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Abstract

This paper addresses the issue of estimating underwat@levetajectories using gyro-Doppler (body-fixed
velocities) and acoustic positioning signals (earth-fipeditions). The approach consists of diffusion-based ob-
servers processing a whole trajectory segment at a tinoyialy the consideration of important practical problems
such as different information update rates, outages, atigimuin a very simple framework. Results of contraction
theory are used to prove that the observers are convergenstable in the incremental sense. Simulation and
experimental results are presented to illustrate the piateaf application of the method.

I. INTRODUCTION

Knowing the horizontal position of an underwater vehicleqsely enough as it moves above the

sea floor is of great importance. This is true not only for m@®ananeuvering and other control-based
concerns, but also because the accurate knowledge of thdevétajectory is often the first step toward
performing other tasks, whether these are computed ontira€uvering, docking, marking interesting
locations, collecting samples, etc.) or offline (cartogmgpvideo mosaicking, etc.)[53].
The precision of position sensing is limited and depends anymifferent factors, like the kind and type
of sensors used (Doppler-gyrocompass, Long BaseLine (laBd)Ultra-Short BaseLine (USBL) acoustic
positioning systems, Inertial Measurement Unit (IMU), Bdb Positioning System (GPS), etc.) as well
as the events that are connected with sensors features erwatdr environmental conditions like noise,
sensor misalignment, outliers and outages (see [58], [22)).

Indeed, most underwater vehicle navigation systems usgrmmge acoustic positioning like LBL or
USBL which, roughly speaking, consist of interrogatingnsponder beacons. This information suffers
from a poor precision due to a low refresh rate, an importamne) as well as a high percentage of data
loss and outliers due to sound reflections, disturbancesA#ernatively, another available measurement
is the body-fixed velocities given by a Doppler-effect senstich, when coupled to a gyrocompass,
gives the velocity of the vehicle in an earth-fixed referefireg@ne. Though this information is not as
corrupted by noise as the acoustic positioning data, thetlf@t a time-integration process, necessary to
get a position estimation, can lead to large deviations enghesence of noise or misalignment of the
gyrocompass, is not satisfactory either.

Several studies have addressed the problem of vehicletivajeestimation by combining the above-
mentioned measuremenisg. acoustic positions with velocity data [2], [57], [22]. Th#e=t of loss of
information on these methods seems to lead to non-smootanadgnbehavior of the vehicle and hence
might not be suitable for cartography or video-mosaic issoe example.

This paper presents an approach for estimating the trajest@n underwater vehicle using mainly gyro-
Doppler measurements (speed measurements) and an aqmstioning system (horizontal position).
The method is based on the use of diffusion-based observech yontrary to traditional state observers,
are able to process whole segments of the system trajedt@ime. Thus, these will be referred to as

Jerdme Jouffroy is with the Center for Ships and Oceanc8iras (CESOS), Norwegian University of Science and Telciyyo(NTNU),
NO-7491 Trondheim, Norway (e-mail: jouffroy@marin.ntna).
Jan Opderbecke is with the Underwater Robotics, NavigatimhVision Department (RNV), French Institute for Oceand?esh (IFREMER),
83507 La-Seyne-sur-Mer, France (e-mail: Jan.Opderbeifkex@er.fr).



trajectory observersAs will be seen, one of the main advantages of such an apgpisabat, unlike other
studies on navigation (see for example [2], [40], [1], [91B], [4]), many of the difficulties associated with
the Doppler-gyro / USBL combination (differing informatioates, Doppler-gyro drift, outliers, outages
of the acoustic positioning system, etc.) are treated vienply by starting with the same basic equations,
thus leading to a quite unified view of the problem at hand.tAapsignificant advantage of the method is
that the Partial Differential Equation (PDE) framework imigh it is embedded allows rigorous practical
and theoretical study as many mathematical tools are &aila address important issues such as stability,
robustness, implementation, while the diffusion metaplsed throughout the paper enables to maintain
the algorithmic description in a relatively simple, intué and compact form.

