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Abstract:  
 
Most of the traditional assessment models are age-structured. However, many biological and 
exploitation processes are more length-dependent than age-dependent, and the required length–age 
conversion of available data is often not reliable. Consequently, length-structured or age–length 
structured models have undergone considerable development in recent years. The growth transition 
matrix used to model the mean growth and growth variability of the population, is of primary 
importance in a length-structured matrix model. Building this growth transition matrix is not trivial and it 
is necessary to assess the impact that various assumptions may have to identify robust model 
structures. In this study, we assess the effects of (1) time and length discretisation, (2) the distribution 
of individuals within length classes and (3) the statistical distribution used to describe growth 
variability, by fitting a growth matrix model to individual quasi-continuous simulated growth data. The 
study quantitatively demonstrates that the choice of the time step and of length class width is the key 
point when building a length-structured population growth model. The use of a gamma distribution for 
the growth increments and/or a uniform distribution of individuals within length classes were found to 
make the model more robust.  
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Introduction

From deterministic - single cohort analysis (Pope, 1972) to multi cohort analysis, age-structured 

models (Fournier and Archibald, 1982 ; Virtala et al., 1998 ; Shepherd, 1999) are widely used for 

fisheries stock assessments. While these models have proved to be useful in estimating population 

abundance and assessing stocks, several limitations have been pointed out. One limit, often 

mentioned, is related to the need to convert catch at size into catch at age, which is often carried out 

using an age-length key. For some species, the difficulties in determining the age at length result in 

uncertainty in catch-at-age. Moreover, since the ageing techniques are very expensive, few fishes 

can be aged, further increasing the sampling error and variability in the age-length key. Another 

source of uncertainty is the size-dependent selectivity function which can not be explicitly taken 

into account in age-structured model though a age selectivity function may be used as a proxy. 

Large interindividual and/or interannual variations in size within an age class could thus result in 

incorrect estimates of fishing mortality by age. Consequently, length-structured models or age-

length structured models have undergone considerable development in recent years (Schnute, 1987 ; 

Schnute et al., 1989a ; Schnute et al., 1989b ; Sullivan et al., 1990 ; Banks et al., 1991 ; De Leo and 

Gatto, 1995 ; Fournier et al., 1998 ; DeLong et al., 2001 ; Froysa et al., 2002), but are still not often 

used in routine stock assessments.

Different mathematical frameworks can be used to model length-structured population dynamics, 

depending on whether population states are assumed discrete or continuous and whether the 

projection time is discrete or continuous. Continuous approaches better match biological processes. 

However, the disadvantage of this approach is the complexity of handling differential equations 

which do not necessarily have analytical solutions. In addition, available observed data are 

generally aggregated thereby reducing the advantages of a continuous model. By contrast, discrete 
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approximations of biological processes simplify model implementation and are easier to compute. 

Discrete approaches require discrete assumptions on continuous processes. Following, discrete 

growth modelling necessitates decisions on length classes width, time step duration, growth 

increment model (stochastic or deterministic) and on the distribution of individuals within each 

length class.

Fish growth is a major process of fish biology (Laslett et al., 2002) and is part of the information 

necessary to estimate stock size and fishing mortality in stock assessments models (Anda-Montañez 

et al., 1999). The importance of describing jointly mean growth and individual variability in growth 

for stock assessment process has been widely acknowledged (Laslett et al., 2002 ; Chen et al., 

2003). Two approaches are classically considered to model growth variability. The most common 

model is a mean growth by length class given by a growth function, often a von Bertalanffy growth 

curve, and a stochastic distribution for individual variability around the mean (Sullivan et al., 1990 ; 

De Leo and Gatto, 1995 ; Cruywagen, 1997 ; Froysa et al., 2002). Another way to describe growth 

variability is to integrate individual variability in the growth function with stochastic parameters 

(Sainsbury, 1980 ; Smith et al., 1998 ; Smith and Botsford, 1998 ; Pilling et al., 2002). Several 

approaches can be used to estimate growth parameters and corresponding variability. Length-at-age 

can be back-calculated using information contained in fish hard parts, but this approach is often 

imprecise due to difficulties in detecting growth increments. A second approach is tagging 

(Shackell et al., 1997 ; Kendall and Nichols, 2002 ; Laslett et al., 2002 ; Eveson et al., 2004 ; de 

Pontual et al., 2006). This technique is very expensive as many fishes have to be tagged in order to 

be successful. 

