FN Archimer Export Format PT J TI Interaction between an eddy and a zonal jet - Part II. Two-and-a-half-layer model BT AF VANDERMEIRSCH, Frederic CARTON, Xavier MOREL, Yves AS 1:;2:;3:; FF 1:PDG-DEL-AO;2:PDG-DRO-DOPS;3:; C1 CMO, SHOM, Brest, France. IFREMER, LPO, Brest, France. C2 CMO, FRANCE IFREMER, FRANCE SI BREST SE PDG-DEL-AO PDG-DRO-DOPS IN WOS Ifremer jusqu'en 2018 IF 0.732 TC 23 UR https://archimer.ifremer.fr/doc/2003/publication-441.pdf LA English DT Article DE ;Potential vorticity;Vortices;Jets;Nonlinear equations;Stratified flow;Rotating fluids AB In a two-and-a-half-layer quasi-geostrophic model, a process study is conducted on the interaction between a vortex and a zonal jet, both with constant potential vorticity. The vortex is a stable anticyclone, initially located north of the eastward jet. The potential vorticity of the jet is allowed to have various vertical structures, while the vortex is concentrated in only one layer. The flow parameters are set to values characteristic of the Azores region. First, the jet is stable. Weak vortices steadily drift north of the jet without crossing it while strong vortices can cross the jet and tear off a cyclone with which they pair as a heton (baroclinic dipole). This heton often breaks later in the shear exerted by the jet; the two vortices finally drift apart. When crossed by deep anticyclones, the jet develops meanders with 375 km wavelength. These results exhibit a noticeable similarity with the one-and-a-half-layer case studied in Part I. Secondly, the jet is allowed to be linearly unstable. In the absence of the vortex, it develops meanders with 175 km wavelength and 25-day e-folding time on the beta-plane. For various vertical structures of the jet, baroclinic instability is shown to barely affect jet-vortex interaction if the linear growth rate of unstable waves is smaller than 1/(14 days). Further simulations with a linearly unstable, nonlinearly equilibrated jet evidence its strong temporal variability when crossed by a deep vortex on the beta-plane. In particular, long waves can dominate the spectrum for a few months after jet crossing by the vortex. Again in this process, the deep vortex couples with a surface cyclone and both drift southwestward. PY 2003 PD FEB SO Dynamics of Atmospheres and Oceans SN 0377-0265 PU Elsevier VL 36 IS 4 UT 000181684600002 BP 271 EP 296 DI 10.1016/S0377-0265(02)00066-0 ID 441 ER EF