The rest of the paper is organized as follows. After thisodtrction, a few elements of underwater
vehicle navigation in the horizontal plane are given in isectl. In section Ill, we introduce several
diffusion-based trajectory observers, each one of thenreadihg a different issue,e. smooth com-
bined Doppler / acoustic positioning trajectory estimatiacoustic data smoothing, "rendezvous” time
constraints, gyrocompass bias estimation, and sound itselpifile estimation. These observers being
primarily meant for offline purposes, we also briefly show hibw approach extends to on-line versions
by the addition of a simple term allowing the estimated sagmef trajectory to "slide” in time. Because
stability is one of the key issues in observer design, theefiasilement approximations that are used to
implement each trajectory observers are proven to be aiimggi.e. stable in the sense aontraction
analysis[26], [27], [30], [29], [28], [24] and therefore exhibit arxgonential convergence. Computer
simulations are also presented to demonstrate the obsdrgbavior. Experimental results of the combined
Doppler / acoustic positioning trajectory observer froneigtion of the deep-sea ROV Victor 6000 (see
figure 1) are briefly discussed in section IV. Brief conclydnemarks are given in section V, while basic
results of contraction analysis are given in the appendix.

Earlier versions of some parts of this paper appeared in [20].

[I. UNDERWATER VEHICLE NAVIGATION

In the following, we consider trajectory estimation of velks evolving on the horizontal plane, whose
kinematics will be written as follows [12]

T cosy —siny U
<y):<smw cosw)(v) (1)

where the vectofz, y)” stands for the position of the vehicle in an earth-fixed frafnev)” is the vector
of body-fixed velocities, while) is the heading of the vehicle that is used to compute the tianging
rotation from the body-fixed or vehicle frame to the eartledi>one.
By using a complex setting and definidg £ = + iy andV £ v« + iv, wheres is the imaginary number,
equation (1) is reduced to '

X =V (2)

This complex notation will be used in the rest of the paper.o&ifion given by the acoustic positioning
system (USBL or LBL) is denoted a¥,.. As mentioned earlier on, the measurements are typically
corrupted by noise and suffers from a high percentage ofgestand outliers, while the update rate of
the positioning information lies betweénl and 1H z, depending on the system in use.

The body-fixed velocities are provided by a bottom-lock Depgsonar, consisting of four downward-
looking beam transducers that measure the velocity rel&tithe seafloor. These velocities, that we denote
hereV,,, are then transformed into the earth-fixed coordinates usiagtandard rotation

theo = eiw‘/dop (3)



Fig. 1. IFREMER ROV Victor 6000

where the heading is measured by a gyrocompass, ang, is the speed vector in the earth-fixed frame.
Viop and V., are typically less noisy than the acoustic positioning measentsX,. while their update
rate are higheriH > for the Victor 6000 for example). When the heading is measured by an optical
gyrocompass, the precision and update rateg afe generally excellent. A dead-reckoning processa
time integration of the velocities might thus seem to be appate due to the good sensor performances.
However, these are counterbalanced by other factors suehnmasalignment of the gyrocompass, the
problem of the initial position determination in the dea&dkoning, and accumulation of small noise due
to the time-integration process that could lead to sigmfickeviations of the estimated trajectory with
respect to the real path of the vehicle [57].

I1l. DIFFUSION-BASED TRAJECTORY OBSERVERS

In order to differentiate trajectory observers from a ustiate observer, also called Luenberger observer
[34], let us recall that the state of a system representedjbgt®n (2) and more generally by the nonlinear
X = f(X) can be seen asraoving particlein the state-space, whose path is referred to igjactory.
Using this interpretation, a state observer is nothing braeking system whose corresponding particle,
usually denoted aX, follows X based on the signals that are available for measuremenilyidend in
the absence of noise, the particte will use the time evolution to converge towards

Such a point-of-view, the one of state observers, is of @m@specially suited to online purposes
related with control architectures. However, it is not agpiate for offline tasks related for example to
videomosaicking because of the uncertainty due to an emrtird initial guessi.e. the initial condition of
the state observer is concentrated in the beginning of Hjectory, thus leading to possibly large errors
in the mosaicking process. Also, when it comes to underwadeigation, the presence or the absence of
an acoustic position has an important impact on the esting@sign issue. Indeed, if it is required that
a vehicle goes back to a position it has been to before, it riighof interest to re-estimate this position
to be certain to find it, hence to re-estimate the past basdatiepresent available information. This is
especially the case in the context of acoustic positionimg) @f data interruption.



Hence, the common thread to these different issues beingdtiation of the path of the vehicle,
define the trajectory estimafé(s, ¢). This estimate is a function of theajectory times, i.e. the temporal
position of the vehicle along its path, withe [s;, s.] in seconds. Additionally, the estimation process
being also iterativeife. it improves with iterations),X depends ot € RT, wheret represents the
continuous counterpart of iterations, that will be refdrte as theimprovement timeNote that in the
traditional state observer contextand¢ are combined into one single variable, usually christenathce
the observer uses the evolution of the trajectory time initi@tive process to converge to the particle
of the system under observation.