To date, very few studies have looked at the impact of time and length discretisation on the 

ability of a population model to fit data and to estimate growth parameters. We chose in a first step 

to work on a theoretical population only submitted to growth (no death and no recruitment) since it 
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is a key process of length-structured model (Chen, 2003). In this study we provide a methodology 

to assess the impact of several assumptions of time and length discretisation and growth increments 

distribution in a length-structured population growth model. Data on individual growth trajectories 

are rarely available. Thus, we produced several synthetic data sets of individual growth trajectories 

corresponding to several hypotheses on growth increments. Then we fitted length-structured growth 

population models to each synthetic data set. We provided from this analysis a flexible length-

structured population growth model.

Data and methods

1 A length - structured population growth model

A matrix formulation of a discrete time length-structured population growth model is presented 

below. Since we only focus on the growth process, natural and fishing mortality are not described in 

the model. The length-structured abundance in number at time t+1 is given by the following 

equation: 

N t1=G⋅N t 

where N(t): vector of abundance per size-class at time t and G is the matrix of probabilities of 

transition between length classes

We assumed a constant growth transition matrix over time (i.e., no seasonality has been taken 

into account). The population is supposed to grow on average according to a von Bertalanffy 

growth function, parameterised by three parameters L∞, K and T0, l t =L∞×1−e−K t−T0  . We 

used an alternative formulation of this equation l t t −l t = L∞−l t ×1−e K× t  

(Fabens, 1965) where l(t+Δt)-l(t) is here the growth increments during a time step Δt of an 

individual of size l(t) at the beginning of the time step. Growth increments within the population are 
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random variables (Sullivan et al., 1990 ; Cruywagen, 1997 ; Froysa et al., 2002) whose mean is 

given by the von Bertalanffy equation and whose variance is proportional to the square of its mean 

(DeLong et al., 2001) (i.e., assuming a constant coefficient of variation of the growth increments): 

{E  X / l =L∞−l ⋅1−eK⋅t
V X / l =C⋅E2X / l 

with X/l the random variable describing the growth increment for fish of initial size l during a 

time step Δt and C a constant linking the mean to the variance equals to CV 2 X / l  .

Given the previous assumptions on the growth increments' mean and variance, the coefficients of 

the growth matrix were calculated according to the following equations:

● if fish size is assumed to be at the midpoint size of the departure class i, denoted mi, then 

the probability gij of transition to class j is given by the following single integral:

g ij= ∫
m j−l /2−mi

m jl /2−mi

f x dx with Δl the width of the length classes

● if fish size is assumed to be uniformly distributed within the departure class i, then the 

value of the following double integral is the probability gij of transition from class i to class 

j:

g ij= ∫
mi−l /2

mil /2  ∫
m j−l /2 − y

m j l /2 − y

f xdxdy with Δl the width of the length classes

with f the assumed density function of growth increment.

We considered three different continuous distributions (normal, lognormal, gamma) to describe 

growth increments distribution (Table 1). The Gamma distribution (Table 2) is a two-parameters 

distribution, entirely defined by its two first moments. It is largely used in modelling thanks to its 

flexibility in describing many functional forms. More specifically in our context, it can describe 
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growth for small and large fish. The normal and lognormal (Table 2) statistical distributions were 

also considered.

We considered classes of equal width in length and assumed two types of length classes (Table

1), which is the most common method to build classes (Sullivan et al., 1990 ; De Leo and Gatto, 

1995 ; Froysa et al., 2002).

Finally, three different time steps were considered in this analysis: monthly, quarterly and annual 

(Table 1). 

