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Abstract:  
 
The relevance of surface quasi-geostrophic dynamics (SQG) to the upper ocean and the atmospheric 
tropopause has been recently demonstrated in a wide range of conditions. Within this context, the 
properties of SQG in terms of kinetic energy (KE) transfers at the surface are revisited and further 
explored. Two well-known and important properties of SQG characterize the surface dynamics: (i) the 
identity between surface velocity and density spectra (when appropriately scaled) and (ii) the 
existence of a forward cascade for surface density variance. Here we show numerically and 
analytically that (i) and (ii) do not imply a forward cascade of surface KE (through the advection term in 
the KE budget). On the contrary, advection by the geostrophic flow primarily induces an inverse 
cascade of surface KE on a large range of scales. This spectral flux is locally compensated by a KE 
source that is related to surface frontogenesis. The subsequent spectral budget resembles those 
exhibited by more complex systems (primitive equations or Boussinesq models) and observations, 
which strengthens the relevance of SQG for the description of ocean/atmosphere dynamics near 
vertical boundaries. The main weakness of SQG however is in the small-scale range (scales smaller 
than 20–30 km in the ocean) where it poorly represents the forward KE cascade observed in non-QG 
numerical simulations. 
 
 
 
 

1. Introduction 
 
Fundamental questions of ocean and atmosphere dynamics are how their equilibrium energy 
spectrum is established and what are the underlying spectral energy transfers. One difficulty is that 
there are a variety of contributing processes, and different fluid regions and dynamical regimes must 
be distinguished. In particular, regions close to boundaries, such as the ocean surface or the 
atmospheric tropopause, behave differently than does the interior. For boundaries Blumen (1978) 
developed a surface quasi-geostrophic (SQG) theory that serves as a counterpart to a model of 3-D 
geostrophic turbulence (Charney 1971).While the latter is driven by large-scale interior PV contrasts 
and is not influenced by boundary anomalies, SQG dynamics is entirely driven by the density (or 
potential temperature in the atmosphere) anomaly evolution at the boundary. As such, frontogenesis 
(in its QG limit) is the key process in SQG systems. SQG theory has been recently used to describe 
the 3-D dynamics of the upper troposphere (Juckes 1994; Hakim et al. 
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2002; Tulloch & Smith 2006) and the upper oceanic layers (Lapeyre & Klein 2006; La-
Casce & Mahadevan 2006; Isern-Fontanet et al. 2006). To better understand the range
of applicability of the SQG theory, Lapeyre & Klein (2006) have further revisited theo-
retically and numerically the question of the coupling of the boundary dynamics (driven
by the surface density) with the interior dynamics (driven by the interior PV gradients).
Using the dynamical analogy (suggested by Bretherton (1966)) of the surface density as
a boundary potential vorticity (PV) delta-function and using the invertibility principle of
PV (Hoskins et al. 1985), Lapeyre & Klein (2006) demonstrate the relevance of the SQG
dynamics in the upper oceanic layers (the first 500 m) for a spectral range extending
from the smallest scales (O(10km)) to mesoscales (up to O(400km)); the larger scales are
predominantly influenced by the interior PV. Such scale partition also emerges from the
studies of Juckes (1994) and Tulloch & Smith (2006) for atmospheric flows.

The spectral energy transfers at the boundaries have still to be understood. Using
altimetry data Scott & Wang (2005) computed KE fluxes that are due to nonlinear
horizontal advection. They found an inverse cascade of surface kinetic energy (KE) from
scales close to the Rossby deformation radius (≈100− 150km at mid-latitudes) to larger
scales. Their interpretation is that this inverse cascade mainly reflects the first baroclinic
mode. In support of this hypothesis Scott & Arbic (2007) present two-layer QG turbulent
solutions for a baroclinically unstable ocean that undergoes an inverse cascade of the
baroclinic (and upper layer) KE. Using PE simulations Capet et al. (2008) and Klein
et al. (2008), confirm the Scott & Wang (2005) results about the existence of a significant
inverse cascade of surface KE. Their inverse cascade, again estimated from the nonlinear
horizontal advection terms, extends even further down to scales around 30km. Yet, it is
not clear that this cascade can entirely be understood in terms of QG turbulence that
assumes uniform surface density. Indeed, in agreement with Lapeyre & Klein (2006),
density contrasts at the ocean surface play a leading dynamical role for scales up to at
least 300km (Klein et al. 2008). In this context we revisit SQG energy transfers and show
that they account for an inverse surface KE cascade at least within the mesoscales to
small scales range.