In the following, we show how a trajectory observer is comstied and present a few trajectory
observers used to deal with offline underwater navigatedated problems first, and then sketch how
online extensions of these can be done.

A. Combined acoustic positioning / Doppler trajectory egttion

When combining acoustic positioning measurements withdeprelocity estimates, the most suitable
trajectory estimation should take into account the difiefeatures of these datieg. this estimation should
reproduce the measured vehicle motion while respectingagjlposition references given by the acoustic
positioning system. )

Hence, introduce the following integral criterion that drades the match oX with the acoustic
positioning signalX,.(s) and its derivative with respect towith V., (s)

/ (VX — Vgeo)? + k;X(s)(X — X,.)%ds 4)
Sp

where VX £ 9X/ds. kx(s) is a tuning function allowing to weigh the significance of theoustic
positioning measurements over the final trajectory estonatt also allows to take into account in an
explicit way the discrete-in-time feature of,. by writing kx as

kx(s) :Kié(s—si) (5)

where K is a strictly positive constant accounting for the weigbtiof X,., J(-) stands for the Dirac
delta function, ands; € [sy, s.| are then, trajectory times for which the acoustic positioning sigisl
available. Note that such a framework allows to deal with m-periodic acoustic positioning signal which
appears when many outages perturb the signal. Also, theeigudire treated as outages as they are simply
discarded whenever detected.

Minimizing the integral in (4) in an iterative way is perfoeah easily by computing the gradient descent
of the Euler-Lagrange equation of (4)[25], which can be wigd using the following PDE
X

T = V(VE = Vieo(s)) + kx(5)(Xaels) = X) 6)

This equation can be interpreted as a diffusion-reactiocgss whose diffusion behavior, usually merely
V2X, is here guided by the velgcity measurements. The role ofdhetion/source terrhy (X,. — X) is
to ensure that the final estima®é will be close to the acoustic positions through a feedbadkedrby
Xae

One way to obtain a finite element implementation of (6) is &t tonsider the discrete approximation
of the heat equation

~

0X

= (51 = V2X(s,t) (7)



where the Laplace operat8f2X = AX can be approximated as

Xy
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0 9 1 )g
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wheren is the number of discrete elements of the trajectory segiaetthe dimension of the finite state
vector X and S is the segment length in seconds, and X, are Dirichlet boundary conditions which,
from a trajectory observer perspective, mean that the mxtne conditions, represented by the start and
end points of the vehicle path, are known. A )

In the case where only velocity measurements are known abebedaries, we hav& X, and VX,
instead ofX, and X.. This leads to the finite state-space representation foapipeoximation of (7)

X =LpX +Bp (8)

where the matrixLL, stands for the discrete approximation of the Laplacian atperwith two homo-
geneous Dirichlet boundary conditions, aBg, is the vector of boundary conditions. In the case where
these are Neumann instead of Dirichlet boundary conditim@aceL, and B, by Ly and By which

are easily obtained by writing the discrete Laplace operaso

-VX,
1 -2 1 " o 0
o +1)2 N S
2X_ e (n - - X_ .
v [ 0 1 . . 0 R : 9)
0 -2 1 .
VX,
0o 1 -1

Note that we can also have the two kinds of boundary conditionone equationi.e. for example a
Neumann one fog, and a Dirichlet one fok.. Thus, we can obtain the finite element implementation of
(6) by the same kind of reasoning and vector/matrix repitasien, leading to the finite state-space form

X =LyX — Wy, + Ky (Xq — X) (10)

whereW ., represents the approximation ®f\/,.,(s) together with the Neumann boundary conditions.

In the following, we will check the convergence of such firdiference approximation schemes of
diffusion-based observers as exemplified by (6). Note thas$ ialso possible to study existence and
uniqueness properties of observer (6) itself, that carr ef$eful insights on the behavior of the observer.
While addressing these issues is, for the sake of simplioity of the scope of this paper, we refer to
[38], [56] for interesting examples in this matter.

Once the discrete approximation of the trajectory obse(@gris defined, we can check that this
implementation is incrementally stablieg. that the final estimate is independent of the initial guess or
initial conditions. To check this stability property, wellwise contraction analysi$27] on the state-space
representations (8) and (10). Roughly speaking, contmaanalsysis consists of analyzing the Jacobian
of a differential equation to conclude exponential coneerge of two different trajectories of the same
differential equation, making it independent from theialittconditions. In the example of the discrete
heat equation (8), the system is said tochatractingbecause the matrix can easily be proven, as in [30],
to be uniformly negative definite (u.n.d.). Hence we have

KXo, 1) = X (Koo, )| < Koo e (11)
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which is valid for any couple of initial condition&, and X,,, of X, where—3 (8 > 0) is a constant
upper bound orlLp.

