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3Laboratoire de Physique des Océans, Université de Bretagne Occidentale BP 809 29285 Brest, France

(Received 21 June 2002 and in revised form 26 January 2005)

As two fluid particles separate in time, the entire spectrum of eddy motions is being
sampled from the smallest to the largest scales. In large-scale geophysical systems
for which the Earth rotation is important, it has been conjectured that the relative
diffusivity should vary respectively as D2 and D4/3 for distances respectively smaller
and larger than a well-defined forcing scale of the order of the internal Rossby
radius (with D the r.m.s. separation distance). Particle paths data from a mid-latitude
float experiment in the central part of the North Atlantic appear to support these
statements partly: two particles initially separated by a few km within two distinct
clusters west and east of the mid-Atlantic ridge, statistically dispersed following a
Richardson regime (D2 ∼ t3 asymptotically) for r.m.s. separation distances between 40
and 300 km, in agreement with a D4/3 law. At early times, and for smaller separation
distances, an exponential growth, in agreement with a D2 law, was briefly observed
but only for the eastern cluster (with an e-folding time around 6 days). After a few
months or separation distances greater than 300 km, the relative dispersion slowed
down naturally to the Taylor absolute dispersion regime.

1. Introduction
Observations of the separation of pairs of particles is one of the few experimental

methods available to examine the spatial structure of geophysical turbulent flows.
Richardson (1926) proposed that the relative diffusivity of an ensemble of pairs
should scale as the 4/3 power of the (r.m.s.) separation distance. In his review of the
subject, Corrsin (1962) emphasized the concept that turbulent eddies much smaller or
much larger than the separation scale are relatively inefficient in further separation at
the difference of eddies near the separation scale: the small eddies cause independent
random walks of each member of the pair while the larger ones move the pair
coherently as a single unit. As a result the relative velocity of the pair changes with
the separation and is a non-stationary random variable. This accelerating property of
relative diffusion has been used to infer properties of the energy wavenumber spectrum
in the inertial range. The key quantity in the inertial range of three-dimensional turbu-
lence is the energy dissipation rate. When the relative diffusivity is assumed to depend
only on this energy dissipation rate and on separation, Richardson’s law is recovered
(Obukhov 1941; Batchelor 1952). The study of particle dispersion is important because
of the interest in transport and mixing of chemicals in large-scale geophysical systems.
While Taylor’s (1921) single-particle dispersion theory relates to tracer dispersal from
a fixed geographical origin and for very large times, two-particle dispersion relates to
the spreading of a cloud of tracer from its centre of gravity (Batchelor 1952) and will
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give information on the cloud size growth as time increases. Relative dispersion thus
describes the fate of a passive tracer much better than one-particle dispersion.

The subject has now branched into two, with the dispersive effects of three-
dimensional high Reynolds number turbulence on the one hand and those of two-
dimensional turbulence on the other. The former has been recently reviewed (Sawford
2001). Because the oceanic motions that separate the floats in our experiment are
associated with a small Rossby number (horizontal characteristic length scale L
greater than 1 km), the latter context seems more appropriate, although it is only
under certain circumstances (to be detailed below) that the flow can be considered
approximately two-dimensional. In two-dimensional free turbulence, the square of
relative vorticity is conserved following fluid particles and enstrophy (or mean square
relative vorticity) cascades to small scales while energy moves up scale as a result
of nonlinear interactions (Batchelor 1953). Similarly, Kraichnan (1967) showed that
two-dimensional forced turbulence admits two formal inertial ranges, one on each
side of a given injection scale, with an inverse energy cascade at scales larger than the
injection scale and a direct enstrophy cascade at smaller scales. He then proposed that
the same arguments used in the three-dimensional case to infer the 4/3 law could be
applied to the region of the inverse energy cascade, an idea which has been supported
by various turbulence closure calculations (Kraichnan 1966; Larcheveque & Lesieur
1981).

In the inertial range of the enstrophy cascade, Lin (1972) proposed that relative
dispersion should depend only on the separation and on the enstrophy dissipation
rate with the consequence that at such scales the relative diffusivity varies as the
square of the separation. This in turn implies that the mean-square separation grows
exponentially in time. Kraichnan & Montgomery (1980) note in their review of two-
dimensional turbulence that separation is then smaller than the size of the eddies that
carry most of the shear. This approximates the situation of spatially uniform random
shear with the rate of separation proportional to the separation. Larcheveque &
Lesieur (1981) confirmed the validity of this regime under an eddy damped quasi-
normal Markovian (EDQNM) closure. Numerical experiments in the framework of
two-dimensional homogeneous decaying turbulence carried out by Kowalsky & Peskin
(1981), did show a short exponential regime (with a ratio of the initial r.m.s. separation
to the injection scale of 0.035). However, Babiano et al. (1990) who conducted similar
numerical experiments, following Kraichnan’s assumptions of forcing at a well-defined
wavenumber, observed that the exponential law was “reduced to a very short transient
stage”. On the other hand they found that the t3 asymptotic law, a consequence of
Richardson’s law, was obtained “provided the initial separation of the particles is smal-
ler by an order of magnitude than the injection scale”, a condition which looks surpris-
ing and will be discussed below. An experimental study of the dispersion of pairs of
passive particles in a stratification controlled two-dimensional laboratory flow was per-
formed recently by Jullien, Paret & Tabeling (1999), the local forcing being provided by
the interaction of an electrical current with a magnetic field. Within the inertial range
of the inverse cascade (i.e. at scales larger than the forcing scale), the t3 law was ob-
served along with a strongly non-Gaussian behaviour for the probability distribution
of pair separations (with initial separations much smaller than the injection scale).

