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Abstract:  
 
An Ecopath model of the southern part of Lake Kivu, a deep African equatorial lake was constructed to 
quantitatively describe the possible impact of fish introductions in this ecosystem. This study is 
considered as an initial step in summarizing ecological and biological information, under a coherent 
framework, on this ecosystem. Fourteen compartments were considered. As a phytoplankton-based 
food web, it is observed that key food sources are not fully utilized as transfer efficiencies per trophic 
levels (TL) varies between 4.5 and 9.4%. Zooplankton plays a major role in transferring organic matter 
from TL1 to higher TLs due to the abundance of zooplanktivores. Shifts in food preferences and 
distribution of some of the fish functional groups were observed as a response to competition. The 
majority of fish biomass concentration is in TL3 (55%). The fishery is concentrated at TL3 and can, 
therefore, be consider as “immature”, sensu Odum. The direct and indirect effects of predation 
between system components (i.e. fish, invertebrates, phytoplankton and detritus) are quantitatively 
described and the possible influence and role in the ecosystem's functioning of introduced fish species 
are discussed.  
  
 
Keywords: Food web structure; Transfer efficiency; Invasion; Exotic fishes; Lake Kivu 
 
 

Introduction 
 
Introduction of alien species in aquatic ecosystems is stimulated by increasing demand for 
food to sustain increasing human population and poverty, enhance fish stocks, generate 
economic benefits, as biomanipulation stratagem and sustain recreational fisheries 
(Welcomme, 1988 Welcomme, R.L., 1988. International Transfers of Inland Fish Species. 
FAO Fisheries Technical Papers 294, 318 pp.[Welcomme, 1988], [Pitcher and Hart, 1995], 
[Irz et al., 2004] and [Saltveit, 2006]). However, this strategy is often unacceptable as it leads 
to detrimental impacts on ecology of wild stocks that frails ecosystem structure ([Wilcove et 
al., 1998], [Lodge et al., 1998], [Allen and Humble, 2002], [Kolar and Lodge, 2002], [Sax and 
Gaines, 
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2003; Gurevitch and Padilla, 2004; Didham et al., 2005; Arim et al., 2006), fisheries economy 25 

(Mack et al., 2000; Pimentel et al., 2001) and recreation (Winfield and Durie, 2004). 26 

 27 

Widespread introductions of non indigenous species have been categorized as a major 28 

cause of natural species extinction compared to habitat fragmentation (MacDonald et al., 1989; 29 

Lodge et al., 1998; Davis and Thompson, 2000; Allen and Humble, 2002; Sax and Gaines, 2003; 30 

Gurevitch and Padilla, 2004; Didham et al., 2005; Arim et al., 2006) in both terrestrial 31 

(Rejmánek and Richardson, 1996; McCann, 2000; Smith et al., 2000; Allen and Humble, 2002; 32 

Guo et al., 2006; Lovett et al., 2006) and aquatic systems (Mills et al., 1993; Pitcher and Hart, 33 

1995; Puth and Post, 2005; Latini and Petrere Jr., 2004; Dudgeon et al., 2006). Although in the 34 

latter, biological invasions have been recognized as a persisting problem compared to pathologic 35 

crisis in terrestrial ecosystems (Dudegeon et al., 2006). 36 

 37 

 Questions on success of exotics and the damaging impacts to native stocks at the 38 

ecosystem level have fascinated many ecologists, such as Crawley (1987), Naeem et al. (2000) 39 

and Kennedy et al. (2002). Ecological systems are extremely complex networks, consisting of 40 

many biological species that interact in many different ways, such as mutualism, competition, 41 

parasitism and feeding relationships. The latter can cause invasions, extirpations, and population 42 

fluctuations of a species to dramatically affect other species within a variety of natural habitats 43 

(Pimentel et al., 2001; Winfield and Durie, 2004). According to Hobbs (1989), successful 44 

invasion in natural communities depend on species dispersal, establishment and survival with the 45 

number of species per area established by immigration-extinction equilibrium. Success of exotics 46 

also depends on tolerance and broad ecological demands, ability to adapt to habitat and 47 

environmental conditions and r-selected life histories (Craig, 1992; Murichi et al., 1995). 48 
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 49 

Cases where introduction of exotics have been reported beneficial are rare in both 50 

terrestrial (Schutzenhofer and Valone, 2006) and aquatic ecosystems (Gottlieb and 51 

Schweighofer, 1996). Elevated biodiversity has been observed to increase resistance from 52 

invasions in terrestrial and aquatic systems by creating insurance through functional redundancy 53 

(Simberloff and Von Holle, 1999; Sax and Brown, 2000; Naeem et al., 2000; Kennedy et al., 54 

2002; Raffaelli et al., 2002; Stachowicz et al., 2002). 55 

 56 

The importance of considering a trophic network approach is that it can elucidate feeding 57 

relationships which occur between species in an ecological community and determine functional 58 

roles of species groups in the ecosystem (Yodzis and Winemiller, 1999). Indeed, numerous 59 

evidences suggest that food web structures are susceptible to a wide array of human activities, 60 

including species introductions or invasions (Vander Zanden et al., 1999), habitat alteration 61 

(Wootton et al., 1996), and global environmental warming (Petchey et al., 1999). 62 

 63 

Quantitative trophic analyses at the ecosystem level were carried out in some African 64 

Lakes where exotic species were introduced (Moreau, 1995; Moreau et al., 1993; 2001; 65 

Villaneuva and Moreau, 2001). A similar approach has been carried out in other African lakes, 66 

i.e. Lake Victoria (Moreau, 1995; Villanueva and Moreau 2001), Lake Naivasha (Mavuti et al., 67 

1996; Moreau et al., 2001) or Lake Kariba (Moreau, 1997), to determine the state of biologic 68 

community alterations following fish introductions. As effects of fish introductions and its 69 

exploitation on the community and ecosystem level are still unknown in Lake Kivu. The aim of 70 

the present contribution is to study the food web structure, species interactions, role of exotics in 71 

the ecosystem and compare these to observations in other tropical lakes where fish introductions 72 
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occurred. Understanding trophic links is crucial in predicting future impact of species invasion in 73 

natural food web structure and functioning. 74 

 75 

Material and Methods 76 

Study site 77 

 78 

Lake Kivu (Fig.1) has a surface area of 2 370 km² of which 1370 km² is a part of the 79 

Congolese territory. An international aquatic system situated along the Congo-Rwanda border at 80 

an altitude of 1 463 m. It is located between 1°30’ and 2°30’ latitude south and between 28°50’ 81 

and 29°23’ longitude east. It is a deep (maximum depth 490 m) equatorial lake with an average 82 

water depth of about 240 m. The littoral area stretches not further than 50 m away from the 83 

lake’s extensive (1200 km) shoreline (Van den Bossche and Bernascek, 1990; Verheyen et al., 84 

2003). It is a meromictic lake with deep relict hypolimnion where beneath lies a vast methane 85 

gas reserves (Coulter et al., 1984; Snoeks, 1994). Permanent water stratification is observed: 86 

anoxic below 60 m while the deeper part of the lake is methane saturated (Coulter et al., 1984; 87 

Van den Bossche and Bernascek, 1990; Isumbisho et al., 2006; Sarmento et al., 2006). Annual 88 

precipitation in the region is about 1 300 mm, relatively higher along the occidental than the 89 

oriental side of the lake, which experiences virtually no variations in water level. The average 90 

surface water temperature is about 24°C (Snoeks, 1994). 91 

 92 

Several lakes of the East African Rift Valley are characterized by a deep pelagic zone 93 

which is colonized by abundant native small pelagic fish (Coulter et al., 1984; Lowe-McConnell, 94 