Proving that the trajectory observer (6)-(10) is contragis only slightly more involved. Indeed, noting
that in (10),W,., and X, are just inputs to the system, computing the Jacobian of ifi€gns we can
restrict the study to the Jacobian of the Laplace operatdah (Weumann boundary conditions) (9) with
the Dirac-based observer gain (5). Thus, in order to showliha— K x is uniformly negative definite,
one has just to ensure that, in the case where only one ac@asitioning measurement is available, the
following matrix is uniformly positive definite.

1 -1 0 0 0
-1 2 -1
0 —1 - . .
0 . . 24K -1 . 0 (12)
L I
2 —1
0 . . 0 0 -1 1

Using Sylvester’s lemma and computing the principal mirmfr§12), it can be seen thak; = 1 for all

7 until ¢ = k the index of the available acoustic positioning measurénmnwhich A, = 1 + K. For
i>k, A; =14 (i — k+1)K. The last principal minor\,,, i.e. the determinant of (12) is then equal to
K. Thus, all minorsA; are positive, hence (12) is uniformly positive definite, meg that the discrete
version of V2X — kx (s) X is contracting, as well as the implementation of observemniéh one acoustic
positioning measurement.

Using the fact that the sum of two or more contracting systeaso contracting (see the Appendix,
Lemma 1), contraction is then proven for the observer for infe number of acoustic positioning
measurements.

Additionally, note that the above observer, and similady the other observers described in this paper,
can be easily modified using a nonlinear diffusion term av

X \ X
wr =V (VX = Vo) + kx(Xoe — X) (13)
with only minor modification in the proof of convergence. éadl, contraction can still be concluded for
(13) provided one assumes some mild condition of linear dedrgrowth onf (see [29]). Indeed, one
has of

VX — Vo)
Such a nonlinear version of the diffusion term could be oériest, for example, in cases where the noise
is not Gaussian [14] or to explicitely incorporate outliénto the filtering process (a first attempt has
been done in this direction with a nonlinear version of thectien termkx (X,. — X) in [52]).

Also, one can introduce a more complex gain functigr(s) by replacing (5) with

Vf(VX - ‘/geo) = V(VX - vaeo)

kx(s) = 2[(}5(5 — 5;)

where theK; are constants that can be tuned independently from each, dlus allowing for more
degrees of freedom for the observer.

The reader familiar with image processing techniques hasinly noticed that observers presented
in this paper can be seen as being inspired by diffusionebakgrithms that are now well-known and



pervasive in the literature of the image processing comty8], [55], [21], [14], [38], [48], [28], [53].
Indeed, the vehicle trajectory is in this interpretatiostja one-dimensional signal. Though the image
signals have generally features that are different fronusito positioning and doppler signal ones, this
perspective definitely gives the advantage of being abledapiaor re-use many interesting methods of
diffusion filtering for image processing that lead to sigrafit results.

Observer (13) can also be regarded as a simple continuolizat®a process. Indeed, using the
continuous realization theory terminology [8], [6], [Shi$ observer is a (gradient) flow, or a deducible
procedure used to solve a particular problem, in our casdmidimg energy-like integrals such as
(4) for instance. As argued by researchers of the continuealization field, this kind of perspective
brings some nice features such as the fact thatatberithm leading to the solution of the problem is
contained in one continuous-time problem through the gradiow (13), but also because its formulation
is independent from the choserethod of implementatiokence, many different implementation methods
can be considered.

B. Adding “rendezvous” time constraints

Some missions of underwater vehicles consist of surveyisgaafloor area for cartography and video-
mosaicking purposes [53]. During these surveys, the pathlgs are such that the vehicle happens to go
over the same spot at two different times, thus creatingddgpe figure 2(a)). When these events are
detected for example by cameras, meaning the actual positithe spot is not known, it is of interest to
compensate the deviations due to noise on the Doppler sbypsming these “rendezvous” time constraints
in the case that only the extremum positions of the consitlzagectory are known [11], [10] (see [4]).

The corresponding trajectory observer for a single-loapettory can be written as follows.

0X .
E - V(VX ‘/geo)A )
+ k(X (s2,t) — X(s1,1))d(s — s1)
+ k(X (s1,t) — X (52,1))0(s — s2) (14)

in which Dirichlet boundary conditions are assumeggl.is a strictly positive constant, and ands, are
the two trajectory times for which the positions are the same

The intuition behind osbserver (14) is quite simple. Whhe diffusion term is present to give the
estimated trajectory the right relative shape, the feeklbaen favors estimates for which the estimate at
time sy, X (s2,t), resembles the estimate at timg X (s1,t), andvice-versa The same reasoning applies
to trajectories with several loops. Note the relative sioigyl of the method compared to the probabilistic-
based approach used in [4].
As for observer (6), checking the contraction property i$ difficult if one uses the fact that observer
(14) is contracting if the sum of the following matrices is.al.