The application of these two-dimensional physical concepts to large-scale geo-
physical rotating and stratified flows (e.g. in the ocean or atmosphere) has no definite
results yet (see the reviews by Rhines 1979, and Salmon 1998). If the flow time scale
is much greater than f −1, and the flow horizontal length scale L much smaller than
fβ−1 (f = 2Ω sinϕ and β =df/a dϕ, with Ω the Earth rotation rate, ϕ the latitude
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and a the Earth radius), then with an horizontal velocity scale U much smaller than
f L (Rossby number � 1), quasi-geostrophic potential vorticity is conserved along a
quasi-horizontal trajectory (e.g. Gill 1982). If furthermore L is much smaller than
the internal Rossby radius of deformation Rint (at which vortex stretching appears)
and the Rhines scale (U/β)1/2 (at which planetary waves start to propagate), the
flow is effectively quasi-two-dimensional. Since Rint ∼ 30 km while (U/β)1/2 ∼ 70 km at
mid-latitudes in the ocean, such a quasi-two-dimensional regime is possible and could
be observed near scales of the order of a few km (U ∼ 0.01 m s−1 to 0.1 m s−1). In
the ocean and atmosphere the energy source for the meso- (or synoptic) scale eddies
comes mainly, through baroclinic instability, from the potential energy associated
with the sloping isopycnals of the semi-permanent jets (Gill 1982). Eddy kinetic
energy is injected preferentially at the scale (scale being defined as wavelength/2π)
of the internal Rossby radius of deformation Rint which would thus play the role
of Kraichnan’s injection scale. However, in the atmosphere, the range of horizontal
scales over which the quasi-two-dimensional regime could exist may be narrower than
in the ocean, since atmospheric values for Rint and (U/β)1/2 are both of the order of
700 km while the condition of a small Rossby number imposes scales greater than
100 km, for speed of ∼ 1 m s−1.

Discarding the β effect (thus for horizontal scales much smaller than the Rhines
scale), but keeping the vertical stretching term in the quasi-geotrophic potential vorti-
city, Charney (1971) has shown that for scales smaller (not necessarily much smaller)
than Rint, a potential enstrophy inertial range can exist under certain conditions,
which renders Lin’s law for pair dispersion still plausible with potential enstrophy
dissipation rate as the leading controlling parameter.

At scales larger than Rint, and for uniform stratification, Rhines (1979) has argued
that an inverse energy cascade is still possible in the horizontal and vertical directions,
the cascade proceeding to a state of alternating, weakly interacting barotropic (i.e.
z-independent) zonal jets of width O(U/β)1/2. There is no observational evidence
that the oceanic eddies equilibrate similarly. Stammer (1997) has shown that eddies
at the surface scale with Rint and not with (U/β)1/2 while equipartition of the first
baroclinic mode and barotropic mode energy is usually observed at mid-latitudes
(Wunsch 1997). On the modelling side small-scale topography (Tréguier & Hua 1988)
or realistic oceanic stratification (Smith & Vallis 2001, 2002) have been shown to
be serious candidates to prevent the inverse cascade reaching a full barotropic state.
The applicability of the Richardson–Kraichnan law to realistic regimes of oceanic
turbulence (beyond the two-dimesional hypothesis) thus remains open giving added
value to any experimental evidence that might be gained on such an issue.

The EOLE experiment was the first geophysical experiment aimed at testing these
laws of two-dimensional relative dispersion in the mid-latitude atmosphere and
Morel & Larcheveque (1974) observed the initial exponential time regime of the
enstrophy cascade. In the TWERL experiment, Er El & Peskin (1981) confirmed this
exponential regime but the demonstration of a Richardson regime at larger scale
proved elusive. These authors emphasized the importance of looking at the dispersion
in the time domain, a proposal that we share: we will show the differences that arise
when averages of pair diffusivity are constructed as a function of distance or time.
Assuming that the strain rate separating a pair was dominated by eddy scales near
the separation distance, Morel & Larcheveque (1974) concluded that the D2 law for
the relative diffusivity was evidence of the existence of a k−3 energy spectrum in the
enstrophy inertial range. This conclusion was disputed by Bennett (1984) and Babiano,
Basdevant & Sadourny (1985) who argued that such a diffusivity law implies only
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that the slope of the energy spectrum is steeper than or equal to –3. When the slope
is steeper than –3, the separation process is said to be non-local meaning that eddies
of scales larger than the separation also contribute to the diffusivity. Bennett (1984)
describes the two effects: local straining causing a blob of contaminant to become
highly convoluted with significant cross-diffusion before the blob envelope reaches
the scale of the energy-containing eddies and non-local straining causing the blob to
be drawn into a few long streaks with little cross-diffusion.

Summarizing the oceanic experimental context some thirty years ago, Okubo (1971)
found that the D4/3 law for the relative diffusivity along with the t3 law for the mean-
square separation held for a range of scales from 10 m to 300 km, the fit being local
in the sense that the proportionality constant, the energy dissipation rate, had to
be varied to accommodate this large spectral breadth. Most of the data in Okubo’s
diffusion diagrams came from surface dye releases in coastal areas where processes
as varied as wind waves, tidal and inertial fluctuations are present. As Okubo points
out, the similarity theory of turbulence is one possibility among others to rationalize
the data (but he did not say whether he meant the two- or three-dimensional version
of that theory). He & Bennett (1987) drew attention to the combination of mean
shear and turbulent mixing as another possible cause for the t3 law.

Although float observations have become common practice to infer the large-
scale oceanic circulation, investigations of turbulent dispersion revealed by the floats
have concerned for the most part one-particle (or so-called absolute) dispersion.
McWilliams et al. (1983) showed an example (calculated by Price) from the Local
Dynamics Experiment (LDE), with floats at depth of 700 m approximately, in the
North West Atlantic (∼ 31◦N, ∼ 70◦W), supporting a D4/3 law for separation distances
between 70 and 300 km, and suggesting a D2 law for smaller separations. Recently
Lacasce & Bower (2000) computed relative dispersion from four mid-latitude float
experiments (including LDE) in the North Atlantic for three classes of initial
separations (D0 � 7.5 km, � 15 km and � 30 km respectively): relative dispersion in
the two Western sites was shown to follow roughly a 4/3 law for r.m.s. separations
in the 10–100 km range, but exponential stretching was not resolved. For the two
other regions (ACCE and AMUSE experiments), relative dispersion varied linearly
with separation instead, a result interpreted by the authors to be the signature of a
stochastic mixing process with particles essentially uncorrelated in space. Finally, using
25 day trajectories from surface drifters deployed in the Gulf of Mexico, Lacasce &
Ohlmann (2003) obtained, for small initial separations (D0 � 1 km) an exponential
growth over the time range 2 to 10 days after launch, corresponding to separation
distances between 5 and 40 km.