Let us denote Mod(Lm, Δt, Δl, ODep) the formulation of the length-structured population growth 

model assuming a statistical distribution of growth increments Lm, a time step Δt, length classes of 

size Δl, and an option of distribution of individuals within classes ODep (Table 1). A simulation 

corresponds to a ten-year cohort projection (we denoted T the number of time steps corresponding 

to a ten-year projection) with an initial length distribution following a normal distribution of mean 5 

cm and standard deviation of 1.

2 Synthetic Data

Individual growth data are necessary to assess the impact of both time and length discretisation 

assumptions in the growth dynamics model. However, no such data were available: consequently 

we simulated individual growth trajectories. We used a monthly time step to mimic time continuous 

growth. Shorter time steps were also tested, but the differences in frequencies-at-length were minor. 

Let us denote S(K, CV, Ls) a simulation set of individual growth trajectories performed with, a 

growth rate K, a constant of variance of growth increments CV and a statistical distribution of 

growth increments Ls. A set of 10000 individual trajectories over a ten-year period was simulated 

for each combination of assumptions of growth variability (K, CV, Ls) using a monthly time step 
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(Table 1). Two distinct von Bertalanffy growth rates K were considered (Table 1), respectively 

corresponding to a slow growing species and a faster growing species. Three distinct constant of 

variation were used (Table 1). These simulations aim at mimicking individual growth observations. 

For each set, the initial length of each individual was generated according to a normal distribution 

with mean 5cm and standard deviation of 1.

3 Analysis

3.1 Experimental design

We aimed at assessing the impact of discretisation assumptions on length-structured population 

growth model ability to fit sets of individual growth trajectories and estimate growth parameters. 

We used an experimental design (Kleijnen, 1998) that we analysed using standard linear models. 

Each formulation of the length-structured population growth model Mod(Lm, Δt, Δl, Odep) was 

fitted to each simulated data set of individual growth trajectories S(K, CV, Ls) by estimating Kest  

and CV which minimize the sum of squared error:

LS(Kest,CV)=∑
i= 1

I

∑
t=1

T

 f est  t,i − f obs  t,i  
2

with fobs(t,i) the simulated frequencies of individuals within class i at time step t, fest(t,i) the 

frequencies of individuals within class i at time step t estimated by the matrix model, I the number 

of classes and T the number of time steps. This design required 648 simulations (18 sets of 

individuals growth trajectories times 36 formulations of the length-structured population growth 

model).

The minimisation of the function LS(Kest,CV) was carried out using a genetic algorithm coupled 

with a quasi-Newton algorithm provided in the Autodif library (Otter Research Ltd. http://otter-
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rsch.com). The genetic algorithm was used in a first step to provide a starting point not too far from 

the optimum for the Autodif algorithm.

For each experiment, the adequacy of the length-structured population growth model is 

quantified using two criteria:

●The discrepancy between the K estimated (Kest) by the matrix model and the K used to 

generate the observations data (K). It quantifies the goodness of the estimation of K

●The Bayesian Information Criterion (BIC) is computed using the formula 

BIC=−2⋅LogL+ p⋅log n  with p=2 the number of estimated parameters (K and CV) 

LogL=n×log 2×π 1
2
×[n×log n−1

LS
−11] and n the number of observations (number of 

time steps X number of classes). The BIC is here a measure of model ability to fit the data. The BIC 

balances the discrepancy between data and predictions (measured by LS) by the number of 

estimated parameters and the number of observations (which depends on the time step and length 

classes width in the model).

3.2 Assessing discretisation assumptions

We first used box-and-whisker plots of the estimated growth rate Kest for each modality of the 

four assumptions in order to visually detect biases. Then, a statistical analysis of the criteria was 

carried out to quantify the effect of each hypothesis. First, each criterion was analysed separately 

using linear models step fitted on the transformed criterion, respectively log(|BIC|)=LBic (the 

absolute value is necessary for the logarithmic transformation because the BIC were negative) and 

log(|K-Kest|)=LK, where LBic and LK will refer to the two transformed variables. An appropriate 

model is characterised by a high LBic and a low |K-Kest|. A full experimental design allows 
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inclusion of all the main effect and first-order interaction in the model (Kleijnen, 1998), so that the 

models may be written under the general form:

LBic ~Lm t lOdepKCVLsLm: tLm : lLm:OdepLm: K
Lm:CVLm: Ls t : l t :Odep t : K  t :CV t : Ls l :Odep l : K
 l :CV l : LsOdep : KOdep :CVOdep : LsK :CV K : LsCV : Ls

(1)

LK ~Lm t lOdepKCVLsLm: tLm: lLm:OdepLm : K
Lm:CVLm: Ls t : l t :Odep t : K t :CV  t : Ls l :Odep l : K
 l :CV l : LsOdep : KOdep :CV Odep: LsK :CVK : LsCV : Ls

(2)

with αi the effect of the assumption i βi,j the effect of the interaction between assumption i and 

assumption j.

The coefficients of an effect are constrained to sum to 0.

These linear models enable us to quantify the impact of the assumptions of both quality of K 

estimation and model fit. In addition, we were also interested in selecting the most appropriate 

model with respect to both objectives. A multiple regression tree (De'Ath, 2002) was built to 

explain the variations of the two transformed variables (previously normalized and centered) by the 

different explanatory variables (i.e., different assumptions). The model is (bold terms correspond to 

assumptions for the quasi-continuous model., other terms correspond to assumptions on the matrix 

model).:

 Lbic−meanLbic  
sd  Lbic

,  LK−meanLK  
sd LK 

~ Δt + Δl + Lm + CV +K + ODep+ Ls (3)

The tree is grown by repeated binary partitioning of the data, maximizing the Euclidean distance 

between the two group centroids and minimizes the total Euclidean distance to the centroid within 

each group. Each partition is characterized by an explanatory variable and the rank of the 

explanatory variable selections in the tree reflects the magnitude of impact of the variable on both 

responses. 
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Results

1 Experimental designs analysis

Table 3 and Table 4 summarize the remaining effects of model (1) and (2) after performing 

classical Fisher tests and residuals analysis. The R² of the linear models are 0.995 for the LBIC, and 

0.674 for the LK. In those tables, the estimates quantify the strength of the effect of the considered 

assumption. The reader should notice that for:

● model (1) the assumptions which have a positive estimate improve the fit to observed 

frequencies-at-length

● model (2) the assumptions which have a negative estimate improve the estimation of the 

growth rate.

1.1 Fitting observed frequencies-at-length (Table 3)

The significant effects of interaction factors are minor compared to the main effects and do not 

influence the results. Among the main effects, most factors are significant, but few have a large 

estimated value. Length class width and time step duration are the two factors which have the 

strongest influence. The best fits were obtained with a monthly time step and 1 cm length classes 

width. Results also demonstrated that a large inter-individual variability and a large growth rate are 

more easily fitted by the matrix models.

1.2 Ability to estimate the growth rate K (Table 4)

The box-and-whisker plots (Fig. 1) did not show any bias in the estimation of the growth rate, 
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except when assuming a normal distribution for the growth increments. However, they showed that 

the precision of the estimation varies across the different assumptions. The variability is particularly 

high for a monthly time step, a normal distribution of growth increments and 5cm classes.

The linear models showed that fewer factors have a statistically significant effect on the 

estimation of the growth rate, however many more factors have a strong impact the estimation. As 

previously, classes of 1cm greatly improved K estimation. More surprisingly, short time steps do 

not systematically improve the estimation of the growth rate. In fact, with a monthly (or quarterly) 

step, individuals have a too small probability to change class (especially when classes are 5 cm 

wide) so that K tends to be over-estimated to compensate. This highlights the links existing between 

size classes and time steps (the interaction of the two factors is strongly significant). The choice of a 

time step should be strongly linked to the choice of the size of classes, both choices being also 

constrained by the available data.

The linear model demonstrates that, in contrast with the BIC analysis, a low growth rate and a 

weak inter-individual variability favour a good estimation of K. Furthermore, if the individuals are 

uniformly distributed within classes, the estimation is improved, especially with a short time step.

Finally, it highlights the fact that gamma and lognormal distributions used in the length-

structured population growth model yield very similar results. The gamma distribution tends 

however to produce better fits than the lognormal even if a lognormal distribution is assumed for S. 