1993). A well documented exception among these lakes is Lake Kivu. Compared to other lakes 95 

of the Rift Valley the fish diversity is relatively poor with only 26 endemic species belonging to 96 
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the Cichlidae, Clariidae, Cyprinidae and Clupeidae families (Hanek et al., 1991; Snoeks, 1994). 97 

The Cichlids are the most represented with 17 endemic haplochromines (De Vos et al., 2001). 98 

 99 

Exotic fishes were introduced to increase biodiversity and productivity of the lake 100 

(Welcomme, 1988). Fish stocking in Lake Kivu dates back in the 1950s where two cichlids, 101 

Oreochromis macrochir (Boulenger) and Tilapia rendalli (Boulenger), were introduced due to 102 

the renowned ecological plasticity of these species (Chapman et al., 2003; De Vos et al., 2001). 103 

Two endemic sardines of Lake Tanganyika, Limnothrisssa miodon (Boulenger) and Stolothrissa 104 

tanganyicae (Regan), were then simultaneously introduced in 1959 (Van den Bossche and 105 

Bernascek, 1990; Spliethoff et al., 1983) to occupy the pelagic zone (90%). S. tanganyicae, 106 

however, was not able to adapt to the local conditions in the lake (Hauser et al., 1995).  107 

 108 

The Lake Kivu fishery is predominantly artisanal (Van den Bossche and Bernacsek, 109 

1990; Hanek et al., 1991; de Iongh et al., 1995) which is similar to other East African Lakes 110 

(Pitcher and Hart, 1995; Preikshot et al., 1998). In terms of the fishing activity, fishery in the site 111 

considered is the most important in the Congolese sector (Hanek et al., 1991). Annual production 112 

is generally observed higher in the Rwandese sector where fishing activities are more active and 113 

developed. At the zone considered in this study annual production in 1990 represented 20% of 114 

overall production (Hanek et al., 1991; Marshall and Mubamba, 1993). Fishermen operate with 115 

various fishing gears depending on season, investment level, fishing areas and species targeted. 116 

A specific fishery, trimaran, uses light attraction and liftnet and selectively targets L. miodon and 117 

planktivore haplochromines (Van den Bossche and Bernacsek, 1990; Hanek et al., 1991; de 118 

Iongh et al., 1995; Kaningini et al., 1999). Beach seines capture mainly the benthopelagic 119 

haplochromines, but have been observed to accidentally catch other species such as L. miodon. 120 
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Gillnets capture mainly tilapias although smaller mesh-sized (10 mm) nets are employed to trap 121 

L. miodon and some haplochromines. Longlines target mainly Clarias species (Hanek et al., 122 

1991). 123 

 124 

The lake is an international area shared by Rwanda (East) and RD Congo (ex-Zaire, 125 

West). For this study, we considered the Bukavu basin of the Congolese sector (Fig. 1) which is 126 

approximately 140 km², as this zone is better documented in terms of biological community 127 

ecology and fisheries compared to the Rwandese sector. This zone also represents an important 128 

socio-economic aspect (Hanek et al., 1991). It should be noted that parameters integrated in the 129 

model were mainly estimated using data collected in this area.  130 

 131 

Theoretical Approach 132 

 133 

We used the Ecopath model (Christensen and Pauly, 1993; Christensen et al., 2005) to 134 

construct a steady-state description of the Bukavu Bay. The model has already been used for 135 

quantifications of food webs in different ecosystems to study the impact of fisheries for 136 

management purposes (Pauly et al., 2003; Christensen and Walters, 2004b). It comprises a set of 137 

simultaneous linear equations, one for each group under consideration, where the production of 138 

the group is equal to the sum of all predation, non-predatory losses and export: 139 

 140 

(1) 141 

 142 

where Bi is the biomass of group i (in t km-2 fresh weight); P/Bi is the annual production/biomass 143 

ratio of i equal to the total mortality coefficient (Z) in steady-state conditions (Allen, 1971); EEi 144 

 
Bi ---- = ∑ Bj ---- DCji + Bi ---- (1-EEi) + EXi

P
Bi

Q
Bj

P
Bi

n

j = 1

Bi ---- = ∑ Bj ---- DCji + Bi ---- (1-EEi) + EXi
P
Bi

Q
Bj

P
Bi

n

j = 1
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is the ecotrophic efficiency representing the part of the total production consumed by predators 145 

or captured in the fishery or exported; Bj is the biomass of the predator group j; Q/Bj is the annual 146 

food consumption per unit biomass of the predatory group j; DCji, is the proportion of the group i 147 

in the diet of its predator group j; EXi, is the export or catch in fishery of group i, that is assumed 148 

to be exploited in the fishery (Christensen et al., 2005). 149 

 150 

In addition to balancing the model, Ecopath can be used to compute parameters and 151 

indices corresponding to the food web characteristics. Some parameters that can be estimated 152 

using the software are as follows: 153 

 154 

a.) The group-specific omnivory index OI is computed as the variance of the TLs of each 155 

predator’s prey groups (Christensen and Pauly, 1993) while the system omnivory index (SOI) is 156 

computed as the average omnivory index of all consumers weighted by the logarithm of each 157 

consumer's food intake Q (Christensen et al., 2005). It indicates the allocation of predator170 158 

prey interactions linking each TL (Christensen and Walters, 2004a). Both OI and SOI indices 159 

vary from 0 to 1, where a value close to 0 indicates high predatory specialization (feeding on one 160 

trophic level only) and 1 indicates a maximum feeding versatility on several trophic levels. 161 

 162 

b.) The connectance index (CI) is the ratio between the number of actual definite trophic 163 

associations among all the groups and the theoretical possible number of connections, (N-1)² for 164 

N groups, including consumption of detritus (Christensen and Walters, 2004a; Christensen et al., 165 

2005). This index is correlated with the maturity e.g. the level of evolution of the ecosystem, as 166 

defined by Odum (1969), of the ecosystem because the food chain structure changes from linear 167 

to web-like as a system matures (Odum, 1971). 168 
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 169 

c.) Niche overlap is measured by using a symmetrical index derived from the one proposed by 170 

Pianka (1973) based on competition coefficients of the Lotka-Volterra equation (Volterra, 1931) 171 

and derived from the Jaccard similarity index (Harris, 1968). It is used to describe mainly the 172 

trophic aspect of niche partitioning. An index value close to 0 indicates that two groups have a 173 

low resemblance in terms of food consumed and vise versa for a value close to 1 (Christensen et 174 

al., 2005).  175 

 176 

d.) Trophic aggregation per discrete TL, sensu Lindeman (1942), is based on an approach 177 

suggested by Ulanowicz (1995). This routine facilitates calculation of flows per TL based on diet 178 

compositions by reversing the routine for calculation of fractional trophic levels quoted above. 179 

More particularly, the transfer efficiencies between the successive discrete trophic levels are 180 

calculated as the ratio between the sum of the exports plus the flow that is transferred from one 181 

trophic level to the next, and the throughput at this trophic level (Christensen et al., 2005). 182 

 183 

e.) The gross efficiency of the fishery (GEF) is computed as the ratio between the total catch and 184 

the total primary production in the system. The value will be higher for systems with a fishery 185 

harvesting fish belonging mainly to low TLs than for systems whose fisheries concentrate on 186 

high TLs. Therefore, this index may increase with fisheries ‘development’ as defined by Pauly et 187 

al. (1998). 188 

 189 

Model construction 190 

 191 

The model was constructed using data collected from 2002 and 2003. These are  192 



 9

complemented by additional published works by Ulyel (1991), Snoeks (1994) and Kaningini et 193 

al. (1999). For simplification purposes, species with similar ecological characteristics (i.e. 194 

metabolism, diets and predators) were pooled together following the indications of Yodzis and  195 

