/A2 0.00 0.01 9839.01 B1/A2 0.00 0.06 11846.93 A1/B2 0.98 0.24

6273.43 B1/A2 0.00 0.00 9875.59 A2/B1 0.00 0.07 11851.09 A2/B1 0.00 0.19
6292.59 A2/B1 0.00 0.00 9912.10 B1/A2 0.00 0.02 11887.02 A2/B1 0.00 0.55
6547.87 B1/A2 0.00 0.01 9928.35 B1/A2 0.00 0.28 11955.90 A2/B1 0.00 0.08
6652.36 B1/A2 0.00 0.00 9936.90 B1/A2 0.00 0.02 11965.00 B1/A2 0.00 0.54
6688.92 B1/A2 0.00 0.00 10058.77 A1/B2 1.00 0.01 11994.79 A2/B1 0.00 1.78
6713.07 B1/A2 0.00 0.00 10065.02 B1/A2 0.00 0.01 12005.62 A2/B1 0.00 0.05
6813.84 B1/A2 0.00 0.04 10160.07 B1/A2 0.00 0.14 12030.54 B1/A2 0.00 0.18
6972.82 B1/A2 0.00 0.00 10201.74 B1/A2 0.00 0.50 12059.02 B1/A2 0.00 0.00
7011.34 B1/A2 0.00 0.00 10238.20 B1/A2 0.00 0.07 12103.42 A1/B2 1.00 0.03

eA 2A′(0,0,0) 7033.68 7030.0 A1/B2 1.00 0.00 10256.92 B1/A2 0.00 0.00 12149.07 A2/B1 0.00 0.15
7257.81 B1/A2 0.00 0.02 10267.79 B1/A2 0.00 0.05 12160.36 A2/B1 0.00 1.25
7265.49 B1/A2 0.00 0.00 10355.55 A1/B2 1.00 0.02 12197.30 A2/B1 0.00 5.33
7312.80 B1/A2 0.00 0.01 10379.80 B1/A2 0.00 0.03 12272.59 B1/A2 0.00 2.59
7526.88 B1/A2 0.00 0.07 10437.21 B1/A2 0.00 1.92 12287.38 B1/A2 0.00 0.02
7592.83 B1/A2 0.00 0.01 10518.16 B1/A2 0.00 0.00 12357.68 B1/A2 0.00 0.02
7640.53 B1/A2 0.00 0.00 10538.33 B1/A2 0.00 0.41 12396.39 A1/B2 1.00 0.00
7720.78 B1/A2 0.00 0.00 10583.05 B1/A2 0.00 0.12 12410.53 A1/B2 1.00 0.11
7807.10 B1/A2 0.00 0.00 10611.04 A1/B2 1.00 0.01 12443.86 A1/B2 1.00 0.01
7858.75 B1/A2 0.00 0.07 10626.12 A1/B2 1.00 0.00 12449.49 A2/B1 0.00 3.48

eA 2A′(0,0,1) 7962.13 7958.3 A1/B2 1.00 0.00 10651.97 A1/B2 1.00 0.06 12455.44 B1/A2 0.00 0.21
7983.67 B1/A2 0.00 0.00 10669.90 B1/A2 0.00 0.05 12484.57 A2/B1 0.00 0.07

8044.20 B1/A2 0.00 0.00 10696.14 B1/A2 0.00 0.00 12507.63(d) A2/B1 0.00 12.98
8108.56 B1/A2 0.00 0.03 10709.92 B1/A2 0.00 2.44 12587.04 A2/B1 0.00 0.01
8125.52 B1/A2 0.00 0.27 10850.80 B1/A2 0.00 0.59 12594.80 A2/B1 0.00 0.49
8217.58 B1/A2 0.00 0.00 10858.31 B1/A2 0.00 0.09 12652.45 A1/B2 1.00 0.01

eA 2A′(0,1,0) 8243.36 A1/B2 1.00 0.00 10883.12 B1/A2 0.00 0.22 12673.27 A2/B1 0.00 0.28
8292.87 B1/A2 0.00 0.01 10934.14 B1/A2 0.00 0.31 12716.91 A1/B2 1.00 0.23
8344.16 B1/A2 0.00 0.02 10935.07 A1/B2 0.96 0.02 12732.25 A2/B1 0.00 5.77
8574.59 B1/A2 0.00 0.09 10949.18 B1/A2 0.00 0.15 12732.67 A1/B2 1.00 0.01
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As the energy increases the tunnelling splittings also increase. The lowest state, for which