O 0 . . .0
-2 1 0 0

o -1 . . 1
1 -2 1 : g g
o 1 o 0 |tk - (15)
. Ly ST el e el

1 . e =1
0o 1 -2
o - 0 . .0

where the first matrix corresponds to the Jacobian apprdiomaf the Laplace operator with Dirichlet
conditions, and the second one, which contains the termscewiby the observer feedback, stands for
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Fig. 2. Simulation of the rendez-vous points problem for r@eéHoop trajectory

the rendezvous time constraints.

It is straightforward to show that the latter matrix is umifdy negative semi-definite, and that this
subsystem is therefore semi-contracting, while the formatrix is u.n.d according to [30]. The contraction
property of (14) directly follows from the fact that the surfnaocontracting system with a semi-contracting
one is contracting (see Appendix, Lemma 1).

Figure 2(a) shows the simulation of a real trajectory (usédhtrajectory) of a vehicle and a Doppler-
based version of it, in which the Doppler sensor was highlyumied by a low-frequency noise (biased
trajectory). The dots indicate the “rendezvous” trajegtimes as detected by a camera. It can be seen from
the so-called biased trajectory that the error induced bystbw noise affects the rendezvous constraints
as each meeting point is quite distant from its counterpset (the rendezvous points pointed by the
arrows). This problem is significantly corrected using &éaloop version of the above observer as shown
in figure 2(b) where the rendezvous constraints are recdveréghe estimated trajectory.

At this point, one can also draw some interesting connestlmetween our approach and the field of
SLAM —Simultaneous Localization And Mapping in which robaise perceptions to build representations
of their environment to navigate. Indeed, as in the semiagkep by Lu and Milios [33] —with however
different framework/purposes, our approach uses a callecf positions at different time instants, in our
case a continuum, to account for the history of the systente Noterestingly, that in the same work, it
is considered that the first position is assumed constankaadn, thus playing the role of a Dirichlet
boundary condition in a diffusion-based framework. See #ie interesting [9], [10] for works on SLAM
in an underwater navigation context.

C. Acoustic data smoothing

In the case when Doppler measurements are not availableth@ndbjective is to obtain a smooth
interpolation.X, of the acoustic positioning data, one can use regularizaéohniques such as Tikhonov
regularization [49], [3], [16] which consists, roughly siéng, of requiring that the final estimate as well
as its derivatives up to the ordgrare continuous.
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This constraint can be imposed by using a functional suclh@assbbolev horm

lo(XH)I2 = /qu ) (V' X,)* ds (16)

b r=0
where ¢, (s) is a pre-specified, non-negative, and continuous weighftimgtion the derivative of each
order [48], [49, p. 70].
Hence, restricting the interpolation process to the seaddr (.e. p = 2), the integral criterion (16)
is now replaced by

J(X,) = / o(XIE + k()| Xoe — Xo|[2ds = / " D(VXL)? + Do(V2XL) + hx (3)(X, — Xoo)’ds

where D and D, are two positive constants. The gradient flow correspontintiis criterion, obtained
with the Euler-Lagrange equations, is how

0X,
ot

where the conditions at the boundaries &tes;, t) = X, X (s, t) = X. andV2X (s, t) = V2X (s, t) =
0. Contracting behavior of the discrete-space approximatfdahis PDE can still be concluded by following
reasoning similar to that used one in section IlI-A.

We illustrate this by the simulation of (17) in figure 3, whehe effect of the second-order term can
be seen through the interpolating effect it creates.

= DV2X, — DV*X, + kx(s)(Xoe — X,) (17)

D. Sensor misalignment and trajectory estimation

In the case where there is a misalignment in the way the gympess is mounted on the vehicle, there
is an undesirable constant bias in the heading measuremeat[22], [23], [35] on the misalignment
problem) and the rotation (3) becomes

Va = erm Vdop (18)
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where v, £ 1) + 1, is the angle actually measured because of the constanty/piasduced by the
misalignment. Combining now (3) with (18), we have the ielatbetween the bias-free velocity vector
V4eo @and the "disturbed” vectolr

‘/geo =bVy (19)

whereb £ ¢~ is the constant unknown imaginary number standing for thation due to the gyro
misalignment. We would like to have an estimate of this unkmgarameter in combination with the
diffusion-based estimation process of the previous sectio
Introduce the following adaptive-like observer
X N 5
e V(VX = bV,) + K(Xs — X) (20)

with the adaptation law )
B:—/ VVy(X, — X)ds (21)

whereb(t) is the bias estimate, an¥l,(s) is a smoothed version of the acoustic positioning sigials).
An ODE or space approximation of (20)-(21) is

X =LX - Wub+ K(X —X) (22)

b= -WI (X -X) (23)
whereX € R" is the finite dimensional state approximation®fs, ¢), L a Laplacian matrix andV, the
approximation ofVV;(s).