Winemiller (1999). In such a case, the biological characteristics of the most abundant species 196 

were considered. A total of 14 groups were considered in this study and the ecological grouping 197 

of biological assemblages is the following one. 198 

 199 

Detritus: A standing stock of 165t.km-² (fresh weight, fw) was calculated using the 200 

empirical equation of Pauly et al. (1993) based on an annual primary production estimated in the 201 

system (see below) and a euphotic zone of 32 m. It is an input required to run the model 202 

(Christensen and Pauly, 1993). 203 

 204 

Phytoplankton and primary production: The dominant groups are diatoms (Nitzschia spp 205 

and Fragilaria spp) and cryptophytes (Chroomonas spp and Rhodomonas spp). Chlorophyll-a 206 

concentration showed clear seasonal variations and increases during the dry season, after deep 207 

mixing in the basin of Bukavu (Ishumbisho et al., 2006; Sarmento et al., 2006). The average 208 

Chlorophyll-a content is 1.53 mg m-3
 for the area considered. It can be extrapolated over 60 m as 209 

suggested by Isumbisho et al. (2006) and the resulting fresh biomass (32.1 t km-² fw) was used as 210 

an input in the model. The annual primary production was measured at 273 g C.m-² by Sarmento 211 

et al. (2006) and concords with annual range values (240 – 379 gC.m-²) indicated earlier by 212 

Jannasch (1975), Van den Bossche and Bernacsek (1990) and Descy and Fourniret (1991). A 213 

similar value was estimated using the Photosynthesis simulator of Capblanc and Dauta (1999). 214 

Assuming 1 g C is equal to 10 g fw (Sarvala et al., 1999). A P/B ratio of 85 yr-1
 was used as an 215 

input in the model. 216 
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 217 

Zooplankton and secondary production: The zooplanktonic community is dominated by 218 

copepods (Thermocyclops) and, to a lesser extent, cladocerans (Diaphanosoma) though seasonal 219 

density variations can be observed (Isumbisho et al., 2006). The average B is 5.64 t.km-² 220 

estimated from Isumbisho et al. (2006) and an annual P/B value of 30 yr-1
 was used (Sarvala et 221 

al., 1999; Irvine and Waya, 1999). Q/B value of 180 yr-1
 was adopted from Sarvala et al. (1999). 222 

 223 

Benthic fauna: Only limited information was available for this group. This includes 224 

benthic deposit feeders such as the nematodes, ostracods, insects, bivalve mollusks, gastropods 225 

and other benthic organisms which develop only along the littoral zone due to the relative 226 

steepness of the lake. A P/B value of 4.5 yr-1
 (Payne, 1986; Mavuti et al., 1996) was adopted and 227 

Q/B of 45.0 yr-1
 was assumed from a gross efficiency (GE or P/Q) value of 0.1 (Christensen and 228 

Pauly, 1993). An input value of 0.900 for EE was used to estimate the biomass based on intense 229 

predation noted from higher TL consumers. 230 

 231 

Fish groups: When possible the B/P ratio was estimated from recently collected length 232 

frequency distributions by using the FiSAT software (Gayanilo et al., 2002). In a first step, this 233 

software was used to estimate the growth parameters of the von Bertalanffy growth function i.e., 234 

the asymptotic length (L∞) and the growth coefficient (K) which are needed for P/B computation 235 

by reference to the length converted catch curve method. Otherwise, the predictive models of de 236 

Merona (1983) or Fröese and Binohlan (2000) were employed to estimate these demographical 237 

parameters. Natural mortality, M, was computed using the predictive formula of Pauly (1980). 238 

The demographical data of the fish populations considered here are summarized on Table 1. 239 

 240 
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The food consumption per unit of biomass (Q/B) has been estimated in a few cases using 241 

Maxims (Jarre et al., 1991), a software model based on the method of Pauly (1986) which allows 242 

the computation of Q/B from an estimate of the daily food consumption of individual fish of a 243 

particular size. Otherwise, Q/B was calculated using the multiple regression formula of 244 

Palomares and Pauly (1998). 245 

 246 

For most fish groups, local field data on diet composition were available. Additional 247 

information was taken from Snoeks (1994) and Ulyel et al. (1991). 248 

 249 

The biomass (B) of each fish group was estimated assuming equilibrium conditions, such 250 

that: 251 

B = Y/F          (3) 252 

where Y is yield in t.km-².yr-1
 and F is the coefficient of fishing mortality. F is the difference 253 

between total and natural mortalities: F = Z – M, assuming that Z is equal to P/B as indicated by 254 

Allen (1971). 255 

 256 

Due to habitat preferences of the species under investigation, the littoral area which is 257 

about 10% of the total surface of the lake (based on depth and bathymetry) was separated from 258 

the pelagic zone. The biomass of each compartment was calculated according to habitat area. For 259 

littoral groups, the biomass per km² as computed as an average for the whole lake was, then, 260 

multiplied by 10 in order to express the concentration of this group in the littoral area. 261 

 262 

Catch data and the proportion of each group in the total catch were obtained from various 263 

sources (i.e., Van den Bossche and Bernacsek, 1990) including unpublished data (J-C. Micha, 264 
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FUNDP; B. Kaningini and M. Isumbisho, UERHA pers. comm.) recently collected as a part of 265 

an on-going Belgium Project for development of a gillnet fisheries in the lake. 266 

 267 

The following groups were considered 268 

 269 

1°) Clarias spp: This group includes Clarias gariepinus (Burchell) and C. liocephalus 270 

(Boulenger) which is quite rare in the lake and has been observed only in open waters. C. 271 

gariepinus has been considered as the key species for this group due to its predominance and 272 

well-studied ecological characteristics (B. Kaningini, UERAH, pers. comm.). Ulyel (1991) 273 

considered this species as a benthic polyphage, feeding on insects, crustaceans and fishes. 274 

 275 

2°) Raiamas moorei: This species, formerly known as Barilius moorei (Boulenger), is the only 276 

cyprinid inhabiting most areas of the lake. It feeds mainly on small bottom mollusks and insects, 277 

as well as on small cichlids and clupeids. EE was set at 0.50 as this group is rarely targeted by 278 

fishermen and seems to be exposed to a limited predation by Clarias spp and Haplochromis 279 

vittatus (Boulenger). 280 

 281 

3°) Haplochromis spp: A list of 17 species was proposed and observed by Snoeks (1994). For 282 

the purpose of the present study, these species have been re-grouped based on their feeding 283 

ecology (Snoeks, 1994; Ulyel et al., 1991; Fourniret et al., 1992; Kaningini et al., 1999; Fröese 284 

and Pauly, 2006) into three groups: 285 

• H. vittatus, a piscivore species which inhabits both the near shore and open waters. 286 

• Benthos-feeding haplochromines are mostly H. gracilior (Boulenger), H. graueri 287 

(Boulenger), H. astatodon (Regan), H. nigroides (Pellegrin) and H. paucidens 288 
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(Regan). They inhabit the littoral areas and feed mainly on small mollusks, 289 

nematodes, insects and their larvae. The biological characteristics of H. graueri 290 

were considered since this is the most abundant among the benthophages. 291 

• Plankton-feeding haplochromines are dominated by H. kamiranzovu (Snoeks) which 292 

was considered as the key species for this group. 293 

Diet compositions of haplochromine groups were adapted from Ulyel et al. (1991) and 294 

Fourniret et al. (1992). 295 

 296 

4°) Limnothrissa miodon: This pelagic fish feeds mainly on zooplankton (Copepods) during its 297 

juvenile stage and may consume insects and small-sized fishes (de Iongh et al., 1983; Kaningini, 298 