The TOPOGULF experiment whose data is used in the present paper was carried
out in the central interior of the subtropical gyre of the North Atlantic away from
boundary currents. Acoustically tracked subsurface floats were deployed at 700 m
depth in the main thermocline (Ollitrault & Colin de Verdière 2002a) at scales suffi-
ciently small initially to allow tests of the various laws of relative dispersion against
distance or time chosen as independent variables respectively. More specifically this
data set should allow the following questions to be answered:

Is there evidence of an exponential regime of relative dispersion?
Is there evidence of a transition to a Richardson regime before the members of a

given pair randomly walk independently?
Section 2 describes briefly the float experiment. The theoretical elements needed

are presented in § 3. Section 4 and § 5 describe respectively the statistical treatment of
the data and the results. These results are further interpreted in § 6.
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2. The float experiment
As part of the TOPOGULF experiment (Arhan, Colin de Verdière & Mercier

1989; Colin de Verdière, Mercier & Arhan 1989), 26 quasi-Lagrangian subsurface
(SOFAR) floats were used to track water particles near 700 dbar in the mid-latitude
North Atlantic, over a 6 year (mid 1983 to mid 1989) period. Fifty three float years
were collected, allowing absolute velocities and displacements for intermediate water
particles from submesoscales (i.e. with characteristic length and time scales of order
10 km and 5 days) to mesoscales (100 km and 50 days) up to the largest scales of the
circulation (in the present experiment roughly 1000 km and 500 days) to be obtained.
Fourteen floats were launched (4–7 July 1983) within a 75 km diameter circle centred
36◦N 40◦W, west of the Mid-Atlantic Ridge (MAR), with a near neighbour distance
of 18 km. Ten floats were launched one year later (28–29 October 1984) within a 45 km
diameter circle centred 33◦N 33◦W, east of the MAR, as two duos and two trios (two
or three floats separated by 2 km), with 18 km distance between groups. However only
one trio and one duo (plus two single floats) will be used in this study since three
floats equilibrated deeper than 1100 dbar after launch. Two of these three rose back
into the [600, 800] dbar interval but much too late to be useful here. Three more floats
(one duo and a single float) were released on 11 September 1985 in the same region.

Float trajectories have revealed a very turbulent circulation of the subtropical
Atlantic (30◦N to 45◦N) and an influence of the mid-Atlantic ridge (MAR) on the
large-scale motions. Trajectories, mean circulation and one-particle dispersion can be
found in Ollitrault & Colin de Verdière (2002a, b) referred to as OCV from here on.

In the present context of estimating the rate of dispersion of float pairs, it is
important to discuss position errors of the floats. Our SOFAR floats were positioned
every 12 h, with an accuracy of a fewkm. Errors on positions are due to several
causes, the most important ones being:

(i) Imperfect knowledge of the speed of sound used to convert times into distances,
which are used through least-square minimization to estimate the float position.

(ii) Error in estimating the times of propagation because of the poor knowledge
of the float and listening station clock drifts.

(iii) ‘Bad’ geometry for the least-square fit (e.g. for a float positioned well away
from a cluster of listening stations, so that constant times of propagation loci intersect
each other at very small angles, or even never intersect).

(iv) Imperfect separation by the listening station correlator of the different sound
rays received (from a float).

For the purpose of our study however, which is to calculate the time rate of change
of separation and relative velocity vectors between two given floats for separation
distances less than a few hundred km, systematic errors should cancel out approxi-
mately. To reduce any random (as opposed to systematic) errors, a low-passed filter
was applied to the raw position time series to cut off periods less than ∼ 3 days and
velocities were estimated with a cubic spline fitted to the filtered positions (Ollitrault
1994). This procedure is thought to provide an accuracy of a few hundred metres for
the separation vector when floats are less than a few tens of km apart, degrading to
probably 1 km or more as separation increases to a few hundreds of km. Instantaneous
velocities are assumed accurate to within 1 cm s−1.

3. Theoretical considerations
Following Richardson’s (1926) result for three-dimensional turbulence, Kraichnan

(1966, 1967) proposed the following law for the relative diffusivity of pairs as function
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of the r.m.s. separation distance in the inverse cascade regime of two-dimensional
turbulence:

1

2

dD2

dt
∼ ε1/3D4/3 for D � DI

where DI is a forcing injection scale and ε is the energy flux to larger scales. A
similar argument led Lin (1972) to propose for the inertial range associated with the
enstrophy cascade of two-dimensional turbulence:

1

2

dD2

dt
∼ χ1/3D2 for D � DI

where χ is the enstrophy dissipation rate (see Kraichnan & Montgomery 1980 and
Lesieur 1997 for a review of the underlying concepts). Both laws are proposed up to
a dimensionless constant which can only be estimated from dispersion measurements
supplemented by direct estimation of the dissipation rates themselves (Larcheveque
1983). It is readily seen that, after integration, Kraichnan–Richardson’s law gives

D2 =
(
D

2/3
0 + 2

3
cε1/3t

)3
(1)

while Lin’s law implies exponential growth:

D2 = D2
0 exp

(
2dχ1/3t

)
where c and d are the aforementionned non-dimensional constants and D0 is the
initial separation distance.

Following Babiano et al.’s (1990) presentation, the single-particle Taylor’s (1921)
formulation applied to the relative dispersion proceeds as follows:

D2(t,D0) = 〈D2(t, D0)〉 = 〈D(t, D0) · D(t, D0)〉

is the mean-square separation distance at time t . Here D is the separation vector of a
pair of particles (named a and b), and 〈 · 〉 denotes the ensemble average at time t over
all particle pairs initially separated by a given distance D0 = ‖D0‖. If δV = (d/dt)D =
V a – V b is the Lagrangian relative velocity vector for the same pair of particles a
and b, then

D(t, D0) = D0 +

∫ t

0

δV (τ, D0) dτ.

The relative diffusivity can now be rewritten as

Y (t,D0) =
1

2

d

dt
〈D2(t,D0)〉 = 〈D(t,D0) · δV (t,D0)〉

= 〈D0 · δV (t,D0)〉 +

∫ t

0

〈δV (t,D0) · δV (τ, D0)〉 dτ. (2)

Relative velocities are not stationary random variables because the covariances in
(2) keep their dependence on pair separation D0 and on time after release. Using the
definition of δV in terms of absolute velocities V , the last term in (2) can be rewritten
as

2K(t) − 2

∫ t

0

〈V a(t) · V b(τ )〉 dτ.