Blumen (1978) and later Held et al. (1995) noted two invariants in SQG dynamics; the
surface density variance (also equal to the surface KE when appropriately dimension-
alized) and the depth-integrated total energy (KE plus potential energy). By analogy
with 2-D turbulence the system undergoes an inverse cascade of the total energy at low
wavenumbers and a direct cascade of surface density variance at high wavenumbers. Nei-
ther Blumen (1978) nor Held et al. (1995) discussed the specific properties of the surface
KE cascade in SQG theory. The focus of this paper is to characterize these properties.
In Sections 2 and 3 we show (first analytically and then numerically) that despite the
equivalence of surface density and velocity spectra in SQG, the details of their spectral
budget differ: horizontal advection induces an upscale flux of surface KE over a large
spectral range extending to small scales; whereas, it fluxes density variance downscale.
The difference is compensated for by an extra term in the surface KE spectral bud-
get that we connect to frontogenesis in Section 4. The conclusion (Section 5) examines
the relevance and limitations of the SQG framework in understanding energy spectral
transfers in more complex systems.
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2. Surface KE and Density Variance Budgets

2.1. SQG Equations

The SQG model ( Blumen (1978) and Held et al. (1995)) is based on a small Rossby
number approximation to the PE (that describe an hydrostatic Boussinesq fluid system).
All variables are nondimensionalized as in Pedlosky (1987) using U and L respectively
the velocity and length scales, f the Coriolis parameter, N the Brunt-Väisälä frequency,
and H the depth scale. The Rossby number (defined as ǫ = U/fL) is assumed small
(ǫ << 1) and the Burger number (defined as B = NH/fL) is of order one (B = 1).
For any variable X , its perturbation expansion in terms of the Rossby number ǫ is
X = X0 + ǫX1 + O(ǫ2). Retaining the O(1)-terms in the momentum and hydrostatic
balances leads to the resulting geostrophic and hydrostatic relations

(u0, v0, ρ0) = (−Φ0
y, Φ0

x,−Φ0
z) (2.1)

where u and v are the horizontal velocity components respectively along the zonal (x) and
meridional (y) coordinates. ρ is the density and z the vertical coordinate (with z < 0 for
an oceanic setup). The streamfunction Φ0 is related to pressure. SQG theory furthermore
assumes that potential vorticity (PV) is uniform in the interior of the fluid and the flow
decays away from the surface (i.e., Φ0 → 0 as z → −∞). The resulting PV equation in
nondimensional form is

∇2
HΦ0 + ∂zzΦ

0 = 0 , (2.2)

with the boundary condition

−∂zΦ
0|z=0 = ρs . (2.3)

The subscript s refers to surface variables and ∇H is the horizontal gradient operator.
Solving these two equations in the spectral Fourier space leads to

Φ̂0(k, l, z) = −
ρ̂s(k, l)

K
exp (Kz) , (2.4)

where ·̂ is the horizontal spectral transform. k, l are the horizontal wavenumbers along
the x and y directions and K = (k2 + l2)1/2. The dynamics at zero order and at any
depth is thus entirely determined by the surface density, ρs. Time evolution of the flow
requires one to consider the next leading order approximation (in ǫ) to the PE and in
particular that for surface density:

∂tρs + u0
s · ∇Hρs = 0 , (2.5)

with t the time. (2.1), (2.4) and (2.5) form a closed system, i.e., the basic SQG equation
set.