1995; Isumbisho et al., 2004). According to Pearce (1995), it is capable of adapting its diet 299 

preferences according to the local conditions (i.e., food availability), as this species is not 300 

specialized with regards to its preys. Demographic studies have been carried out by de Iongh et 301 

al. (1995) and Kaningini (1995). According to de Iongh et al. (1995), three length classes can be 302 

identified for this species based on condition factor changes. For this study, however, only two 303 

length classes were considered based on the length at first maturity (50% of the gonads 304 

maturing) to separate the pelagic adults (>8.0 cm total length) from the sub littoral juveniles (< 305 

8.0 cm total length). This repartition takes into account the difference of their spatial distribution 306 

(Spliethoff et al., 1983; Lambœuf, 1991), spawning-related migrations (Marshall, 1991) and 307 

ontogenetic diet variations (de Iongh et al., 1983). Several studies on feeding patterns have also 308 

indicated occurrence of cannibalism (Spliethoff et al., 1983; Isumbisho et al., 2004). 309 

 310 

It should be noted that the adults have a low P/B ratio (1.75 yr-1) compared to juveniles 311 

(6.69 yr-1), a feature which was already noted when juveniles and adults are separated in an 312 
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Ecopath model such as for Lates niloticus (Linnaeus) in Lake Victoria (Villanueva and Moreau, 313 

2001). It is due to higher exploitation and predation on the latter, which are also integrated into 314 

the adult pool. As juveniles sardines prey mainly on zooplankton and small benthos, their Q/B 315 

values measured using MAXIMS are also higher (35.8 yr-1) than those of adults (19.20 yr-1) 316 

which feed on zooplankton but also on small fish. In addition, small fish consume much more 317 

food relatively to their size than larger ones (Pauly and Palomares, 1987). 318 

 319 

5°) Barbus spp inhabit near-shore area. This group includes Barbus kerstenii (Peters), B  320 

pellegrini (Poll), B. pleurogramma (Boulenger) and B. altianalis (Boulenger). This group feeds 321 

basically on microphytes, insects and other benthic organisms, and on small littoral fishes (Ulyel, 322 

1991; Kaningini et al., 1999; Fröese and Pauly, 2006). This group is one of the least consumed 323 

and exploited and least predated upon in the lake; EE was, therefore, admitted to be 0.50. 324 

 325 

6°) Oreochromis niloticus eduardianus (Boulenger) is an endemic, microphage fish inhabiting 326 

the littoral areas. It is the most abundant, native cichlid species in the lake due to its high 327 

fecundity (Trewavas, 1983).  328 

 329 

7°) Other Tilapiine fish include two introduced cichlid species, O. macrochir and T. rendalli), 330 

with the latter being more abundant possibly due to its efficient reproduction and feeding 331 

plasticity (Trewavas, 1983). In its original environment, T. rendalli is, however, regarded as a 332 

macrophyte-feeding species (Fröese and Pauly, 2006). Both inhabit the littoral areas of the lake 333 

and feed on macrophytoplankton and other organic material (Ulyel, 1991; Kaningini et al., 334 

1999). 335 

 336 
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Results 337 

 338 

The basic input for each group and the parameters computed by the model are presented 339 

in Table 2 and 4, while the relative diet compositions are given in Table 3 whereas Figure 2 340 

summarizes the main flows within this ecosystem. Total estimated fish biomass is low, 3.705 341 

t.km-², compared to other African inland waters (Christensen and Pauly, 1993). The resulting 342 

biomass for benthos looks low (3.676 t.km-²) for the whole lake, though concentration along the 343 

littoral zones yields 36.76 t.km-². This is in agreement with the importance of this group in the 344 

diets of several fish groups. A high abundance of zoobenthic organisms has already been noted 345 

in shallow areas of Lake George (Moreau et al., 1993) or Lake Ihéma (Mavuti et al., 1996). 346 

 347 

Highest TLs were estimated for Clarias spp, R. moorei and H. vittatus (TL >3.3) due to 348 

their carnivorous feeding ecology (Table 3). Most groups belonging to TL3 and more are 349 

predatory carnivores. 350 

 351 

Ecotrophic efficiencies 352 

A low EE value of 0.079 has been calculated for the detritus as most of it sinks to the 353 

bottom in the deepest parts of the lake. Phytoplankton has a higher EE of 0.633, indicating that 354 

this group is the base food source in the lake even if it seems that it is not fully utilized by 355 

organisms of higher TLs, at least in this area of the lake. This may be attributed to the limited 356 

quantity of fish basically consuming this group. A high value of EE is noted as well for 357 

zooplankton (0.764). Carnivorous zooplankton (Copepods) partly feed on the herbivorous 358 

zooplankton (mainly Cladocerans and Rotifers), as noted in the feeding matrix (Table 2) 359 

although they consume also phytoplankton. Ecotrophic efficiencies of fish groups are variable. 360 
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For the two groups of Tilapiine fish, EE is quite low (EE = 0.479 and 0.233), suggesting a very 361 

limited exploitation and predation in the lake. The maximum EE value (0.917) is recorded for L. 362 

miodon juveniles, as we expected because these fish are exploited and predated. 363 

 364 

The gross efficiencies 365 

The P/Q ratios (Table 4) are low for R. moorei and adult L. miodon. This might be due to 366 

the low density of their prey, particularly the zooplankton, and the necessity for these fish to use 367 

more energy for hunting their prey, which are available only at low densities. It should be noted 368 

that the density of zooplankton per volume basis is very low: 0.0914 g.m-3 fresh weight 369 

(Isumbisho et al., 2006). The low P/Q ratios obtained for the 2 groups of Tilapiine fish (0.040 370 

and 0.045) are in agreement with the low quality of their preferred preys which are principally 371 

phytoplankton and decaying organic material. A high P/Q ratio is estimated for zoophagous 372 

haplochromines (0.202) due to their carnivorous feeding habits. The maximum value (0.220) was 373 

obtained for the juveniles L. miodon and this is in relationship with their small size. This value is 374 

higher than for adults, which is in agreement with the basis of the method of computation of Q/B 375 

implemented by Pauly and Palomares (1987). Ichthyophagous fishes (Clarias spp and H. 376 

vittatus) have surprisingly low P/Q values. It might come from the scarcity of their possible prey 377 

in terms of biomass per volume unit. 378 

 379 

Omnivory indices and diet overlap 380 

The omnivory index (OI) of each group is presented in table 4. In general, high OI values 381 

are observed in high TLs, which indicate more complexity in this part of the food web. Highest 382 

OI are observed for three predators: Clarias spp, Barbus spp and H. vittatus (0.282, 0.349 and 383 

0.339, respectively), and is related to their large feeding spectrum and distribution in the lake. 384 
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These observations concord with the indication of Lindeman (1942) that prey tend to be more 385 

specialized than their predators. 386 

 387 

Adults of L. miodon have a lower OI (0.153), than their juveniles (0.218) due to the 388 

latter’s feeding flexibility (Isumbisho et al., 2004). Accordingly, our results indicate that, in 389 

habitats where it is already acclimated, L. miodon adjusts its trophic behavior to the availability 390 

of aquatic macro invertebrates. This has already been noted by Marshall (1995), Kaningini 391 

(1995) and recently by Isumbisho et al. (2004). Compared to H. vittatus, Haplochromines groups 392 

4 and 5 have a lower OI (0.155 and 0.179, respectively), which suggests a higher specialization. 393 

 394 

OI of O. niloticus is zero as this fish consumes only preys from the first trophic level, 395 

mainly phytoplankton (Table 3). Preference for phytoplankton of this species has been observed 396 

in other tropical lakes (Tadesse, 1999; Lu et al., 2006). Other Tilapiines, on the other hand, have 397 

a higher OI due to their trophic plasticity, particularly for T. rendalli, that enables dietary shifts 398 

from plant or detrital material to animal material (Ulyel 1991; Kaningini et al., 1999). 399 