K(t) is the single-particle absolute diffusivity (actually K is the trace of the diffusivity
tensor i.e. the sum of individual diffusivities in two orthogonal directions). For large
time or large initial separation compared to the energy-containing scale, the two
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members of the pair wander independently and the last term above vanishes in which
case the relative diffusivity becomes just twice the single-particle absolute diffusivity
provided that the covariance 〈D0 · δV (t, D0)〉 also vanishes. This is clearly the case at
the initial time, after ensemble averaging over a very large number of particle pairs
placed randomly in homogeneous turbulence (Davis 1985) but also (less obviously) for
later times as verified numerically by Babiano et al. (1990). However, this is unlikely
in geophysical experiments (because too small a number of pairs is available). In the
absence of this term, Babiano et al. (1990) have shown on pure kinematical grounds
that when t goes to zero (that is when the relative velocities are perfectly correlated),
the relative diffusivity and the relative dispersion grow in time respectively as t and
D2

0+〈||δV 0||2〉t2 = D2
0(1+Zt2), where Z is the enstrophy given by 1

2
〈‖curlV ||2〉x (spatial

averaging carried out over the entire domain is denoted by 〈·〉x).
The mean-square relative velocity is also a quantity that can be estimated from

observations. From its definition we have〈
dD
dt

· dD
dt

〉
= 〈||δV (t, D0)‖2〉 = 〈‖V a(t)‖2〉 + 〈‖V b(t)‖2〉 − 2〈V a(t) · V b(t)〉. (3)

After a sufficiently long time the absolute velocities of the two particles decorrelate
and the mean-square relative velocity becomes just four times the eddy kinetic energy.

4. Data treatment
Due to the SOFAR system of acoustic transmission used in the TOPOGULF experi-

ment, two different floats were never located simultaneously. However, all floats were
positioned within a 6 hour interval. Furthermore, in this study we consider only daily
positions, because the filtering done on the raw position estimates (see § 2) may invali-
date any result for times smaller than a few days. As in OCV, floats were partitioned
between western and eastern basins, depending whether they were launched west
or east of the MAR. No float pair constructed of a western float and an eastern
float happened to satisfy the different criteria used to select the pair-separation-
distance time series (see below) used in this statistical study. The original 14 western
(respectively 12 eastern) float position time series were combined to yield ( 14

2
)

(respectively ( 12
2
)) pair-separation-distance time series 1000 days long. Pair separation

distances of these 91 (respectively 54, because 12 pairs contain no data) time series
were estimated with a 10−5 relative accuracy.

Since two floats move independently from each other if the separation distance is
large enough compared to the more energetic scales, there is no need to consider large
D0. In our float launching region, where Rint is ∼ 25 km, structures with wavelengths
of the order of 150 km will emerge because of the instability of the Azores current.
Pair separation distance versus time plots (see figures 1, 2, 3 and 4 and the next
section) show that once two floats have separated more than 150 km, they never come
back within 30 km of each other (except for pairs 03–04 and 87–88 whose separations
once shrank to 12 and 20 km respectively). In consequence, statistics will be presented
only for D0 values less than 120 km.

At the initial time (9 July 1983 in the west, 29 October 1984 or 11 September
1985 in the east respectively), there were 32 (respectively 12) pairs with D0 < 30 km,
but only 4 (respectively 5) pairs with D0 < 5 km. To increase the number of pairs
with small D0, ‘chance’ pairs could be considered as well. A ‘chance’ pair is created
at the time (if any) the separation shrinks to a minimum of less than 50 km, either
after launch or after the float separation has exceeded 150 km (so that the two floats
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Western floats (91 pairs)

Separation distance 0 7.5 15 22.5 30 40 50 60 70 80 90 100

Initial pairs 4 5 13 10 17 12 8 7 6 7 2 0

‘Chance’ pairs 1 1

Minimum criterion
120 day portions

10 9 14 10 14 14 12 8 7 6 1 9

(12) (15) (18) (10) (11) (12) (14) (9) (8) (9) (1) (9)

10 day re-initialized
‘Random’ pairs

9 14 20 17 35 30 34 34 46 51 36 61

(13) (27) (39) (47) (81) (68) (75) (72) (72) (67) (47) (77)

Eastern floats (54 pairs)

Separation distance 0 7.5 15 22.5 30 40 50 60 70 80 90 100 120 km

120 km

Initial pairs 5 0 7 0 7 0 0 0 4 1 0 2

‘Chance’ pairs 4 1

Minimum criterion
120 day portions

7 2 5 0 5 1 1 1 1 2 0 4

10 day re-initialized
‘Random’ pairs

16 16 12 6 17 16 14 17 16 15 14 23

Table 1. Number of pairs versus separation classes. The first line contains pair numbers at the
initial time: 9 July 1983 in the west; 29 October 1984 or 11 September 1985 in the east. The
second line contains the ‘chance’ pair numbers, a ‘chance’ pair being defined if the separation
shrinks to a minimum less than 50 km, either after launch or after the separation overshoots
150 km. The third line contains the pair numbers, for the minimum separation criterion and
with a 120 days duration. The fourth line contains the ‘random’ pair numbers, a new ‘random’
pair being defined every 10 days from a given separation time series. For the western cluster,
we have excluded roughly 50 % of the data because all the floats were swirling after launch
within the cyclonic eddy shown on figure 1 (the numbers of pairs, had we kept the whole data
set, are given within parentheses).

can be considered quasi-independent). Table 1 shows that only seven ‘chance’ pairs
would result with D0 < 50 km. This is clearly due to the fact that floats were launched
initially in clusters (see OCV) and the minimum separations occurred either at launch
or soon afterwards.

Consequently we tried another approach. We searched for the minimum separation
between two floats during the entire life of a pair and recorded the evolution after
that minimum, over 120 days (4 months). The same procedure was used in turn
on the remaining time series (search for a second minimum and selection of the
subsequent 120 days). Although it approximately doubles the number of pairs for
small (< 20 km) D0 (see table 1), a definite advantage for the statistics, this approach
selects the separation time series corresponding to hyperbolic regions. The statistical
results for the time evolution of mean-square separation between two particles with
the same initial separation D0 (to be presented in the next section) would thus be
biased upwards.