Using the density equation (and retaining only the O(ǫ)-terms), we have at any depth

w1 = ∂tρ
0 + u0 · ∇Hρ0 . (2.6)

Thus, from (2.4), (2.5) and (2.6), the vertical velocity in spectral space can be computed
diagnostically

ŵ1 = − ̂∇H · (u0
s ρs) exp (Kz) + ̂∇H · (u0 ρ0) . (2.7)

Where ρ̂0(k, l, z) is given by ρ̂0(k, l, z) = ρ̂s(k, l) exp (Kz) (using (2.1), (2.4), and ∇H · u0 =
0). Similarly, taking the z-derivative of (2.6) and using (2.1) and (2.4) provides a diag-
nostic expression for w1

z as a function of surface density

ŵ1
z = −K ̂∇H · (u0

s ρs) exp (Kz) + ̂∇H · (u0 ρ0
z) . (2.8)
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Because of the hypothesis of uniform interior, the PV horizontal and vertical structures
of the flow are related to each other in this balanced model. This explains why the
horizontal, as well as the vertical, velocity fields can be retrieved at all depths from only
surface density(Hakim et al. 2002; Lapeyre & Klein 2006). Another important property
within the context of this study is that surface velocity and density spectra are identical.
From (2.1) and (2.4), we have indeed

|ρ̂s|
2(k, l) = |û0

s|
2(k, l) . (2.9)

Finally, it should be noted that a difference between SQG and 2-D flows emerges from
the form of the preceding equations. In SQG flows the conserved scalar is the surface
density (2.5) instead of the relative vorticity, Z = vx−uy, for 2-D flows. The streamfunc-

tion at the surface is given by Φ̂0
s(k, l) = −cρs(k,l)

K (see (2.4)) instead of Φ̂0(k, l) = −
bZ(k,l)
K2

for 2-D flows. This implies that near the surface large-scale strain in SQG plays less of a
role in the advection of small-scale features, resulting in a cascade of density variance to
small scales that is more local in wavenumber (Pierrehumbert et al. 1994).

2.2. KE and Density Variance Equations

Time evolution of the horizontal velocity, within the QG framework, is obtained by
retaining only the O(ǫ)-terms in the momentum equations (Pedlosky 1987). At the surface
the resulting equation is

∂t u0
s = −u0

s.∇∇∇ u0
s − k ∧ uag

s (2.10)

where k is the unit vertical vector and uag
s = u1

s + k ∧ ∇∇∇ Φ1
s the horizontal velocity

ageostrophic component. We neglect dissipation in (2.10). By spectrally manipulating
(2.5) and (2.10), we get the surface kinetic energy and density variance budgets in spectral
space:

∂t |ρ̂s|
2/2 = −Re[ρ̂∗s ( ̂u0

s · ∇∇∇ρs)], (2.11)

∂t|û0
s|

2/2 = −Re[û0
s

∗

.( ̂u0
s · ∇∇∇u0

s)] − Re[ŵ1
zsΦ̂

0
s

∗

], (2.12)

where ∗ is the conjugate. In (2.12), we have utilized the identities

û0
s

∗

· k ∧ û
ag
s = û

ag
s · ∇̂∇∇Φ0

s

∗

= −∇̂∇∇ · uag
s Φ̂0

s

∗

= ŵ1
zsΦ̂

0
s

∗

,

noting ∇H · uag
s = −w1

z .
The nonlinear transfers due to the horizontal advection are captured by the first RHS

term in (2.11) and (2.12). Integrating these equations with respect to K and averaging
isotropically (noted as < . >) lead us to introduce the density variance and kinetic energy
spectral fluxes related to those terms, i.e.,

Πρ = −

∫
∞

K

< Re[ρ̂∗s û0
s.∇∇∇ρs] > dK (2.13)

and

Πu = −

∫
∞

K

< Re[û0
s

∗

· û0
s.∇∇∇u0

s] > dK . (2.14)

We also define

Πa = −

∫
∞

K

< Re[ŵ1
zsΦ̂

0
∗

s] > dK , (2.15)

related to the last term in the RHS of (2.12), that involves ageostrophic variables. Given
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Figure 1. (a): Snapshot of surface density at t=8 over a 512 x 512 points subregion for simulation
HR. (b): LR, MR, and HR spectra (continuous with high wavenumber variance increasing with
resolution) of surface density variance ( i.e., also surface KE) averaged over the time interval
[6.4 11.2]. The dashed line (resp., dotted) represents a -5/3 (resp., -3) slope.

(2.9) the RHS of (2.11) and (2.12) are equal which yields

Πρ = Πu + Πa . (2.16)

The relation (2.16) states that the surface density variance and KE fluxes are due to
geostrophic advection (respectively Πρ and Πu); they differ by Πa which involves the
ageostrophic flow. The striking consequence of this last term, Πa, (as shown in the next
section) is that the spectral transfer properties of surface KE and of density variance
totally differ from each other despite (2.9).