 400 

High values of individual OI for groups sharing the same type of food can be associated 401 

with estimates of niche overlaps. L. miodon juveniles (group 7) have a low overlap as predator or 402 

prey for most groups, except for the adults (group 6) which show high overlap in prey (Fig. 3). 403 

Groups 9 (O. niloticus) and 10 (Other Tilapiines) show the highest overlap which suggests high 404 

competition for similar resources. Groups 2 (R. moorei) and 7 have the lowest overlap which 405 

expresses divergent preferences in terms of resources consumed (Fig. 3). 406 

 407 
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The SOI for the southern part of Lake Kivu is low, 0.150 with a connectance index (CI) 408 

of 0.396 (Table 4). This CI value is slightly higher than the theoretical value (0.317) computed 409 

using the regression model of Christensen and Pauly (1993). Both values can imply that most 410 

functional groups exhibit a certain degree of diet specialization. This indicates as well the co-411 

existence of weak and strong interactions observed among groups as expressed by the various EE 412 

values (Table 2). According to Quince et al. (2002), this is common in food webs of especially 413 

competitive communities which might be the case here. Moreover, McCann (2000) indicated that 414 

recurrent food-web structures, with omnivory and apparent competition, can enhance ecosystem 415 

stability if the distribution of consumer–resource interaction strengths is skewed towards weak 416 

interaction strengths and McCann referred to as the “weak-interaction effect” which contributes 417 

to community-level stability. 418 

 419 

Biomass flux and transfer efficiency 420 

Trophic aggregation revealed that transfer efficiency from TL1 (phytoplankton and 421 

detritus groups combined) to higher TLs is about 8.4%. This indicates that this resource may not 422 

be fully exploited due to the presence of herbivores in the littoral area, which makes up only 10% 423 

of the lake, leading to increased unconsumed nutrient accumulation (Table 5). The average 424 

transfer efficiency is at any TL is less than 10% (Table 5). This is higher than that observed in 425 

other ecosystems such as Lake Navaisha (Moreau et al., 2001). Most of the fish biomass and 426 

ecological production take place at TL3 or more, as summarized in table 5. 427 

 428 

The ecosystem is phytoplankton-based as 61% of the total flow originating from TL1 429 

comes from primary producers while only 39% originates from detritus (Table 5), a feature of 430 

relevance in a deep-water body (Christensen and Pauly, 1993). Most primary production is 431 
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consumed by zooplankton and juveniles L. miodon. Detritus is consumed only by benthic fauna 432 

(group 11) and, to a certain degree, by some fish groups: Barbus spp., O. niloticus and other 433 

Tilapiines (Table 3). The elevated proportion of primary production flowing back to detritus 434 

(about 65 % of the total) is the result of increasing algal biomass surplus unconsumed, especially 435 

in the open waters of the lake. 436 

 437 

A high ratio between production and respiration (3.92) is noted. Most likely, a limited 438 

quantity of organic matter is imported by inflowing rivers. An important part of the production of 439 

several groups is not utilized (EE is low) and is therefore lost as incorporated into the sediments 440 

on the bottom of the lake which has a deep anoxic hypolimnion. This might explain this 441 

unusually high value of the production/respiration value. 442 

 443 

Fish productivity is linked to primary production by many intermediate trophic links. The 444 

primary production required (PPR) in order to support the fishery is 15.2% of the total primary 445 

production (Table 6) which is low compared to an average value suggested by Pauly and 446 

Christensen (1995) for tropical lakes and rivers (23.6 %). When expressed relative to the total 447 

flow from TL1, the PPR (primary production required) used in Ecopath corresponds to the 448 

ecological footprint (EF). For the catch the expression is EF = PPR/PP*C where PP is the total 449 

flow from TL1, and C the catch, will give the size of the area in km², assuming the unit is, 450 

needed to sustain a catch of 1 ton for the given resource. As a consequence, a low ecological 451 

footprint (Folke and Kautsky, 1996) of the fishery (0.04 km²) is observed, similar to those 452 

observed by Villanueva et al. (2006) in two West African lagoons. 453 

 454 
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The GEF is quite low (0.0015) compared to what was observed for Lake George (Moreau 455 

et al., 1993), Lake Ihéma (Mavuti et al., 1996) and Lake Victoria (Villanueva and Moreau, 2001) 456 

or other tropical inland water bodies (Christensen and Pauly, 1993). The mean TL of the fishery 457 

is 2.9 (Table 6) as it targets mostly L. miodon. 458 

 459 

Model predictions of the effects of environment changes 460 

 461 

The mixed trophic impact (MTI) routine of Ecopath (Ulanowicz and Puccia, 1990) shows 462 

the direct and indirect influences of abundance variations of any species group on all other 463 

groups considered (Fig. 4). An initial condition that should be considered for this routine is that 464 

diet composition of each functional group does not change, despite possible variations in 465 

abundance of their various preys. An increased abundance of fish groups of high TLs (about 3 or 466 

more) would have various levels of negative impacts on other groups. This is particularly the 467 

case for Clarias spp (group 1) and L. miodon. An increasing abundance of non fish groups would 468 

generate a positive impact on most groups including fish groups. The impact of zooplankton 469 

biomass variations would be less important compared to the phytoplankton group. The extent of 470 

bottom-up control is elevated, as an increase in abundance of phytoplankton would have a strong 471 

positive effect on all higher TLs (Fig. 4), especially on the herbivores (groups 5, 9, 10 and 12). 472 

 473 

A top-down trophic cascade effect (Pace et al., 1999; Persson, 1999) on phytoplankton 474 

biomass is also observed in the MTI simulation (Fig. 4). The primary productivity is increased 475 

due to the increase in planktivorous fish (TL3) that regulates herbivores, which in turn prey on 476 

phytoplankton. Hence, this may lead to a build-up of nonutilized phytoplankton. This was also 477 

experimentally observed by Lynch and Shapiro (1981). 478 
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 479 

 Figure 5 shows the susceptibility of some fish to human exploitation than others. Fishing 480 

gears employed capture a specific species in the lake (Hanek et al., 1991). An increase of 10% in 481 

the fishing effort shows a substantial increase in catch of target species, i.e. Clarias spp., 482 

Haplochromines, adult and juvenile L. miodon. Positive impacts on groups at lower TLs is a 483 

consequence of lower predation pressure when stock of fish predators decline due to increased 484 

fishing. An increasing fishing effort with beach seine and longline would have a slight negative 485 

impact on zooplankton. Both gears do not target L. miodon juveniles which are the principal 486 

predator of this group. 487 

 488 

Discussion 489 

 490 

Successful colonization of L. miodon in Lake Kivu has been attributed to the absence of 491 

other pelagic planktivores (de Iongh et al., 1995; Marshall, 1995; Munyandorero and Mwape, 492 

2003) and low diversity of native species (Johannesson and Lambœuf, 1989). These combined 493 

with the relative stability of environmental factors suitable for its growth, provided opportunities 494 

for successful colonization of this sardine (Marshall, 1991; 1995) and other Cichlids. 495 

Acclimatization of stocked species has been also observed in other African lakes such as Lakes 496 

Kyoga (Ogutu-Ohwayo, 1990), Kariba (Karenge and Kolding, 1995), Navaisha (Muchiri et al., 497 

1995; Moreau et al., 2001), Nabugabo (Chapman et al. 1996) and Tana (de Graaf et al., 2000) as 498 

well as in other ecosystems in the world (Vitousek et al., 1997; Wilcove et al., 1998; Latini and 499 

Petrere Jr., 2004). Environmental condition modifications have already been cited as a major 500 

factor in enhancing long-term success and dominance of exotics species in several ecosystems 501 