∆ 6= 0 when given with two decimal places, is the bending state X̃(0, 4, 0) with P+ = 0,

marked (b) in Table III. The probability density function of this state is shown in Fig. 3(b).

Even though this state has a noticeable splitting, it has zero probability density near the

top of the barrier to H-O-O ↔ O-O-H tunneling (at τ = 90◦). Nevertheless, the presence of

the 13450-cm−1 barrier in the X̃ 2A′′ state and of the second potential energy minimum, on

the other side of the barrier, influences the energy spectrum already at an energy of about

5500 cm−1.

At still higher energy, larger tunneling splittings occur for the states with high bending

excitation. In Figs. 3(c) and 3(d) the states with the largest tunnelling splittings (marked

(c) and (d), respectively, in Table III) are shown. These states have energies of 11716.97 and

12507.63 cm−1 and ∆-values of 6.13 and 12.98 cm−1, respectively. Both states have Γrve =

A2 and 100% contribution from the lower electronic state; the symmetry of their respective

partner states is Γrve = B1. The state in Fig. 3(d) has an appreciable, non-zero probability

density at the T-shaped geometry with τ = 90◦. Hence, in this state, and states at higher

energy with high bending excitation, the molecule can convert rather freely between its two

versions.

With the DR program, we have calculated, and can calculate, thousands of rovibronic

energies and it is clearly impractical to list them here. In Fig. 4 we show a term value

diagram for all states with J 6 9/2 and term values in the interval 6000-16000 cm−1 above

the rovibronic ground state. We plot the term values against the probability P+ of finding

the molecule in the Ã 2A′ state. We do not include states with term values below 6000 cm−1

since they all have P+ = 0; below 6000 cm−1 there are no Ã 2A′ rovibronic basis states

available for interaction with the X̃ 2A′′ states and so no noticeable Renner coupling occurs.

At 7034 cm−1, however, Ã 2A′ rovibronic states emerge and interaction becomes more likely.

If we had drawn a diagram analogous to Fig. 4 for a Renner molecule with two component

electronic states that both have linear equilibrium structures, such as Ã 2Π MgNC/MgCN

described in Refs. 32–34, we can predict its appearance from the ‘standard’ Renner theory11

(see also, for example, Ref. 41 and references therein). This theory uses as zero order model

two identical bending potential energy functions. That is, in the zero order model the

electronic energy is doubly degenerate at all nuclear geometries, and the splitting into two

non-degenerate states is treated as a perturbation. It is obvious that all vibronic states that
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(a) (b)

(c) (d)

FIG. 3: Probability density functions f2(r, τ) (see text) for the selected rovibronic states of HO2

indicated in Table III.

suffer a first-order Renner interaction will have P+ ≈ P− ≈ 0.5, while there will be ’unique’

levels, which have no near-by partner level to interact with, that will have P+ ≈ 0 or P+

≈ 1. Thus, for a ‘linear-linear’ Renner molecule, we expect three vertical ‘stripes’ of levels

with P+ ≈ 0, 0.5, and 1, respectively. Figure 4 shows that for HO2, the situation is very

different from the linear-linear case. For this bent-bent molecule, the Renner interactions

are rather accidental and, in the region above 9000 cm−1 where the density of X̃ 2A′′ and

Ã 2A′ states become high, basically all values of P+ are represented.