3. Numerical Simulations

3.1. Description

We have performed numerical simulations for a SQG turbulent eddy field in free decay.
The computation domain is doubly-periodic. The numerics are based on the model of
Hua & Haidvogel (1986) modified to solve the SQG equations set. The resolutions we
employ are 5122 (LR), 10242 (MR), and 20482 (HR). Initial conditions are constructed

by specifying a φ̂0 field at the surface, with random phase angles and amplitude given by

|φ̂0
s|

2(k, l) = K5

(K+ko)12 . The wavenumber ko = 14 corresponds to the KE peak. Dissipa-

tion involves a biharmonic operator and a coefficient adjusted for each resolution to the
minimal value for which no density variance accumulates at small scale (by inspecting
the spectra).

The numerical solutions exhibit the well-known features of SQG turbulence. In the
density field (Fig. 1a) small scales are energetic. This is due to frontogenesis that in-
tensifies the density gradients and to destabilization of filaments that leads to numerous
eddies having a diameter around a dozen grid points. Consequently, the density spectrum
is quite flat, with a slope between -5/3 and -2 over one and half decade (Fig. 1b). Note
that this description as well as the analyses performed below are for early times during
which nonlinear interactions are rather strong (at a much longer time our free-decay
solutions evolve toward a state where the total energy is diminished; surface spectra are
steeper than -2; and nonlinear interactions are very weak because large isolated eddies
dominate the flow).



6 X. Capet, P. Klein, B. L. Hua, G. Lapeyre and J. C. McWilliams

10
0

10
1

10
2

10
3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

10
0

10
1

10
2

10
3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−3

Figure 2. (a): HR transfer functions of surface density variance (Πρ: solid line) and surface KE
(Πu: dashed line and Πa: dotted-dashed line) as a function of wavenumber. Some values for the
sum Πu + Πa are also represented with ’+’ symbols. (b): Πρ (solid lines) and Πu (dashed lines)
for the three different resolutions (LR, MR, and HR).

3.2. Spectral Transfers of Surface KE and Density Variance

The different terms (2.13), (2.14) and (2.15) are computed from 10 snapshots of density
(taken over six eddy turnover time units during which an inertial range is most cleanly
present in the density spectral transfers). w1

z (required to compute Πa) is diagnosed
from (2.8). Results are given for HR in Fig. 2a. The forward cascade of density variance
extends roughly from k = 15 to the dissipation scale (k > 500). This is the classical result
anticipated by Blumen (1978) and subsequently verified by numerous studies (Celani
et al. (2004)). The flux is close to constant over this interval. The advective flux of
surface KE, on the other hand, is upscale (Πu < 0) over a large spectral range. To our
knowledge this important aspect of SQG turbulence had been overlooked. A downscale
flux is also present but it concerns a narrow range of very small scales (with wavenumbers
larger than k = 300). From (2.16) the difference between Πρ and Πu is entirely explained
by Πa (whose physical interpretation is discussed in the next section). This has been
checked by plotting some values of Πu + Πa in Fig. 2a. Unlike Πρ, Πu and Πa have no
plateau.

In Fig. 2b, Πu and Πρ are plotted for different horizontal resolutions. For Πρ, increasing
the resolution simply extends its plateau corresponding to a forward cascade of density
variance over a wider spectral range. The same behavior is observed for the the upscale
surface KE advective flux, which indicates its robustness. On the other hand, the down-
scale surface KE flux is not robust with respect to the resolution changes. As resolution
increases, the region where Πu is positive moves to higher wavenumber and roughly fol-
lows the dissipation range. In other words, the downscale advective flux of surface KE
would be absent from a solution with infinite resolution.