(Muchiri et al., 1995; Smith et al., 2000; Dudgeon et al., 2006).  502 
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 503 

The ability of L. miodon to coexist with other zooplanktivores may be essentially due to 504 

spatial heterogeneity, thus, an absence of co-adapted competitors. Competition between similar 505 

functional groups may also alleviate indirect effects of predators on ecosystem processes and 506 

exhibits functional redundancy in ecosystems (Lawton and Brown, 1993; Loreau et al., 2001; 507 

Raffaelli et al., 2002; Stachowicz et al., 2002). Similar observations in other ecosystems were 508 

made in Lake Kariba (Karenge and Kolding, 1995), Parakrama Samudra reservoir (Moreau et 509 

al., 2001) and in the Great Lakes (Mills et al., 1993). Coexistence seems possible based on a 510 

competitive exclusion principle (Richards et al., 2000) by limiting competition through space 511 

budgeting (Isumbisho et al., 2003) between or within-guild species. Some haplochromines 512 

inhabit mostly the inshore zone while L. miodon occupies essentially the open waters. The 513 

significance of spatial heterogeneity in favoring increase of species abundance has also been 514 

observed by Le Pape et al. (2003) in the Bay of Biscay. 515 

 516 

Similar to L. miodon, naturalized tilapias still remain at limited levels without major 517 

impacts on the indigenous Nile Tilapia. Coexistence of both endemic and alien tilapias may be 518 

due to niche partitioning aside from the broad tolerance of tilapias against environmental 519 

changes (Murichi et al., 1995; Iwama et al., 1997; Khallaf et al., 2003). In Lake Kivu, these 520 

tilapias inhabit essentially the shallow waters (>10 m deep). The endemic O. niloticus 521 

eduardianus, however, is abundant in rocky bottoms while introduced Tilapiine fishes (O. 522 

macrochir and, especially, T. rendalli) colonize better the muddy littoral zones (Trewavas, 523 

1983). Spatial segregation limits competition for food and nursery sites similarly observed in 524 

Lakes Victoria and Kyoga (Twongo, 1995). O. niloticus and O. macrochir are both microphages 525 

which may explain the elevated prey-predator overlap (Fig. 3). Resistance of O. niloticus 526 
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eduardianus may be mediated by its opportunistic behavior despite dietary overlap with O. 527 

macrochir. Broadening of diet spectrum can increase a species tolerance to stress (Murichi et al., 528 

1995; Sax and Brown, 2000; Wanink and Witte, 2000; Villanueva et al., 2006). Dietary shifts of 529 

O. niloticus are similarly observed in Lake Victoria (Njiru et al., 2004). 530 

 531 

This, however, may not apply to other species of lower environmental tolerance in the 532 

lake. Low omnivory indices were observed for some groups, indicating a less diversified diet.  533 

This is not the case for the sub-littoral inhabiting cichlids which contribute to the efficient 534 

utilization of some resources, i.e. here the primary producers. Despite the low contribution of the 535 

detritus group, it is still utilized as a buffering agent in case of resource limitation. Similar 536 

observations were indicated by in Lake Navaisha (Munichi et al., 1995; Mavuti et al., 1996) and 537 

in some West African lagoons (Villanueva et al., 2006).  538 

 539 

Both the predation-based regulation of the lower TLs and the resource-based regulation of 540 

the upper TLs are present in the ecosystem studied. The strength of both bottom-up and top-down 541 

controls determine system diversity though their relative importance and intensity which are 542 

based on the structure and functioning of groups among TLs (Herendeen, 2004). Differences in 543 

migration patterns and food availability may influence predation rates of predators, such as C. 544 

gariepinus, H. vittatus and L. miodon (Isumbisho et al., 2004). This is similar to observations of 545 

Bruton (1979) and Huddart (1994) in other African lakes. 546 

 547 

The MTI analysis (Fig. 4), nonetheless, demonstrated the importance of bottom-up forces 548 

through the strong potential influence of any phytoplankton abundance variation on the whole 549 

food web. In ecological theory, bottom-up forces would dominate the ecosystem process (Platts 550 
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and Ulanowicz, 1985; Dyer and Letourneau, 2003). According to Proulx et al. (1996), 551 

production can also be modified through algal community structure modification as a function of 552 

variations in size distribution (Perin et al., 1996) or through predation-mediated modifications in 553 

plankton community structures (Hansson and Carpenter, 1993; Dyer and Letourneau, 2003). 554 

  555 

Isumbisho et al. (2004) observed variations on zooplankton community abundance and 556 

distribution which is mainly due to predation by L. miodon juveniles and partly, in relation, to 557 

fishery practices. Predation-related variations within functional groups may lead to 558 

compensatory population increases by less vulnerable species in response to predation on 559 

vulnerable species (Steiner, 2001). Predation and competition affect aquatic communities 560 

indirectly by causing behavioral changes in prey species (Nyström et al., 2001; Steiner, 2001). 561 

Predation is an important part of ecosystem functioning though an increase in aggressive 562 

invaders or top predators can equally multiply effects of feeding interactions and contribute to 563 

reorganization of ecosystem structure indirectly (Fulton et al., 2003; Didham et al., 2005). 564 

Changes in zooplankton community structure have also been observed in Lake Donghu (China) 565 

by Yang et al. (2005) as a consequence of increased predation pressure of zooplanktivores. In 566 

Lake Victoria such phenomenon is attributed to eutrophication (Wanink et al., 2002). 567 

 568 

The introduction of L. miodon and tilapias in the lake has surely improved energy transfer 569 

efficiencies in the lake, especially in the pelagic zone. Significant changes in functional roles at 570 

individual (i.e., changes in behavior and habitat use) and population (i.e. change in the 571 

abundance and distribution) levels were observed in the lake. Species change has also 572 

contributed to an entirely new configuration of the fisheries (Van den Bossche and Bernacsek, 573 

1990; Preikshot et al., 1998). Compared to other ecopath-modeled deep lakes in Africa (see 574 
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Villanueva and Moreau, 2001), however, there are many functional groups in Lake Kivu with 575 

low EE values which imply that lower TLs are not saturated and predator abundance variations 576 

can create vacant niches leaving unexploited resources in lower TLs. Functional consequences of 577 

low biodiversity and species specific traits (i.e., size, trophic role, rarity, distribution and degree 578 

of specialization) or combined effects of both may explain inefficiencies of energy transfers in 579 

this lake. Lower energy transfer efficiencies in high TLs have been observed in other poorly 580 

diverse systems (Loreau et al., 2001; Raffaelli et al., 2002; Stachowicz et al., 2002).  581 

 582 

Fish stocking is an important aspect of fishery management but comes with considerable 583 

risks. Invasive species can redefine an ecosystem by converting diverse communities into mono 584 

specific ones as introduced species often become invasive and may lead to native species 585 

extinctions (McKinney and Lockwood, 1999; Simberloff, 2000; Lodge, 2001; Rosenzweig, 586 

2001; Davis and Thompson, 2000; de Graaf et al., 2000; Mack et al., 2000; Pimentel et al., 2001; 587 

Dudgeon et al. 2006). In African freshwater systems, an ominous example is the loss of 588 

biodiversity in Lake Victoria following the Nile perch introduction (Kudhongania and 589 

Chitamwebwa, 1995; Pitcher and Hart, 1995; Preikshot et al., 1998). Biodiversity in Lake Kivu, 590 

however, is low and fish were stocked to boost up the lake’s biodiversity and productivity. 591 

 592 

The role of biodiversity has been hypothesized as insurance to ecosystem functioning in 593 

case of modifications (Loreau et al., 2001). Biodiversity after introduction is affected in two 594 

manners either by global homogenization of regional biota or by affecting native species 595 

functions (Levine et al. 2003; Didham et al., 2005; Korniss and Caraco, 2005; Puth and Post, 596 

