FN Archimer Export Format PT J TI Equatorial inertial-parametric instability of zonally symmetric oscillating shear flows BT AF D'ORGEVILLE, Marc HUA, Bach-Lien AS 1:2;2:1; FF 1:;2:PDG-DOP-DCB-OPS-LPO; C1 IFREMER, Lab Phys Oceans, F-29280 Plouzane, France. C2 IFREMER, FRANCE UBO, FRANCE SI BREST SE PDG-DOP-DCB-OPS-LPO IN WOS Ifremer jusqu'en 2018 copubli-france copubli-univ-france IF 2.061 TC 16 UR https://archimer.ifremer.fr/doc/2005/publication-433.pdf LA English DT Article DE ;Equatorial wave;Dynamical model;Oscillating shear flows AB This study revisits the problem of the zonally symmetric instability on the equatorial beta-plane. Rather than treating the classical problem of a steady basic flow, it treats a sequence of problems of increasing complexity in which the basic flow is oscillatory in time with a frequency omega(0). First, for the case of a homogeneous fluid, a time-oscillating barotropic shear forcing may excite a subharmonic parametric resonance of inertial oscillations. Because of the continuous distribution of inertial oscillation frequencies, this resonance occurs at critical inertial latitudes y(c). such that beta y(c) = +/-omega(0)/2. Next the effects of stratification, characterized by Brunt-Vaisala frequency N, are taken into account. It is shown analytically (in the asymptotic limit of a weak shear) that the forced temporal oscillation leads to an inertial-parametric instability, when a resonance condition between the basic flow frequency and the sum of two inertio-gravity free-mode frequencies is met. This inertial-parametric instability has a well-defined inviscid vertical scale selection favouring the high-vertical mode m(c) similar to 7.45m(0), where m(0) = beta N/omega(0)(2) is the equatorial vertical mode characteristic of frequency omega(0). The viscous critical shear of inertial-parametric instability is lower than the steady inertial instability one. Finally, this type of setting naturally arises when the basic flow is considered to be an equatorial wave, so the problem is recast with the nonlinear adjustment of the vertically sinusoidal basic state of a zonally symmetric mixed Rossby-gravity (MRG) wave. Initial-value numerical simulations show that the same inertial-para metric instability exists leading to a resonant subharmonic excitation of free modes with vertical scales 7 and 8 times smaller than the basic-state wave. A simplified dynamical model of the instability is introduced, demonstrating that the oscillatory nature of the shear with height for the MRG wave necessarily implies a resonance between distinct vertical modes, the most unstable ones being modes 7 and 8 for a large enough Fronde number of the MRG wave. The nonlinear action of the instability is described in terms of angular momentum and potential vorticity changes: a significant mixing due to the breaking of the excited high vertical modes creates a vertically averaged westward flow at the equator and extra-equatorial eastward flows. The ideas exposed may play a part in explaining layering phenomena and the latitudinal structure of the zonal flow in the equatorial oceans below the thermocline. PY 2005 PD APR SO Journal of Fluid Mechanics SN 0022-1120 PU Cambridge University Press VL 531 UT 000230051000013 BP 261 EP 291 DI 10.1017/S0022112005004015 ID 433 ER EF