A normal assumption in the length-structured population growth model gives poor estimation of K 

when a gamma or lognormal distribution is assumed for S. The gamma distribution for Mod give 

better results than a normal distribution even when a normal distribution is assumed for S (this can 

be checked by summing the estimates of the main effects and of the interaction). Among the three 

distributions tested, the gamma distribution appears to be the most flexible distribution to represent 

the variability of the growth increments.
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2 Multivariate regression tree (Table 5 and Fig. 2)

The first criterion to partition groups of fits is the width of the classes. Small length classes tend 

to improve the estimation of K and especially the goodness of the fit of frequencies at length. Then 

the fits are partitioned according to time steps : large time steps degrade the estimation of 

frequencies at length, and this is amplified with wide length classes. We can notice that monthly 

and quarterly time steps are opposed to yearly time step The next two partitions concern the 

assumption on statistical distribution of growth increments: assuming a gamma or lognormal 

improves the goodness of the fit.

Discussion

This study aimed at analysing the impact of various assumptions on a length-structured 

population growth model, especially time and length discretisation, in order to detect some artefacts 

caused by inappropriate assumptions in growth model and to provide the most flexible model. This 

kind of sensitivity analysis is essential in a discrete model and the methods we provide can be 

applied in many situations. This study is a preliminary analysis to the development of a complete 

length-structured model for European hake. In this paper, we chose to only focus on growth because 

it is a critical point in length-structured model of population dynamics. A von Bertalanffy growth 

curve was used to model mean growth, but more general growth functions can be considered as 

polynomial, Gompertz, Verhulst, Richards, Schnute. Inter-individual variability was modelled using 

a statistical distribution around this mean. Theoretically, a growth increment variance could be 

estimated for each length class but we made this assumption to reduce the number of parameters to 

estimate. It should be noticed that this relationship between the mean and variance constrains the 

statistical distributions. A similar analysis has been carried out assuming a growth increment 

variance proportional to the mean (Sullivan et al., 1990 ; Sullivan, 1992) (not presented here) 

leading to very similar results. The Beta-Binomial distribution (Ennis and Bi, 1998) was primarily 
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used to model the distribution of growth increments, but rejected because of unsatisfactory results.

Individual growth data are necessary to assess the impact of both time and length discretisation 

assumptions in the length-structured population growth model. Tagging data would have been an 

interesting data source, but despite a recent tagging survey, the amount of tagging data for European 

hake, the species we are currently working on, was insufficient. Consequently we decided to 

simulate individual growth data, trying to mimic an average von Bertalanffy growth and 

introducing inter-individual variability. It may have been interesting to simulate individual growth 

trajectories considering a population with stochastic K and L∞. The results may largely be 

influenced by the methods used to generate these individual growth trajectories and therefore 

should not be generalized in the broader context. More generally, the results we obtain are not 

generic since they depend (1) on the method used to simulate data (2) on the considered model, 

species and/or fisheries. However, the methodology we provide is generic and is appropriate to 

assess the impact of any discretisation processes in a discret model.

In this analysis, we considered L∞ was known because it may be approximated by a function of 

Lmax and it avoids the problem of the correlation between K and L∞. This assumption has already 

been used for example in DeLong et al. (2001). The sets of von Bertalanffy parameters used in the 

study are closed to those currently used for stock assessment of European hake (K=0.1) (Piñeiro 

and Sainza, 2003) and to the recently assumed growth (K=0.2) (de Pontual et al., 2003 ; Kacher and 

Amara, 2005 ; de Pontual et al., 2006). The growth rate K and the coefficient of variation CV were 

estimated by minimising the sum of squared deviations between frequencies estimated by the 

length-structured population growth model and simulated frequencies-at-length.

We chose two criteria to describe the goodness of fit of the length-structured population growth 

model to frequencies generated by the quasi-continuous model. Those two criteria correspond to 

two modelling aims. The first objective was to reproduce and/or predict the observed data. In that 

case, we are less interested in the biological processes under-lying the model than in its ability to 
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reproduce observations. The other objective was to reproduce the biological process driving the 

model (for example growth). In that case, the quality of the estimates (precision, bias) is much more 

important. Selecting a model that achieves these two objectives should be of major importance. 