2005; Olden and Rooney, 2006). Predators and resources manipulations can cause direct changes 597 

of diversity at one TL, which in turn, affect diversity of other TLs. Indirect biodiversity effects of 598 
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varying resources and consumers, on the other hand, are supposed to be stronger in aquatic 599 

ecosystems compared to terrestrial systems and detritus based food webs (Dyer and Letourneau, 600 

2003). Intraspecific food resource limitation had been observed on adults of L. miodon which 601 

had evolved from a mere pelagic planktivore to a piscivore, preying on its juveniles (Lowe-602 

McConnell, 1993). The sequestration of space and nutrients by adults may limit resources that 603 

eventually provoked such cannibalistic behavior similar to observations of Mandima (1999) on 604 

L. miodon in Lake Kariba and by Bundy and Pitcher (1995) on Nile Perch in Lake Victoria.  605 

 606 

In Lake Kivu, however, fish introductions showed no detrimental changes at both the 607 

biodiversity and ecological levels of the fish community (Marshall, 1995; Ogutu-Ohwayo et al., 608 

1997). It can be suggested that, under non-limiting food conditions, L. miodon which is 609 

occupying mainly the open waters of the lake do not have a particular deleterious effects on other 610 

indigenous species, i.e. provoking mass extinction of the latter. It actually represents the lake’s 611 

most important stock in terms of biomass and production (Hanek et al., 1991). It has also 612 

stimulated the commercial fishery with an estimated potential annual yield of 55 kg.ha-1 in the 613 

early 90s (Johannesson and Lambœuf, 1989; van den Bossche and Bernacsek, 1990; Hanek et 614 

al., 1991). At present, introduced fish species in this lake comprise 85% of the catch (B. 615 

Kaningini, UERHA, pers. data). A similar phenomenon observed in Lake Kariba (Coulter et al., 616 

1984; Marshall and Mubamba, 1993). Despite the increasing intensity of the fishing activity on 617 

exotics, they seem resilient to human exploitation. Tilapias are known to be highly resilient to 618 

intensive fisheries due to their unspecialized ecological flexibility. 619 

 620 

Based on the classification of colonizers discussed by Davis and Thompson (2000), L. 621 

miodon is a type 2 colonizer due to its eventual key role function in the ecosystem (Spliethoff et 622 
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al., 1983; Isumbisho et al., 2006), especially in the fisheries (van den Bossche and Bernacsek, 623 

1990; Marshall and Mabamba, 1993). In most cases, exotic fishes stocked have evolved 624 

pervasive in other lakes not only in Africa (Mills et al., 1993; Ogutu-Ohwayo et al. 1997; de 625 

Graaf et al., 2000) but worldwide (Villanueva and Moreau, 2001; Dudgeon et al., 2006). Once 626 

the biodiversity is altered, the ecosystem is transformed into new configurations often 627 

detrimental to human welfare (Ruesink et al., 1995; McCann et al., 2001; Pimentel et al., 2005; 628 

Dudgeon et al., 2006; Lovett et al., 2006). In Lake Victoria, for example, the Nile Tilapia has 629 

evolved as a “keystone species” though its introduction led to the alteration of ecosystem 630 

function, biotic interactions and biotic homogenization (Moreau, 1995; Bundy and Pitcher, 1995, 631 

Villanueva and Moreau 2001). 632 

 633 

Conclusion 634 

  635 

For this study, we have tried to quantify the impact of invasive species on ecosystem 636 

process and functioning. Based on this study, energy fluxes from primary producers in this 637 

ecosystem are largely phytoplankton-based because of the importance of zooplankton and 638 

abundance of zooplankton consumers. The fragility of the ecosystem to environmental changes 639 

lies, therefore, in the production of the zooplankton group (TL 2), which evidently links the 640 

transfer of primary production to higher TLs, and in the paucity of species diversity. The existing 641 

competitions for food among some groups can be limited mostly by the specialization of some of 642 

them to narrow spatial distributions. 643 

 644 

Broad-scale or ecosystem-level approach is recognized as crucial in describing and 645 

understanding the trophic structure in Lake Kivu and the importance of the introduced species. It 646 
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is a requirement to elucidate and, eventually, predict possible impact of exotic species on natural 647 

food webs. Fish introductions in Lake Kivu is interesting in the sense that the introduction of 648 

exotic species have increased energy flux transfers between TLs for what may have been initially 649 

a ‘dead zone’ before the sardine colonization. Exotics play key role functions in the ecosystem 650 

(Spliethoff et al., 1983; Isumbisho et al., 2006), especially in the fisheries (van den Bossche and 651 

Bernacsek, 1990; Marshall and Mabamba, 1993). It is possibly one of the rare occasions where 652 

introduction of exotics can be acknowledged as positive in terms stimulating commercial 653 

fisheries (Johannensson and Lambœuf, 1989; van den Bossche and Bernacsek, 1990; Hanek et 654 

al., 1991) and improving fish biodiversity with minor consequences on trophic structure and 655 

functioning. 656 
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List of Figures: 

 
Figure 1. Lake Kivu (East Africa) on the border between Republic Democratic of Congo 
(formerly known as Zaire) and Rwanda. The sector considered in the study is the southern 
basin of the lake (inside dashed frame). 
 
Figure 2. Relative biomass and major flows connecting of functional groups considered in the 
Lake Kivu model. Less important flows are omitted for clarity’s sake. The horizontal axis of 
symmetry of each box is aligned with the trophic level (TL) of the box in question. The 
numbered value of a TL is fractional because it depends on the diet composition of this group 
and on the TLs of its preys (Christensen and Pauly, 1993).  
 
Figure 3. Prey versus predator niche overlap plot. Groups in the lower left of the figure have 
quite no overlap and are quite independent for both preys and predators. Groups on the upper 
right corner have a high overlap for both predators and preys  
 
Figure 4. Combined trophic impacts for functional groups considered. Clear box: cumulative 
effects (absolute values) of an increase by 10% in biomass of all other groups to a specific 
group. Shaded box: sum of the absolute values of impacts of this group on other groups. 
Positive impacts are shown above the base line, negative impacts are shown below. 
 
Figure 5. Cumulative impacts of fishing gear on functional groups if effort is increased by 
10%. Positive impacts are shown above the base line, negative impacts are shown below. 
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Table 1. Growth parameters for fish populations as incorporated in the model. 
 

Species  L∞ 

(TL cm) 
K  

(yr-1) 
Z  

(yr-1) 
M  

(yr-1) 
Clarias gariepinus   102.8 a 0.165 a 0.500 a 0.363 c 
Raiamas moorii   23.0 b 0.680 b 1.640 b 1.389 c 
Haplochromis vittatus  32.5 b 0.550 b 1.450 b 1.100 c 
Haplochromis graueri  17.2 b  1.085 b 3.550 b 2.049  c 
Haplochromis nigroides  10.7 b 1.682 b 3.580 b 3.115 c 
Adult Limnothrissa miodon  18.0 b 1.100 b 1.750 b 2.147 c 
Juvenile Limnothrissa miodon  15.0 b 1.100 b 6.690 b 2.040 c 
Barbus kerstenii  11.7 a 1.330 a 2.786 b 2.601 c 
Oreochromis niloticus eduardianus   38.7 a 0.550 a 1.008 a 0.806 c 
Oreochromis macrochir  28.3 a 0.653 a 1.200 a 1.007 c 

a Estimated based on models of de Merona (1984) and Fröese and Binohlan (2000) based on observed 
maximum total length  
b Computed using the FiSAT software (Gayanilo et al., 2002);  
c Calculated using the predictive formula of Pauly (1980). 
 
