Reprinted from Melson, W. G., Rabinowitz, P. D., et al., 1978. Initial Reports of the Deep Sea Drilling Project, Volume XLV, Washington (U.S. Government Printing Office)

22. TRACE ELEMENTS IN BASALTS FROM 23 °N and 36 °N IN THE ATLANTIC OCEAN: FRACTIONAL CRYSTALLIZATION, PARTIAL MELTING, AND HETEROGENEITY OF THE UPPER MANTLE¹

H. Bougault, Centre Océanoligique de Bretagne, Brest, France M. Treuil, Laboratoire P. Sue, Saclay, France

and

J.L. Joron, Institut de Physique du Globe, Universite Paris VI, Paris, France

INTRODUCTION

-From a study of first-transition series trace elements and low-partition-coefficient trace elements or so-called hygromagmatophyle elements (Treuil and Varet, 1973; Treuil and Joron, 1976), we will try to define the relative importance of the three fundamental parametersmantle source composition, extent of partial melting, and crystal fractionation-which bear on the formation of basalts recovered during Leg 45. We relate the presented data to the results of shipboard study (Chapters 7 and 8, this volume) and then give a tentative interpretation, taking into account our present knowledge of the behavior of trace elements during magmatic processes of FAMOUS and Leg 37 results. -

LEG 45 SAMPLES; DESCRIPTION OF RESULTS

Both major element and trace element data are presented in this section. The major oxides SiO_2 , Al_2O_3 , Fe_2O_3 total, MgO, CaO, K_2O , TiO_2 , and the trace elements Sr, Zr, Ni, and Cr were analyzed on-board ship, in collaboration with J. M. Rhodes (see Introduction and Site Chapters, this volume). Analyses for MnO, P_2O_5 , and Na₂O were completed on shore. FeO determinations were made by J. Norberg (Smithsonian Institution) according to the method outlined by L. C. Peck (1964).

All major element data presented were determined by X-ray fluorescence, except Na₂O, which was determined by atomic absorption. Trace element data were obtained by X-ray fluorescence (XRF), neutron activation (NA), or atomic absorption (AA). Co, Ni, and Zr were analyzed by both X-ray fluorescence and neutron activation; both results are given.

Trace element XRF determinations were corrected for matrix and instrumental effects by the procedures of Bougault et al. (1977); in addition, V and Cr measurements were corrected for the effects of enhancement and overlapping lines (Ti K β and V K β , respectively.

The shipboard values for Cr are only approximate, because it was not possible on board to calculate the full matrix correction including the effect of iron enhancement and V K β interference.

The neutron activation method used was pure instrumental activation analysis (without chemical separation), using epithermal neutron irradiation (OSIRIS Reactor in Saclay—C.E.A. Groupe Pierre Suë). Because of the low order of magnitude of the concentrations of investigated elements in tholeiites (Tb, Hf, Ta. . .), the use of epithermal neutrons is very important; this kind of irradiation allows the interaction of 40 Sc and 55 Fe to be strongly diminished. Irradiation was performed under Cd vials; then several measurements were made using a Ge-Li detector (resolution 2 KeV at 1.33 MeV) at different times from four days to one month after irradiation. The reference standards used are GSN and BCR1.

Tables 1 and 2 for Hole 395, Tables 3 and 4 for Hole 395A, and Tables 5 and 6 for Hole 396 show the concentrations of elements (major elements expressed in per cent and trace elements in ppm) for the samples investigated on-board ship.

Several different chemical units were defined on board (see Chapters 7 and 8, this volume), as shown by Figure 1, where concentrations of selected major and trace elements are plotted against depth. Units A₂ through A_5 are aphyric units, and P_2 through P_5 are porphyritic units. Some units were hard to define, because only one sample representing them was analyzed, or a given sample chemically seemed outside the range of analyses characterizing the unit. This is the case for Sample 395A-11-1, 105-107 cm; even though major elements resolve little difference between this sample and Unit A2*, additional trace element data appear to suggest a real difference between them. In Hole 395A, phyric units are named P₂ to P₅, as a function of depth; In Hole 395, Samples 18-1, 37-41 cm and 18-2, 33-38 cm (Unit P_1^*) are chemically similar to Unit P3 of Hole 395A.