However, it requires a method combining these two criteria. Indeed, in this study we showed that 

the best fits (the ones with the lowest BIC) are not necessarily the ones which provide the best 

estimates of unknown parameters. Until now, we have not found any satisfactory quantitative 

methods to simultaneously assess the effect of the different assumptions on both criteria. A possible 

solution would be to build a desirability function (Harrington, 1965) combining criteria, but the 

choice of the function is rather subjective since the user must first define individual desirability 

functions for each response. Multivariate regression trees provide a convenient graphical tool to 

investigate the impact of assumptions in the length-structured population growth model on both 

criteria simultaneously but this is only an explanatory analysis based on hierarchical clustering.

The statistical analysis of the two criteria enables identification of robust model structures for the 

length-structured population growth model. It demonstrated that the choice of the time step and of 

length class width was the key point when building a length-structured population growth model. 

These choices are closely linked to available data and are strongly interdependent. A compromise 

needs to be found to comply with the two modelling objectives of the model. Other assumptions 

had a significant effect on the estimation of the growth rate. The gamma distribution was the most 

flexible statistical distribution to describe growth increments variability. Assuming that individuals 

are uniformly distributed within length classes, rather than centred, also improved significantly the 

estimation of the growth rate. We only tried two kinds of distribution of individuals within length 

classes though some other distributions are sometimes used, for example U-shaped distribution 

which is especially appropriate for wide length classes. It would also be interesting to assess the 

impact of the number of individual growth trajectories to quantify the number of trajectories 

required for a reliable growth rate estimation.
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This study was a preliminary analysis in the development of a length-based population model for 

the European hake (Merluccius merluccius) stock dynamics. The results inform on the selection of 

appropriate assumptions of time and length discretisation for this model. The European hake 

dynamic model will have a quarterly time step and 1 cm width classes since these appear to be a 

relevant compromise and they correspond to the time-scale of available data. A gamma distribution 

will be used to describe the variability of growth increments and individuals will be uniformly 

distributed within length classes.
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Table 1: List of the abbreviations and their specifications. Bold terms correspond to assumptions 

on the quasi-continuous model.  Other terms correspond to assumptions on the  length-structured 

population growth model.

Abbreviation Signification Possible Values
Δt Time  steps  of  the  length-structured  population  growth 

model

12: monthly time step

4: quaterly

1: yearly
Δl Size of the length classes in the length-structured population 

growth model

1: 1cm

5: 5cm
Lm Statistical  distribution  of  the  growth  increments  in  the 

length-structured population growth model

0: gamma

1: normal

2: lognormal
ODep Distribution of the individual  within length classes in the 

length-structured population growth model

0: center

1: uniform
C - CV Constant  of  variance  in  the  quasi-continuous  model  - 

corresponding coefficient of variance

0.4 – 0.6

1 - 1

4 - 2
K Growth rate in the quasi-continuous model 0.1, 0.2

Ls Statistical  distribution  of  the  growth  increments  in  the 

quasi-continuous model

0: gamma

1: normal

2: lognormal
α Parameter of the Beta-Binomial 0.1, 1, 10, 50

β Parameter of the Beta-Binomial 1, 10, 50, 100

Kest Estimated  growth  rate  when  fitting  the  length-structured 

population growth model on frequencies at length generated 

by the quasi-continuous model
BIC Bayesian  Information  Criterion  when  fitting  the  length-

structured population growth model on frequencies at length 

generated by the quasi-continuous model
Lbic Neperian logarithm of the absolute value of BIC

LK Neperian logarithm of the absolute value of the difference 

bewteen Kest and K
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Table 2: Distribution, mean and variance of the normal (N), lognormal (LN) and Gamma (G) 

statistical distributions. With  x=∫
0

∞

eu ux−1 du  the gamma function.