 
 
 
Table 2. Input values and calculated parameters (in bold) for the Ecopath model of the 
Congolese sector of Lake Kivu. TL is the trophic level, HA is the habitat area (%), BHA is the 
biomass calculated for the habitat area (t.km-2), B is the total biomass (t.km-2), P/B is the 
production rate (yr-1), Q/B the annual foof consumption per unit biomass (yr-1), Y the total 
catch (t.km-2 yr-1).and EE is the ecotrophic efficiency . 
 
Group name TL HA B HA B P/B Q/B Y d EE 
Clarias spp 3.36 1.0 0.204 0.204a  0.50c 4.30e 0.028 0.275 
Raiamas moorei 3.56 1.0 0.025 0.025 1.64c 21.03f 0.010 0.500d 
Haplochromis vittatus 3.42 1.0 0.029 0.029a 1.45c 10.04e 0.010 0.797 
Haplochromis benthivores 3.15 0.1 5.320 0.532a 3.55c 17.56e 0.773 0.544 
Haplochromis planktivores 2.20 1.0 0.329 0.329a 3.58c 35.80e 0.153 0.279 
L. miodon adults 3.04 1.0 1.324 1.324b 1.75c 17.20f 1.159 0.511 
L.miodon juveniles 2.80 1.0 0.496 0.496b 6.69c 30.36f 1.659 0.917 
Barbus spp 2.98 0.1 0.156 0.016 2.79c 27.86e 0.010 0.500d 
O. niloticus eduardianus 2.00 0.1 3.670 0.367a 1.01c 25.39e 0.075 0.479 
Other Tilapiine fish  2.18 0.1 3.830 0.383a 1.20c 26.74e 0.074 0.233 
Benthic fauna 2.32 0.1 36.757 3.676 4.50d 45.00d  0.900d 
Zooplankton 2.05 1.0 10.800 10.800 26.00d 180.00d  0.626 
Phytoplankton  1.0 34.173 34.173 80.00d -  0.633 
Detritus  1.0 165.00 165.00d - -  0.151 
 
a Biomass (B) was estimated when possible directly from the ratio between catch (Y) and annual fishing mortality 
as computed in Ecopath (B = Y/F);   
b Based on echo sound data by Lambœuf (1991). Biomass of adults are higher (1.324 t.km-2) than those of their 
juveniles (0.496 t.km-2) due to the demographical structure of the population.  
c P/B of functional group is assumed equal to the total mortality estimated (cf. Table 1); 
d Sources indicated in text;  
e Estimated using the predictive model of Palomares and Pauly (1998); 
f Estimated using the MAXIMS software (Jarre et al., 1991).    
 

Tables
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Table 3. Diet composition (%) of the groups considered in the Ecopath model of the Lake Kivu Congolese 
sector. 
 

 Group name 1 a 2 b 3 c 4 d 5 e 6 b 7 f 8 g 9 h 10 i 11 j 12 k 
1 Clarias spp     
2 Raiamas moorei  0.005  0.020          
3 Haplochromis vittatus  0.015 0.02           
4 Haplochromis benthivores  0.120 0.15 0.200     0.03     
5 Haplochromis planktivores  0.090 0.10 0.080     0.05     
6 L. miodon adult  0.020  0.025          
7 L.miodon juvenile   0.100 0.25 0.100   0.05       
8 Barbus spp  0.010  0.010          
9 O. niloticus eduardianus 0.100  0.050          

10 Other Tilapiine fish  0.030  0.025          
11 Benthic fauna 0.400 0.46 0.270 0.78 0.03 0.20 0.05 0.57  0.10   
12 Zooplankton 0.040 0.01 0.150 0.12 0.15 0.65 0.70 0.10  0.05 0.30 0.05 
13 Phytoplankton 0.020 0.01 0.020 0.01 0.8 0.09 0.23 0.05 0.80 0.65 0.30 0.85 
14 Detritus 0.050  0.050 0.09 0.02 0.01 0.02 0.20 0.20 0.20 0.40 0.10 

 
a. Diet composition based on indications of Mavuti et al. (1996) and from Fröese and Pauly 

(2006); 
b. From Kaningini et al. (1999); 
c. Ulyel (1991) and Kaningini et al. (1999); 
d. Considered diet composition of Haplochromis graueri (Ulyel, 1991); 
e. Considered diet composition of Haplochromis kamiranzovu (Ulyel, 1991); 
f. Kaningini et al. (1999) and Roest (1999); 
g. M. Isumbisho (UERAH, unpublished data); 
h. From Trawavas (1983) and B Kaningini (UERAH, pers. omm..); 
i. Considered diet composition of O. macrochir from Fröese and Pauly (2006); 
j. Based on indications of Christensen and Pauly (1993); 

Table 52. From Christensen and Pauly (1993) and Sarvala et al. (2003). 
 
Table 4. Ecological characteristics of the groups considered in the model. P/Q is the 
production/consumption ratio, FtD is the flow to detritus (t km-2yr-1), NE is the net efficiency 
and OI is the omnivory index. 
 

Group name  P/Q FtD NE OI 
Clarias spp 0.116 0.249 0.145 0.282 
Raiamas moorei 0.078 0.124 0.097 0.150 
Haplochromis vittatus 0.144 0.067 0.181 0.339 
Haplochromis benthivores 0.202 2.730 0.253 0.155 
Haplochromis planktivores 0.100 3.205 0.125 0.179 
L. miodon adult 0.102 5.688 0.127 0.153 
L.miodon juvenile 0.220 3.286 0.275 0.218 
Barbus spp 0.100 0.108 0.125 0.349 
O. niloticus eduardianus 0.040 2.057 0.050 0.000 
Autres Tilapiine fish  0.045 2.401 0.056 0.195 
Benthic fauna 0.100 51.277 0.143 0.233 
Zooplankton 0.144 688.307 0.206 0.053 
Phytoplankton - 1002.627 - 0.000 
Detritus - 0.000 - 0.298 
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Table 5. The trophic structure of the Lake Kivu ecosystem (Congolese sector) as estimated by the 
Ecopath software.  
 
Trophic level 

(TL) 
Catch 

(t km-2 yr-1) 
(%) per 

TL 
Biomass 
(t km-2) 

% per TL Transfer efficiency 
(%) 

V 0.0031 0.08 0.012 0.32 4.60 
IV 0.3405 8.62 0.365 9.86 7.60 
III 2.7310 69.12 2.034 54.93 9.40 
II 0.8767 22.19 1.292 34.89 4.50 

Proportion of total flow originating from detritus:          0.31 
Transfer efficiencies:  1) From primary producers:         6.80 % 
   2) From detritus:                           7.10 % 
       Total:                    6.90 % 
 
 
 
Table 6. Summary statistics of Lake Kivu. 
 
 

Parameter Value Units 
   Sum of all consumption 2190.04 t.km-².yr-1 
   Sum of all exports 1499.85 t.km-².yr-1 
   Sum of all respiratory flows 1233.99 t.km-².yr-1 
   Sum of all flows into detritus 1762.12 t.km-².yr-1 
   Total system throughput 6686.00 t.km-².yr-1 
   Sum of all production 3040.00 t.km-².yr-1 
   Mean trophic level of the catch 2.90  
   Gross efficiency (catch/net p.p.) 0.001445  
   Input total net primary production 2733.84 t.km-².yr-1 
   Calculated total net primary production 2733.84 t.km-².yr-1 
   Total primary production/total respiration 2.21  
   Net system production 1499.85 t.km-².yr-1 
   Total primary production/total biomass 52.22  
   Total biomass/total throughput 0.008  
   Total biomass (excluding detritus) 52.35  t.km-² 
   Total catch 3.95 t.km-².yr-1 
   Connectance Index (CI) 0.396  
   System Omnivory Index (SOI) 0.148  
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