In order to ensure stable behavior of observer (22)-(233, iequired that in the absence of noise and
uncertaintiesX andb converge to the true trajectory and gyro bias

0X

b=0
whose approximation is
X =LX — Wb (24)
b=0 (25)
Then, combining (22)-(23) with (24)-(25), we have the fallog error dynamics
d (X\ (L+KI -W, X
#( )=t ) (3) 20)

(whereX = X — X andb = b — b) which is often encountered in adaptive control [37], [1BE].

Using the results of Loria and Panteley [31], [32], and urajgsropriate assumptions on the maiik;
which are reminiscent of the persistency of excitation ¢om, one can conclude exponential convergence
of (26) and hence oK andb towardsX andb.

In figure 4(a), we took a trajectory (s), computed its derivative and created an artificial and exeaggd
gyro misalignment ofy degrees, which, after time integration, gives the rotatajgdtory X,(s). The blue
line representingd shows the behavior of observer (20)-(21) which estimaiés) properly, while figure
4(b) represents the evolution bfreaching the bias value.
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E. Sound velocity profile estimation

Other problems induced by error in the parameters mightrooctuhe trajectory estimation process
(see for example the early work [45] on different error sesrn acoustic transponders). Consider for
example the simple case depicted in figure 5 where a vehiclesitmwards a single transponder that it
uses to estimate its longitudinal position knowing the posiof the transponder on the sea floor.

In this case, the distance of the vehicle with respect to ridwesponder, here denoted g@sis obtained

by the relation
irtof

P = UsoundT

wherev,q,,,q IS the sound velocity and,, is the time-of-flight of acoustic pulses measured by thealehi
interrogating the transponder.

It is clear from relation (27) that the distanpecan be quite inaccurate if the sound velocity at the
location of operation is different from the nominal soundbegy parameter on board the vehicle. Indeed,
consider that such a difference is expressed by the follpwkpression

(27)

Usound%
a 2
where the positive "multiplicative” scalar term accounts for the mismatch between the real velocity
profile vs,unq @long the trajectory, and,,,.q/a that the vehicle uses to compute its position fr@fyy.
Assuming that we have at our disposal the derivative of tiseadte,.e. Vp,.,, obtained thanks to a
Doppler sensor, an observer estimating both the distarared the parameter, would take the form
9p

o = VIVh = Vpyeo) + ylpai = ) (28)

a =k, ( / pds/ / pads — a) (29)
Sp Sp

wherek, is a scalar gain for the parameter estimator (29).

Pd =
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Alternatively, if we now consider that parameteimay vary along the trajectory by letting= a(s),
i.e. that we now have a sound velocipyofile (see [7] for an interesting study), replace observer (28)-(
with

op . . .
8—€ = V(Vp - Vpgeo) + kp(s> (pda(S) - p) (30)
. o
5= V=a + kq(s) (ﬂd a) (31)
whose ODE version is
p="L,p— W, + K, (diag(ps)a - p) (32)
ad=L,a— W, +K, (diag™ (ps)p — &) (33)

where L, and L, are Laplacian matrices\W, is a matrix including the boundary conditions and the
approximation ofV?p,.,, while W, contains only the boundary conditions af Then, exponential
convergence of (32)-(33) can be guaranteed using the cbingaversion of the small-gain theorem
(see Appendix, Lemma 2) by writing the differential gains r@spectively (32) and (33)
Tp = M max(pq)
B

where the strictly positive constapy, is such that., - K, < —3,1, and
K1

Bo  min(pg)
whereL, — K, < —f,1, thus leading to the condition

|| Kl _ min(pa)
ﬁp ﬁa maX(pd)

that the feedback gaink, and K, have to verify.