To preserve as far as possible a ‘random’ sampling of the separation process, we
have finally defined the separation-distance time series as 6 month portions of a
given original time series, the different portions being initialized every 10 days. This
procedure clearly weakens any assumption about the statistical independence of the
different portions. However, results obtained from 30 day or 60 day re-initializations
(presented in the next section) substantiate this approach. The 6 month duration was
selected so that the large-time random walk can be clearly reached.
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Figure 1. Float trajectories of three western pairs (TOPOGULF SOFAR floats 04 and 05,
13 and 14, 09 and 20) over 200 days after 9 July 1983. One arrowhead every 10 days. Floats
are seen to separate swiftly once separation exceeds a few tens of km. These floats were
launched between 4 July and 7 July 1983 at positions given by squares, but their trajectories
are considered only after 9 July 1983 in this study.

Basically, all the statistical estimates will be given as a function of time, because 〈 · 〉
is a Lagrangian average. Some statistical estimates will also be given as a function of
D (the r.m.s. separation) since we know D2 as a function of t and D0. But we must
warn the reader that this is different from an ensemble average carried out among
pairs of the same separation D, irrespective of time and initial separation D0. This
will be illustrated in the following section.

5. Results
Although individual trajectories have been presented in OCV, it may help to

visualize a few pair evolutions before going into the statistics proper. Figure 1 presents
three western pairs over a 200 day period. Pair 09–20 (minimum separation 1.9 km)
separated swiftly after 45 days, while pair 13–14 (initial separation 22 km) swirled
within a cold-core cyclonic eddy for 180 days before separating swiftly thereafter (the
minimum distance of 7.5 km occurred only a few days before the swift separation,
see also figure 2). Pair 04–05 (minimum separation 2.1 km occurred more normally
a few days after launching) separated more or less similarly. Pressure differences
for paired floats were less than 30 dbar, for short separations, thus minimizing any
vertical shear effect on pair dispersion (figure 2). Figure 3 presents one eastern trio.
As described in OCV, there is clearly a topographic influence on the flow and the
float dispersion. Figure 4 gives the temperature, pressure and separation evolutions
for pair 87–88, with features similar to those of the western pairs. Since a trio gives
three pairs in our analysis, it must be remarked that the three pair separations are not
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Figure 2. Temperature, pressure and separation time series (over 200 days after 9 July 1983)
for the TOPOGULF SOFAR float pair 13–14. This pair was embedded in a cyclonic cold-core
ring (where most of the 14 western floats were launched), and its separation distance oscillates
between 10 and 60 km over 6 months after launch, as floats swirl within the ring. Absolute
minimum (D0 = 7.5 km) occurs only a few days before final fast separation.

totally independent, thus giving a number of degrees of freedom for our statistical
estimates smaller than the number of pairs entering the statistics. A ‘chance’ pair can
be identified on figure 4 for the pair 87–88.
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Figure 3. Float trajectories of a trio (TOPOGULF SOFAR floats 86, 87 and 88) over 200
days after 11 September 1985. One arrowhead every 10 days. This float trio remained closely
packed while being advected by an eastward meandering jet but dispersed as the flow impinged
on the seamounts found near 28–30◦W.

We first investigated a possible anisotropy of the relative dispersion process. As
shown in OCV, anisotropies appear in the single-particle diffusivities for time scales
greater than a few months. Estimating the ratio of the r.m.s. zonal over r.m.s.
meridional relative displacements for each class of pair separation shows a ratio close
to one for scales less than a few hundreds km (figure 5). At greater distance, there
is a tendency for zonal relative dispersion dominance, which becomes the rule near
1000 km, in agreement with the single-particle analysis.

Restricting our interest to scales less than a few hundreds km, the mesoscale band,
the results presented next are averages over all directions. Shown in figures 6(a) and
6(b) is the dispersion D2(t, D0) as a function of time and conditional upon initial
distance D0 (D0 < 50 km), for the western and eastern floats respectively. The classes
of distance (see table 1) were chosen as a compromise between having a sufficient
number of realizations within each (order of 10 or more) and being sufficiently narrow
not to bias the results.

As mentioned in the previous section, the statistics obtained by initializing
‘independent’ portions of the pair-separation-distance time series every 10 days do not
depart significantly from those obtained by initializing every 30 days or every 60 days
(but they are noisier), or even from those obtained from the independent portions
selected with the criterion of minimum separation (although there is a more rapid
growth). A few of these results will be shown for illustration, but we mainly show
the results of the 10 day re-initializations. We must also point out here that since
the western floats were all launched within a cyclonic cold-core eddy, where several
remained trapped for a long time (see figure 1), the results obtained with those floats
should be biased towards low values. By discarding most of the floats swirling in the
initial eddy, the data set for the western floats is reduced by roughly 50 % compared
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Figure 5. Ratio of the r.m.s. zonal and meridional separations within 10 km wide
distance classes.

to the original set (see table 1). It is this reduced set that is used throughout this
study, although some results are also given for the complete western data set.

When relative dispersion is plotted with semi-log axes (figure 6a), an exponential
growth (∼ e2t/τ ) is observed in the east for the smallest D0 class with a time τ of ∼ 12
days, from roughly a few days to three weeks. Whether a similar regime also occurs
in the west for the smallest D0 class is not clear (the corresponding error range is
obviously underestimated because of correlated samples).

On the linear plots giving (D2(t, D0))
1/3 as a function of time (figure 6b), it is possible

to identify a quasi-linear growth up to 60 days in the west and 120 days (or perhaps
more) in the east. Using equation (1) we obtain an estimate of a = cε1/3 as (3/2) × slope,
whence the approximate values aW ≈ 1.4 × 10−3 m2/3 s−1 (1.2 × 10−3 m2/3 s−1 with the
original data set) for the west and aE ≈ 0.8×10−3 m2/3 s−1 for the east, corresponding to
slopes of D2/3 versus time of ∼ 0.80 km2/3 day−1 (∼ 0.70 km2/3 day−1 with the original
data set) and ∼ 0.46 km2/3 day−1 respectively. This supports a Richardson regime as
given by (1).