In Fig. 4 we marked two states as (a) and (b), which represent a textbook example of

an accidental resonance. The states have J = 9/2 and N = Ka = 5. Each of the two dots
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in Fig. 4 represents four near-degenerate states. These four states comprise two state pairs

originating in H-O-O ↔ O-O-H tunneling. The one pair of states has NKaKc
= 550, and the

other has NKaKc
= 551. For the (a) and (b) states with NKaKc

= 550, Γrve = A2, and term

values of 7541.24 and 7541.67 cm−1, respectively, we show the probability density functions

f1(τ) in Fig. 5. Symmetry requires that for all states, f1(τ) = f1(π−τ). It can be recognized

in Fig. 5 that the two states (a) and (b) result from an accidental resonance between, on

the one hand, an X̃ 2A′′ basis state with two quanta of bending excitation (since the f−(τ)

function suggests a large contribution from a basis function with two nodes) and, on the

other hand, an Ã 2A′ basis function with the no bending excitation, presumably the Ka =

5 level of Ã(0, 0, 0). The mixed states have ‘symmetrical’ values of (P−, P+) of (0.77,0.23)

and (0.24,0.76), respectively.

V. SUMMARY AND DISCUSSION

In the present paper we report a theoretical investigation of the double Renner effect

in the X̃ 2A′′ and Ã 2A′ electronic states of the HO2 molecule. Three-dimensional potential

energy surfaces have been calculated ab initio for these states with the core-valence MR-

SDCI+Q/[cc-pVQZ (H), aug-cc-pCVQZ (O)] method. Global potential energy surfaces have

been constructed by fitting analytical, parameterized functions through the ab initio data.

These surfaces have been used for calculating HO2 rovibronic energies in the ’double-Renner’-

degenerate electronic state.

The calculated rovibronic energies and corresponding wavefunctions have been analyzed

to investigate the influence of the H-O-O ↔ O-O-H tunneling and the Renner interaction

on the rovibronic energy spectrum. It was found that the effects of the H-O-O ↔ O-O-H

tunneling are significant at energies as low as 5500 cm−1, almost 7950 cm−1 below the barrier

to H-O-O ↔ O-O-H tunneling in the ground electronic state. Also, we have demonstrated

the accidental nature of the Renner interaction in a bent-bent molecule such as HO2 [Figs. 4

and 5]. The accurate description of the Renner interaction for such molecules requires de-

tailed numerical calculation by means of programs like RENNER24–26 and DR;32–34 it cannot

be made by perturbation-theory models such as those used for linear-linear molecules.11,41
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FIG. 4: Term value diagram for X̃ 2A′′ and Ã 2A′ HO2. The energies are plotted against P+, the

contribution from the Ã 2A′ electronic state (see text).
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FIGURE CAPTIONS

Fig. 1 The Jacobi coordinates, and the molecule-fixed axis system xyz, for HO2. The O

nuclei are labeled 1 and 2, respectively, as indicated, and the proton is labeled 3. M

is the center of mass of the OO moiety. The O-O internuclear distance is called R, r

is the M-H distance, and τ = ∠(O1-M-H) where O1 is the oxygen nucleus labeled 1.

The xyz axis system has origin in the nuclear center of mass. The z axis is parallel to

the O-O bond, and the x axis points into the plane of the page so that the xyz axis

system is right-handed.

Fig. 2 The bending minimum energy paths for HO2. The solid curve corresponds to the

X̃ 2A′′ electronic state and the dashed curve to the Ã 2A′ state.

Fig. 3 Probability density functions f2(r, τ) (see text) for the selected rovibronic states of

HO2 indicated in Table III.

Fig. 4 Term value diagram for X̃ 2A′′ and Ã 2A′ HO2. The energies are plotted against P+,

the contribution from the Ã 2A′ electronic state (see text).

Fig. 5 Probability density functions f1(τ), f−(τ), and f+(τ) (see text) for the selected rovi-

bronic states of HO2 indicated as (a) and (b) in Fig. 4. The solid curves represent

f1(τ), the dotted curves f−(τ) (the X̃ 2A′′ state), and the dashed curves f+(τ) (the

Ã 2A′ state).
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