Distrib Density E V
N

f  x= 1
×2×

×e
−

1
2× x−

 
2 E X = V  X =2

LN
f  x= 1

×x×2×
×e

−1
2
×log x−

 
2

E X =e


 2

2 V  X =e2

−1×e2 2

G f  x= 1
 x−1e

−
x
 E X =

 V  X = 
2
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Table 3: Significant effects in the linear model explaining LBic of the fits by the different 
assumptions . 

*** (respectively **) stands for a p-value<0.01 (respectively <0.05)
Estimate P-value

Intercept 8.92 ***
Lm=0 0.03 ***
Lm=1 -0.05 ***
Δt=1 -1.18 ***
Δt=4 0.06 **
Δl=1 1.37 ***
CV=0.2 -0.21 ***
K 0.89 ***
Ls=0 0.05 **
Ls=1 -0.06 ***
ODep=0 -0.03 ***
Δt=1:Δl=1 -0.07 ***
Δt=4:Δl=1 0.04 ***
Δt=1:K 0.67 ***
Δt=1:Lm=0 -0.02 **
Δt=1:Lm=1 0.03 ***
Δt=4:Lm=1 0.02 **
Δt=1:Ls=1 0.04 ***
Δl=1:K -0.49 ***
Δl=1:Ls=0 -0.04 ***
Δl=1:Ls=1 0.06 ***
Lm=1:CV=0.2 0.03 ***
CV=0.2:K 0.31 **
CV=1:K 0.22 **
CV=0.2:Ls=0 -0.05 ***
CV=0.2:Ls=1 0.08 ***
K:Ls=1 -0.42 ***
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Table 4: Significant effects in the linear model explaining LK of the fits by the different 
assumptions. 

*** (respectively **) stands for a p-value<0.01 (respectively <0.05)
Estimate P-value

Intercept -4.74 ***
Δt=1 -0.49 ***
Δl=1 -0.38 ***
Lm=0 -0.35 ***
Lm=1 0.66 ***
ODep=0 0.21 ***
CV=0.2 -0.65 ***
K 4.93 ***
Ls=0 -0.40 ***
Ls=1 0.64 ***
Δt=1:Δl=1 0.14 ***
Δt=1:ODep=0 -0.22 ***
Δl=1:ODep=0 -0.13 ***
Δl=1:Ls=0 -0.23 ***
Δl=1:Ls=1 0.35 ***
Lm=0:Ls=0 -0.17 **
Lm=1:Ls=0 0.42 ***
Lm=0:Ls=1 0.33 ***
Lm=1:Ls=1 -0.68 ***
ODep=0:CV=0.2 0.13 ***
Lm=1:CV=0.2 -0.27 ***
Δt=1:Ls=0 -0.15 **
Δt=1:Ls=1 0.18 **
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Table 5: Information on the nodes of the multivariate regressions trees (Fig. 2). The best fits are 
the ones with the lowest LK and the highest Lbic
Node number Number of 

adjustements 

in the node

Mean Lbic (centred 

and reduced)

Mean LK 

(centred and 

reduced)

Deviance

1 648 0.00 0.00 1294
2 324 0.26 -0.83 363
3 324 -0.26 0.83 72
4 108 -0.17 -1.46 195
5 216 0.48 -0.51 445
6 108 -0.51 0.10 97
7 216 -0.14 1.19 251
8 144 -0.48 1.20 134
9 72 0.53 1.16 26
10 96 -0.96 1.23 41
11 48 0.49 1.15 69
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Fig.  1: box-and-whisker plots of the estimated growth rate for the different assumptions of the 

length-structured population model. Each row of plots corresponds to an assumption of the length-

structured population model while each column corresponds to a growth rate value used to generate 

individual growth trajectories. In each plot, the different modalities of the considered assumption 

are plotted in abscissa, the estimated growth rate being plotted on the Y-axis. The horizontal lines 

represent the assumed growth rate for the simulated data.

Fig. 2: Multivariate regressions trees of the fits of the length-structured population growth model 

on  simulated  frequencies  when.  n  indicates  the  number  of  adjustements  in  the  leaves.  The 

parameters  are  defined  in  Table  1.  The grey numbers  indicate  the number  of  the  nodes,  more 

information on each node can be found in Table 5
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