To test how well such a law fits the experimental data and find out if there
is an asymptotic (αt3) regime, dispersion versus time is represented on a log–log
plot. Figure 7 gives the dispersion behaviour for six initial separation classes chosen
among the twelve D0 classes (spanning a distance range from 0 to 120 km, see table 1).
Except for the first D0 class, the Richardson law (1) fits the data qualitatively well,
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Figure 6. (a) Mean-square separation distance D2(t, D0) ≡ 〈D2(t, D0)〉 as a function of time
and initial separation for the western (reduced) and eastern data sets. D0 is within one of
the six classes of distance [0, 7.5[,[7.5, 15[, [15, 22.5[,[22.5, 30[, [30, 40[ and [40, 50[ km.
Corresponding curves are given by solid dots, open squares, open triangles, crosses, open dots
and solid triangles respectively. For readability D2 values corresponding to different D0 are
shifted by a power of ten. Broken lines indicate ± one standard deviation on the mean. The
fit D2

0 + 〈‖δV 0‖2〉t2 valid for small t is plotted for 0 � t < 20 days. Only for the smallest class

of initial distance and in the east does an exponential law stand out clearly. (b) D2/3(t ,D0)
as a function of time and initial separation (same data and classes of distance as (a)). For
readability D2 values corresponding to different D0 are shifted by a multiple of ten.
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Figure 7. Mean-square separation distance D2(t , D0) versus time and D0, for the western
(reduced) and eastern data sets. Six D0 classes are shown (from bottom to top, D0 ∈ [0, 7.5[, [15,

22.5[, [30, 40[, [50, 60[, [70, 80[ and [90, 100[ km). Richardson law (D2 = (D
2/3
0 + 2at/3)3 with

aW = 1.4 × 10−3 m2/3 s−1 and aE = 0.8 × 10−3 m2/3 s−1) and large time Taylor law (D2 = 4K(∞)t
with KW (∞) = 8.5 × 103 m2 s−1 and KE (∞) = 5 × 103 m2 s−1) are also plotted. For readability
D2 values corresponding to different D0 are shifted by a power of ten. Broken lines indicate ±
one standard deviation on the mean.
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before the random walk regime (4 Kt) occurs ultimately. In agreement with equation
(1), an asymptotic t3 regime is only obtained after D2(t,D0) becomes much greater
than D2

0 .
Two-particle diffusivity Y (t,D0) is calculated by finite time differencing D2(t,D0)

and is plotted as a function of D(t,D0) on figure 8. Averaging individual values within
distance intervals reveals, as expected, a reasonable fit to the law Y (t) = dχ1/3D2 (with
(dχ1/3)−1 = τ =12 days in the east) and to the law Y (t) = aD4/3 (with aW = 1.4 ×
10−3 m2/3 s−1 and aE =0.8 × 10−3 m2/3 s−1). Although roughly confirmed in the east,
the exponential (or D2) regime is not resolved in the west, perhaps due to the paucity
of data for small distances or because it simply does not exist. In the east, the
transition to the Richardson (or D4/3 regime) appears at separations between roughly
20 and 30 km. With 30 day or even 60 day re-initializations, the two regimes (in
the east) and the corresponding statistical laws, are similarly resolved (open squares
or open triangles in figure 8). This gives support for our 10 day re-initialization
procedure.

Using the original time series without re-initializations, we have also computed the
doubling times T (Dn), defined as the mean time for a particle pair separation to grow
from Dn to 2Dn (with D1 = 3 km and absorbing barriers). In the east, T ∼ 9 days (or
τ = T/ ln 2 ∼ 13 days) for the first four estimates, then varies roughly as D2/3 for the
next three estimates. In the west, T varies very roughly as D2/3 for the seven estimates,
supporting the Richardson regime but not an exponential growth.

We had thought of obtaining an independent check of the statistical laws relating
Y to the distance by calculating a relative diffusivity YE(D) as the mean of D(t) ·
δV (t, D0) from all pairs with the same D (in practice of course within a small interval
[D, D +dD[), irrespective of time and initial separation D0. By so doing we would
obtain a large number of samples (without re-initializations). Being calculated with
what amounts to an Eulerian operation, YE(D) is clearly different from our previous
average, conditional on initial positions. In fact, when this unconditional averaging
is carried out with our data, YE(D) is roughly half Y (D). The following argument
gives the origin of the difference. Considering the realizations D(t,D0) with D0 fixed
(in practice within a small interval [D0, D0 +dD0[), one observes that YE(D, D0) is
generally smaller than Y (D, D0) for D less than 100–200 km. This is caused by some
of the separation-distance time series that remained fluctuating in this distance range,
whence a negligibly small contribution to YE because

∑
dD2/dt = D2

k+1 − D2
k (if D2

increases) is cancelled by
∑

dD2/dt = D2
k − D2

k+1 (as D2 decreases). Meanwhile, the
other separation-distance time series grow much more rapidly, whence 〈D2(t,D0)〉1/2,
i.e. the r.m.s. average (at a given time) of both ‘slow’ and ‘fast’ separation distances,
which swiftly leaves the range of D less than 100–200 km. This explains why YE(D),
which is obtained after averaging of all the D0 contributions, is smaller than Y (D)
for D less than 100–200 km, but (loosely) tends to Y (D) for greater distance. It is
worth noting, however, that the shape of YE versus D is not very different from that
obtained from the proper conditional averages. Whether YE is of physical significance
and if so, how it relates to Y , remains to be studied.

Let us now suppose that for D0 > 30 km, the Richardson law (1) applies from
t = 0 (possibly discarding the first few days, if necessary) until the time the Taylor or
random walk regime is reached. One can say that the asymptotic t3 regime is reached
only for a short time period (e.g. a few days before the Taylor regime). But let us
make a shift of the time, given by t̃ = t + t∗ = t + 3D

2/3
0 /2a. Then (1) can be rewritten

as D2(t) = 8a3 t̃3/27 and now one can say that the regime is perfectly asymptotic
(in t̃3). So shifting in time the different dispersion curves (such as given in figure 7)
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1
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corresponding to the eight D0 classes with 30 � D0 < 120 km, and averaging, we obtain
a unique curve (independent of D0), given in figure 9. The different temporal shifts,
calculated from aW and aE are given in the caption of figure 9. Since these composite
plots are constructed under the assumption of a cubic regime, they do not prove its
existence, but show that the data agree with such a regime. They combine the results
obtained so far: if we assume a transition scale near 25 km (thus corresponding to
a wavelength of about 150 km), there is a possible exponential dispersion at smaller
scales, a clear-cut Richardson regime over the 40–300 km distance range and a random
walk regime reached for greater D, faster in the west (after 2 months) than in the east
(after 4 months). The possibility that the western dispersion for the smallest D0 class
may follow a Richardson regime is not ruled out (solid dots or stars on figure 9),
whereas the corresponding eastern dispersion departs clearly from the t̃3 curve, over
the first ten days (either with 10 day or 60 day re-initializations, or even with portions
selected with the minimum criterion).