4. Discussion

Although surface density and velocity spectra are identical over a large spectral range
(as confirmed by their tendency terms), their dynamics revealed by their budgets are
quite different because of the term Πa. The physical meaning of Πa can be understood
in terms of surface frontogenesis. Let us consider a front undergoing frontogenesis as
represented in Fig. 3. In the following reasoning we assume that Φ0 has a zero horizontal
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z
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isotherms

cold warm

z z
  > 0Φ < 0

w > 0 w < 0

Φ

Figure 3. Schematic of the frontogenetic situation described in Sec 4. This situation represents
an intensifying density front embedded in a horizontal deformation field near the ocean surface
(top of the figure) with light/warm water on the right-hand side. The underlying ageostrophic
secondary circulation (arrows) counteracts frontal intensification (Hoskins & Bretherton 1972)
with Φwz < 0 on either side of the front near the surface.

average at the surface because Φ0 is a streamfunction anomaly. Since ∂zΦ
0 = −ρ0 and

velocities are vanishing at depth, we shall have Φ0 > 0 (resp., Φ0 < 0) at the surface on
the warm (resp., cold) side. As for the ageostrophic secondary circulation, it is made of
an ascending branch on the warm side and a descending branch on the cold side (Hoskins
& Bretherton 1972). The condition w = 0 at the surface yields Φ0w1

z < 0 on both sides of
the front. Since frontogenesis statistically dominates over frontolysis in the wavenumber
range, where the forward cascade of surface density variance is taking place, we expect

−ŵ1
z .Φ̂0

∗

to be positive there; this is consistent with the shape of Πa (Fig. 2a).

A more quantitative analysis allows us to relate Πa to the release of available potential
energy by the frontogenesis mechanisms. This is done by using (2.6), (2.10) (valid at any
depth), and the thermal wind balance (deduced from the geostrophic and hydrostatic
approximations (2.1)):

∇Hρ = k ∧ ∂zu
0 . (4.1)

Taking ∇H of (2.6) leads to

d∇Hρ

dt
= −Q + ∇Hw1 . (4.2)

with Q = [∇Hu0]T .∇Hρ0 ([ ]T is the transpose matrix) the frontogenetic vector.
Subtracting k∧∂z of (2.10) from (4.2), and using the thermal wind balance yields (Hoskins
& Bretherton 1972; Klein et al. 1998)

2Q = ∇Hw1 − uag
z . (4.3)

(4.3), that comprises the QG version of the Eliassen-Sawyer equation (Thomas & Lee
2005), leads to

2

K
.Q̂ · ∇̂Hρ0

∗

= Kŵ1ρ̂0
∗

−
1

K
û

ag
z · ∇̂Hρ0

∗

. (4.4)

However, (4.4) can also be written as (using ∇H · uag = −w1
z)

2

K
.Q̂ · ∇̂Hρ0

∗

= [ŵ1
zΦ̂0

∗

− ŵ1Φ̂0
z

∗

]z . (4.5)

Integrating (4.5) over the whole water column (with w1 = 0 at the boundaries and Φ0 = 0
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at the bottom) and over K, yields

−

∫
∞

K

< Re[
2

K

∫ 0

−∞

Q̂ · ∇̂Hρ0
∗

dz] > dK = −

∫
∞

K

< Re[ŵ1
zΦ̂0

∗

|z=0] > dK = Πa ,

(4.6)
which was verified in our numerical solutions. The same integration but involving (4.4)
yields

Πa =

∫
∞

K

< Re[−K

∫ 0

−∞

ŵ1ρ̂0
∗

dz +
1

K

∫ 0

−∞

û
ag
z · ∇̂Hρ0

∗

dz] > dK . (4.7)

(4.6) indicates that Πa is directly related to the production of density gradients within
the fluid. This term should be positive in particular in the high wavenumber region,
where density gradients are the strongest (since density gradient spectrum has a k1/3

slope). (4.6) bears some similarity with a relation found by Lapeyre et al. (2006) that
couples frontogenesis and restratification (through wzρ) and redistributes density verti-
cally. (4.7) further indicates that Πa is related to the release of available potential energy
by the ageostrophic circulation associated with frontogenesis. Indeed, the first term on
the right hand side of (4.7) corresponds to a buoyancy flux while the second term reflects
the manner ageostrophic flows modify the stratification through differential horizontal
advection. For frontogenetic conditions (Fig. 3), both of these terms are positive and
lead to a reduction of the available potential energy. Thus Πa, directly related to the
production of density gradients within the fluid, can be interpreted as a transformation
of available potential energy into surface KE. ¿From (2.16) the consequence of the posi-
tiveness of both Πa (related to the frontogenesis strength) and Πρ (related to the direct
cascade of density variance) and of the dominance of Πa is that Πu (related to the nonlin-
ear advective transfers of surface KE) must be negative over most of the spectral range.
These findings emphasize the importance of small-scale frontogenesis in the surface KE
budget (also noted in Capet et al. (2008) and Klein et al. (2008)).