Note that observer (30)-(31) can also include in some sdresedalar parameter estimation of observer
(28)-(29). To illustrate this, consider the simulationuiéshown in figure 6 in which we have artificially
induced a multiplicative terma = 0.9 in the velocity profile. Note that the final estimgiecorresponds
to the "true” p, meaning thati(s) has properly estimated the value of the constant paramedtng the
trajectory.

a

F. Online version and further extensions

The trajectory observers that were previously depictedb@asimply extended. For example, if instead
of an offline/batch-like trajectory observer (like the ong®)), a real-time version of a trajectory observer
would be .

0X
ot
where the tern¥,.,(s, t) accounts for the fact that for the real trajectofys, t), we haveZX = V,,(s, t),
which is the trajectory version ok = V,eo, @nd represents the speed at which the trajectory segment to
be estimated is moving in time along the whole trajectore (@kso [19] for more details).
This observer is still contracting since the additionahtér,.,(s,t) is nothing but a time-varying input
to the observer.
In figure 7(a) the simulation of such an observer for a oneedisional trajectory is shown, for which the
observer was not initialized on the exact location of thé tr@gectory. As in a usual Luenberger observer,

= Vyeo(5,1) + V(VX — Vo5, 1)) + kx(Xoe — X) (34)
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Fig. 5. Underwater vehicle and acoustic rangemeter

the diffusion-based observer recovers the actual trajgctfier a transient. The 3D view of figure 7(b)
illustrates the sliding trajectory segment aspect of theesaimulation.

Note that observers after eq. (6) can also be implementedids ise. in a more batch-like version
where for example the flow (6) can be solved for each instatitad, where the initial condition is chosen
as, for example, the estimation of the previous instant, shitted version. This point-of-view can also
be related to the moving-horizon observer concept (seexamele [36]) in the Model Predictive Control
literature.

Other simple extensions can also be considered. Indeetieicdse where there are also outages on
the Doppler signal, which can happen, for example when tihéckeesurveys a zone with a cliff or fault,
observer (6) can be augmented and rewritten as

0X L X

o V(VX = V) + kx(Xe — X) (35)
1% . .

%—t = V2V + ky(Vyeo — V) (36)

where equation (36) takes care of the outage¥,of in the same way as it is done in (35) faf,..
The overall contracting behavior of observer (35)-(36)hisnt easily concluded by using the combination
result of contracting systems in cascade form (see Appehéimma 3).

Finally, if some acceleration measurements are added t@uhgable information (as provided by an
Inertial Measurement Unit for example), equation (36) canrbturn changed into
oV

E = V(V‘A/ - Ams) + kV(‘/geo - V)

which has the same structure as (6) or (35), and for whichracimg behavior is concluded identically.

IV. EXPERIMENTAL RESULTS

Full-scale test trials have been performed at sea duringdimé IFREMER-AWI (Alfred Wegener
Institut) “Victor in the North” scientific cruise in the Attgic ocean. IFREMER ROV Victor 6000 was
equipped with an Octans Il Gyrocompass [39] and an RDI Daopg@tocity Log [54]. Acoustic positioning
of the vehicle was performed with the Posidonia long-ran§8Llsystem [44], a data being received every
14 seconds. Note that the errors of such a system, if useé,atan be quite significant (see Opderbecke
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Fig. 6. Sound velocity profile estimation

[42] for a quantitative assessment of the global error oRRbsidonia system), and is dependent upon many
different factors, hence the process is neither Gaussiastationary (see also an interesting discussion
on noise in LBL data in [41]).

In figures 8, 9, 10 and 11 a result of the combination of the USBaustic positioning system data of
Victor 6000 with its gyro-Doppler measurements for a fouuhlmng trajectory is shown, its global view
can be seen in figure 8. Figures 9 and 10 zoom in on some speaifEqf the trajectory, specifically the
top part and the bottom part of figure 8, with different chéggstics. Figure 11 shows a one-dimensional
profile to show the behavior of one coordinate with respechéotrajectory times.

The red dots are the acoustic positions delivered by the UZBLthe ROV moves with respect to
the vessel, varying noise characteristics affect acopsisitioning. Note the large outliers in the different
figures. The starting point of the trajectory (see top of ®#gy8) defines the initial value to obtain the
dead-reckoning trajectory (in green) obtained after iragn of gyro-Doppler data. The reader will
certainly notice the differences between these two curlies.acoustic positioning-based one has a good
global position which, however, is noisy and not smooth,levthie gyro-Doppler trajectory behaves nicely
regarding the dynamical aspects but is “bent” by error oninitegration process.