The mean-square relative velocities 〈||δV (t,D0)‖2〉 are given on figure 10 for the
twelve D0 classes. It is pleasing to note that they show the same kind of time evolution
as those from Babiano et al. (1990, their figure 2a). Although it has been argued that
within the inverse energy cascade range, 〈‖δV (t,D0)||2〉 should vary as t (Monin &
Yaglom 1975; Babiano et al. 1990), this is not visible here, nor in Babiano et al.’s
(1990) or Kowalsky & Peskin’s (1981) numerical results, probably because the
assumptions underlying the theoretical result are too stringent. Nevertheless, when
t is large, the mean-square relative velocity equilibrates to four times the kinetic
energy in agreement with (3), giving rough estimated values of 30 (60) days for the
pair relative velocity decorrelation time scale in the west (east). Since as t → 0 the
mean-square relative velocity tends towards Z D2

0 , we can estimate the enstrophy Z,

obtaining values between 0.6 and 0.06 day−2 in the west, and between 0.2 and 0.02
day−2 in the east. A better estimate for Z should come from the characteristic time
of relative dispersion τy(t, D0) = D2(t, D0)/Y (t, D0) as a function of D. Babiano et al.
(1990) have shown that it reaches a minimum equal to 2/Z1/2 over the distance range
of the exponential regime. Figure 11 shows the results for τy , in approximate agreement
with such an interpretation, providing Z ≈ 0.16 day−2 in the west and 0.04 day−2 in
the east (or a minimum characteristic time τ of 5 days in the west and 10 days in the
east).

The separation probability density functions (p.d.f.) were estimated at 10 day
intervals. Figure 12 gives the p.d.f.s (rescaled so that their variance is unity) for initial
separations in the ranges 0 � D0 < 7.5 km and 30 � D0 < 40 km, for the east (western
p.d.f.s, not shown, are similar but slightly noisier). The comparison with an assumed
Gaussian distribution for D, i.e. a Rayleigh distribution for ‖D‖(D is a sample
separation, not a r.m.s. value), is encouraging for large D0, but not at all for small D0,
whose observed distribution contains many more small separations. This result agrees
with Davis (1985), who instead used surface drifters off the California coast. Highly
kurtosed distributions were also obtained experimentally (with 104 pairs) by Jullien
et al. (1999), for small D0 (= DI/50). Their distributions corresponding to different
times for which the Richardson scaling holds, i.e. for D(t, D0) greater than (or of
the order of) DI , reveal that the separation process is self-similar in time in the
range considered (this seems likely for our data too). A best fit for the tails of their
p.d.f.s (also rescaled), is exp(−αs1/2) with α ∼ 2.6, thus strongly non-Gaussian. As a
comparison the distribution given by 2exp{−2 s1/2} plotted on figure 12 (small D0

case), is seen to fit roughly our data. Due to our reduced number of samples however,
we cannot be more quantitative.
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Figure 9. Mean-square separation distance versus time obtained by averaging at a given
time, the individual mean-square separation distance curves corresponding to D0 > 30 km, but
shifted in time as explained in the text, so that they start as if they were already in the
asymptotic Richardson regime. Actually the shifts are 13, 16, 18, 20, 22, 24, 26 and 29 days in
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deviations on the mean. Solid dots (open triangles) give the mean-square separation distance,
for the smallest D0 class for the 10 day (60 day) reinitialized time series, and shifted in time as
if it had started in the asymptotic Richardson regime. Stars give the corresponding evolution
for the portions selected with the minimum separation criterion. Clearly the eastern dispersion
does not follow a t̃3 law over the first 10 days.
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6. Discussion
At scales less than the Rossby radius of deformation (here for D < 25 km), our ob-

servation of a possible exponential regime gives support for the traditional enstrophy
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Figure 12. Probability density functions q(s, t) of rescaled pair separations s = D/σ (here
D = ‖D‖) after 10, 20 and 30 days, for small (0 � D0 < 7.5 km) and large (30 � D0 < 40 km)
initial separations, and for the eastern floats. p(D, t) is the original p.d.f., whence q(s, t) =
σp(σs, t) where σ 2 is the variance of D. The Rayleigh distribution (rescaled) is given by
λs exp(−λ s2/2) with λ= (4 − π)/2.
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cascade to small scales. However in geostrophic turbulence long-lived coherent vortices
are found, along with more random fluctuations (McWilliams 1984). These coherent
features are the signature of elliptic regions. Since numerical simulations of two-
dimensional turbulence by Elhmaidi, Provenzale & Babiano (1993) indicate that
hyperbolic regions occupy a larger domain than elliptic ones, they will be favoured
by an initial seeding of particles over a regular grid. Thus, the exponential separation
may simply result, for small enough time and separation, from the pre-eminence of
these hyperbolic regions.

The recent analysis of Lacasce & Ohlmann (2003) of surface trajectories in the Gulf
of Mexico clearly shows an exponential growth with D0 � 1 km and for separations
smaller than 40 km. Although such drifters may experience Ekman drift, windage and
surface flow convergence, these authors argue that an enstrophy regime is possible for
D less than Rint (45 km in the Gulf of Mexico). The compilation of subsurface float
experiments by Lacasce & Bower (2000) did not indicate an exponential regime and
their first explanation (supported by the above surface results) was that not enough
pairs with small initial separation were observed. This may be why no exponential
growth was revealed in our western cluster. A large number of pairs is needed to
ensure the results are statistically significant: our nine pairs in the west were not
enough. Only with a mean D0 ∼ 4 km and 16 pairs in the east were we able to obtain
an exponential growth. Another recent analysis by Colas (2003) of subsurface float
pair separations (with D0 � 10 km) in the eastern North Atlantic also supports the
idea of an exponential regime but only marginally. The difference between our two
clusters may also be of topographic origin: there are examples of pairs which separate
when hitting seamounts in the east, but none in the west. The exponential regime
found for our eastern cluster in the ocean interior needs to be confirmed with better
statistics, and far from topographic influences.