5. Conclusion

We have revisited the spectral transfer properties of the SQG theory. Although the
velocity and density spectra at the surface are identical, their spectral budgets differ.
Surface density variance experiences a forward cascade as stated by Blumen (1978) and
confirmed by numerous subsequent studies. Surface KE on the other hand experiences a
clear and significant inverse cascade on a large range of scales, i.e., a transfer through
advection by the geostrophic flow from small to larger scales. This apparent contradiction
is explained by the presence in the surface KE budget of an additional term associated
with the ageostrophic component of the flow that acts as a source term. Its main under-
lying physics is the restoration of the thermal wind balance, tending to be destroyed by
the frontogenesis processes near the surface.

In systems more complex than SQG, surface density and velocity spectra have also been
found to remarkably coincide, at least over a large part of the submesoscale and mesoscale
range as shown in the PE framework by Klein et al. (2008) (see Fig. 4a that reproduces
their spectra; their simulations are for a baroclinically unstable quasi-equilibrated jet
in a periodic channel). But again the similarity of these surface spectra does not imply
a similarity of their respective advective fluxes. In fact, and as found in SQG, surface
density variance is fluxed downscale, whereas KE is fluxed upscale over a wide central
part of the wavenumber range (Fig.4b). The KE advective flux is compensated for by
an ageostrophic term whose expression is similar to Πa. The main difference with our
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Figure 4. (a): Surface velocity spectrum (red curve) and density spectrum normalized by
[g/(Nρ0)]

2 (green curve) estimated from a high-resolution PE simulation (from Klein et al.
(2008)). k = 10 corresponds to a wavelength of 300km. (b): Surface kinetic energy transfer func-
tions (from Klein et al. (2008)): Πu calculated directly from the total (divergent plus non-diver-
gent components) velocities u and v (thick solid curve); Πu calculated from the non-divergent
(geostrophic) velocities (thin solid curve); Πa (dashed curve). The dashed-dot curve corresponds
to the tendency and the dotted curve to the mixing terms contribution.

SQG results is that nonlinear interactions involve advection of geostrophic quantities by
both the geostrophic and ageostrophic velocities. As a result, both Πa and Πu give a
net contribution to the surface KE budget for PE solutions since they are non-zero for
the lowest wavenumbers. These results corroborate previous evidence of a strong impact
of the ageostrophic circulation on near-surface KE spectral transfers (Capet et al. 2008;
Klein et al. 2008).

Overall the comparison between SQG and PE energy transfers suggest SQG as a
pertinent framework to understand the inverse KE cascade found by Scott & Wang
(2005) using altimetry data. A rapidly growing body of numerical (Lapeyre & Klein
2006; Klein et al. 2008) and observational (LaCasce & Mahadevan 2006; Isern-Fontanet
et al. 2006; Le Traon et al. 2007) evidence indicates that the ocean sea level often does
significantly reflect surface modes (as opposed to primarily the interior first baroclinic
and barotropic modes Scott & Arbic 2007) even for scales above the deformation radius.

One weakness of SQG is that it exhibits a downscale surface KE flux for high wavenum-
bers that is weak and resolution-dependent (it is basically confined to the dissipation
range). On the other hand, high resolution PE (Capet et al. 2008) or Boussinesq (Mole-
maker et al. 2007) solutions produce robust downscale surface KE within the small-scale
range (< 20-30km). This discrepancy can be traced to momentum advection by the
ageostrophic flow as shown in Fig.4b, where it can be seen that the advective KE flux
associated with the total flow is always greater than that associated with its geostrophic
component (see also Capet et al. 2008). Molemaker et al. (2007) further relate the non-
QG effects to ageostrophic frontal instabilities at submesoscale. This downscale flux of
KE at submesoscale inadequately reproduced within the QG approximations may play
an essential role in the dissipation of oceanic energy.

This work is supported by the CNRS and IFREMER (FRANCE) and by ONR (USA).
PK and BLH also acknowledge the support from the French ANR (Agence Nationale pour
la Recherche, Contract no ANR-05-CIGC-010). We thank two anonymous reviewers for
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