The blue line in the figures is the result of the estimationcpss performed by the diffusion-based
trajectory observer (6) which was initialized with a crudestfiorder interpolation of the acoustic posi-
tioning data (thin red line). In this experiment, the const& associated to the feedback gaig(s) (eq.
(5)) is set to10~*. Note the good behavior of the observer as it advantageaastpbines the smooth
speed feature of the gyro-Doppler measurements with thelwbspositioning of the USBL system. The
observer was implemented in Matlab code on a standard PCe $ie gyro-Doppler measurements are
obtained at regular sampling intervals, it is quite natumluse finite difference schemes to spatially
approximate the PDEs, a consideration which also motivéteddifference-scheme based perspective
for the stability analysis (see Eq. (9) and onward). For ttiseretization, experience has shown that
trivial implementation such as the Euler method and higitrder methods could be used, even though
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the sampling period should be small to guarantee good sesaltact that is well-known for diffusion-
based equations. To increase performance, we used seficiirsphemes based on LU decomposition
as presented in [56].

On the practical point-of-view, note that these two trajeiets are the main information that are available
to the operational team and pilots of Victor 6000 to estimbeehorizontal location and trajectory of the
vehicle. In order to reduce the mismatch between the twedtajies, the initial value of the Doppler-
based trajectory is manually re-initialized every now dmeht which creates steps in the trajectory that do
not correspond to realistic underwater vehicle dynamias @an therefore be unsuitable for cartography
purposes.

V. CONCLUDING REMARKS

In this paper, we proposed a simple approach for estimatiigmwvater vehicle trajectories, consisting
of processing a whole trajectory segment at a time usingfasitin-based observer, with gyro-Doppler
measurements and acoustic positioning signals as inp@sIS8d presented variations of the same concept
to address several important issues related to underwatggation. Simulated and experimental results
were presented to demonstrate the potential of the approach

Current research includes the introduction of a nonlingtiusion term, directly deduced from the
non-Gaussian, non-stationary nature of the noise of mang-tange LBL/USBL positioning systems.
Also, it could be of interest to apply the approach to the eaogly measurement problem [47], [13],
[50].

APPENDIX

In this appendix, we briefly recall a few elements of contmactnalysis (see [27] for the main reference)
that are used throughout the paper. In the following, carssystems described by the general nonlinear
deterministic differential equation of the form

% = f(x,1) (37)
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Fig. 8. Experimental result of the diffusion-based trajegtobserver (6) (global view of a 4-hour trajectory)

wherex is then-dimensional vector corresponding to the state of the sysémdf is a nonlinear vector
field. In addition, we make the further assumption that thetesy is smooth and that any solutirfx, t)
of (37) exists and is unique.

Let us start by stating the definition of a contracting system

Definition 1 (contracting system [27])The systenk = f(x, ¢) is said to be contracting if its Jacobian
is uniformly negative definite (u.n.d.).e. if there exists a strictly positive constagt referred to as the
contraction rate, such that

for all x € R™ and for allt > 0.

Additionally, the systemk = f(x, ) is said to be semi-contracting when its Jacobian is only thega
semi-definite.

The main theorem of contraction analysis can then be statddllaws.
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Theorem 1 (exponential convergence of contracting sysf2is If the systemx = f(x,¢) is glob-
ally contracting with rate?, then any couple of trajectories () andx,(t) verifies the following inequality

|%1(t) — %2 (t)|| < [|x10 — Xao| €777 (38)

for all x19, x990 € R™ and for allty > 0,t > t,.

We will now recall some combination properties of contnagtsystems in the following few lemmas.
For the sake of clarity, we have ordered these lemmas acaptdithe order in which they are used in
the paper.

Lemma 1 (additive property)Assume thak = f(x, ¢) is contracting and that = g(x, ) is contracting
or semi-contracting. Then

x = f(x,t) + g(x,t)
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is contracting.
The following definition is quite important for robustnessues and will be of use in the next lemma.
Definition 2 ([17]): Consider the following system

x = f(x,u,t) (39)
whereu is an external time-varying signal. Assume that (39) is @ting with rates for all u, and that

there exists a positive constamtsuch thatg—f1 is uniformly bounded. Then, the differential gain of (39)

is the positive constant such that -

T=7
Lemma 2 (small-gain theorem [17])et two systems be interconnected as follows.

x; = fi(x1, X, 1)
. 40
{ Xy = fo(x1, X2, ) (40)
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If x; andx, are contracting, and that their respective differentiahga,; and~, are such that

Y12 < 1

then the global system (40) is contracting.
Lemma 3 (cascade of two contracting systems[2Tpt two systems be in cascade form as follows.

{ }.(1 = fl(Xl,t) (41)

Xy = f5(x1, X2, 1)

If x; andx, are contracting, and thigfﬁ is uniformly bounded, then the global system (41) is conimngc
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