Closer to a realistic oceanic case than Babiano et al.’s (1990) results, numerical
simulations of pair dispersion in an eddy-resolving wind-driven, stratified oceanic
model carried out by Berloff et al. (2001) confirms the existence of an initial
exponential regime with values of τ of order 10 days in regions with eddy kinetic
energy of order 100 cm2 s−2. This agrees with our experiment since τ is 12 days
for eastern pairs. Lagrangian integral time scales TL have approximately the same
values (7–10 days in the east, 5–6 days in the west) whereas the western cluster has
eddy kinetic energy (EKE) three times larger than the eastern cluster (100 cm2 s−2

versus 35 cm2 s−2). If we apply the parameterization given in OCV (that seems to
fit mid-latitude oceanic data), that is K11 + K22 = K(∞) ≈ γRint EKE1/2 (with γ ∼ 3
at 700–1000 m depth) and if we assume that τ ≈ TL, we obtain a prediction of the
exponential law for any region: since K(∞) = 2EKETL we have 2τ ≈ γRintEKE −1/2.
For the EOLE and TWERL atmospheric experiments, Morel & Larcheveque (1974)
and Er-El & Peskin (1981) respectively give EKE ≈ 150 m2 s−2, Rint ≈ O(1000) km (at
mid-latitudes). Their observed value of τ ≈ 3 days is of the order of the predicted
value τ ∼ 1.5 days.

Since the Richardson regime must be found in two-dimensional turbulence for
distances larger than those associated with the exponential regime, coarse resolution
data are sufficient to detect it. Lacasce & Bower (2000) confirmed the D4/3 law
but only for experiments in the western basin of the North Atlantic. The impressive
older data compilation by Okubo (1971) combines two- and three-dimensional aspects
making comparisons difficult. For large-scale atmospheric data, the Richardson regime
was not examined by Morel & Larcheveque (1974), while much scatter remains in
Er-El & Peskin’s (1981) t3 fit to their data. This may be due to the factor of 10
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which exists between the scales of atmospheric and oceanic motions making the
homogeneous and stationary turbulence assumptions more difficult to justify for the
larger-scale atmospheric motions. The results of two-dimensional numerical forced
experiments comply more closely with expectations. The t3 asymptotic regime was
observed by Babiano et al. (1990) but only for D0 much smaller than their injection
scale. Furthermore the regime is reached later as D0 increases (their figure 4). We
point out that this behaviour may be explained simply by the form (D2/3

0 + 2at/3)3

of the integrated Richardson law (1). When D0 is larger than the injection scale
(the Rossby radius of deformation in our experimental context), the temporal law
(1) is recovered over the whole time range and we propose therefore that this form
(1) has to be preferred over the asymptotic t3 limit when tests of the Richardson
regime are sought. No such ambiguity appeared in Jullien et al.’s (1999) laboratory
experiment: since their D0 values were much smaller than their injection scale DI , the
t3 asymptotic was reached as soon as D was larger than DI .

As relative dispersion in a mean shear may also produce a t3 regime (e.g. Bennett
1987), Lacasce & Bower (2000) suggested that some of their D4/3 results could be
caused by such an effect due to the proximity of strong mean currents. Given the
isotropic character of the dispersion process in the TOPOGULF data (figure 5), this
explanation, however, seems unlikely in our case.

The D4/3 scaling for the diffusivity that we observe may well be associated with the
existence of an inertial regime over the relevant scales (40–300 km). We have estimated
values for a = cε1/3 to be about 0.8 × 10−3 m2/3 s−1 and 1.4 × 10−3 m2/3 s−1 respectively
for the eastern and western cluster. Available estimates (Monin & Yaglom 1975) vary
between 10−4 and 10−2 m2/3 s−1, thus consistent with our estimates.

The quantity ε in two-dimensional turbulence represents the rate at which kinetic
energy is transferred up scale. Alves & Colin de Verdière’s (1999) numerical integra-
tions of the nonlinear eddy generation process for the region analysed herein (the
area of the Azores subtropical front) indicate that eddies appear initially through the
baroclinic instability of the quasi-geostrophically balanced jet at wavelengths (scales)
larger than 50 (8) km with a broad maximum at 150 (25) km (scale is more appropriate
to compare with separation distance). After about 100 days, there is evidence of an
upscale (inverse) energy cascade, the energy-containing wavelengths (scales) reaching
240 (40) km. From this, we could conclude that the injection of eddy energy occurs
towards the small-scale end of our postulated inertial range and that we witness
evidence of an inverse energy cascade. The eddy equilibration does not reach the
full barotropic state, however, a process which has been shown recently by Smith &
Vallis (2001, 2002) to be caused by the surface-intensified structure of the oceanic
stratification which allows a significant part of baroclinic energy to remain near the
scale Rint. With their interpretation in mind, the inertial eddy–eddy interactions that
we infer in the main thermocline at scales larger than Rint would be the result of
an upscale energy cascade for the barotropic mode and a downscale cascade for the
baroclinic modes. In order to compare with other experiments, we choose ε to be the
eddy kinetic energy conversion from the mean potential energy. Alves & Colin de
Verdière (1999) estimated this energy flux (−gw′ρ ′/ρ0) to be 10−10 m2 s−3 and when
such a value is used as a proxy for ε, the constant c of proportionality between Y

and ε1/3D4/3 is about 2 or 3. Dedicated experiments on geostrophic turbulence and
theory will be needed to test the value of this definition.

Finally, according to our data, the Gaussian distribution, proposed by Batchelor
(1952), seems to be ruled out when D0 is small (compared to the energy injection scale
DI ) and for times when the Richardson regime begins to hold, that is when D is order
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of or slightly greater than DI (30 days after launch in our experimental results), in
agreement with the two-dimensional turbulence experimental results of Jullien et al.
(1999) or the numerical simulations by Boffetta & Sokolov (2002). However, the latter
authors show that the distribution evolves to a Gaussian as time increases, but our
data did not allow us to explore this. Whether the observed (and rescaled) oceanic
distribution is identical to the one found in Jullien et al.’s experiment for D0 � DI , and
whether the Gaussian distribution is adequate for separations conditional upon an
initial D0 � DI , or at large time, must await confirmation until a larger observational
data base is gathered.

We wish to thank Armando Babiano, Xavier Carton, Bach-Lien Hua and Jim
McWilliams for discussions regarding this work, and all reviewers for helping us to
clarify the paper.
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