Sample 395-20-1, 32-36 cm, within Unit P_2^* , nevertheless does not belong to that unit; it stands alone. Sample 395A-15-5, 0-11 cm, situated at the boundary of Units P_2 and P_3 , remains difficult to classify; it is chemically similar to Unit P_5 . The average composition given in Table 7 for Unit P_5 does not take into account breccia samples (which differ mainly in Cr and Ni). The deepest aphyric sample, 395A-67-2, 54-59 cm, is classified as belonging to Unit A_4 ; in fact, it is very similar to samples of Unit A_3 .

¹Contribution 528 of the Département Scientifique, Centre Océanologique de Bretagne.

					11010 5	20, Maj			ua (101a		concer		10, 11 6 /	,				
				A2*				A2*					P1*		P1*		A2*	P2*
Unit Sample (Interval in cm)	10, CC (#1)	10, CC (#2)	10, CC (#3)	11-1, 105-107	11-2, 62-64	12-2, 109-111	14-1, 112-114	14-1, 131-132	15-1, 71-73	15-1, 112-115	15-2, 130-133	17-1, 56-59	18-1, 37-41	18-1,61-70	18-2, 33-38	18-2, 85-95	19-1, 18-20	20-1, 32-36
Denth (m)	93	93	93	101	102	112	131	131	139	139	140	159	166	167	168	169	177	185
Rock Type	s	G	s	VB	aphy. B	aphy. B	al B	aphy. B	aphy. B	aphy. B	aphy. B	G	pl. Pyr B	s	pl. pyr. B	\$	aphy. B	pl. B
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ (t) FeO MnO MgO CaO Na ₂ O K ₂ O TiO ₂ P ₂ O ₅ Total	43.6 1.26 9.95 0.93 0.13 43.7 0.03 0.00 0.02 0.03 0.01 98.73	45.7 24.24 3.81 0.07 13.9 12.61 1.15 0.08 0.04 0.02	44.8 6.27 10.66 4.35 0.10 35.3 1.85 0.00 0.02 0.09 0.02	48.9 15.93 12.83 6.96 0.20 6.8 11.01 2.88 0.22 1.70 0.18	49.3 14.88 11.95 0.18 8.5 10.49 2.83 0.09 1.61 0.15 99.98	49.8 15.11 11.90 8.10 0.18 8.9 10.50 2.85 0.09 1.61 0.13	47.01 16.79 13.76 10.20 6.64 10.93 2.90 0.28 1.83 10.22 100.36	49.7 14.94 11.97 7.53 0.17 8.3 10.56 2.88 0.13 1.63 1.0043	49.81 15.11 11.76 0.17 7.47 10.92 2.85 0.25 1.61 0.14	49.1 15.01 12.05 0.17 8.6 10.53 2.88 0.10 1.62 0.15	49.0 14.75 12.22 0.18 8.5 10.54 2.85 0.13 1.62 0.15 99.94	50.2 17.71 6.52 4.62 0.11 12.2 9.32 3.53 0.20 0.39 0.02	49.4 17.32 8.62 5.67 0.14 8.5 12.58 2.38 0.07 1.01 0.10 100.12	43.1 0.91 10.25 4.55 0.11 44.3 0.89 0.03 0.00 0.03 0.02 99 64	49.4 18.21 8.37 0.14 7.9 12.85 2.33 0.13 1.02 0.12	43.4 1.37 9.36 3.10 0.10 42.0 2.09 0.00 0.00 0.00 0.04 0.00 98.36	49.8 15.08 11.05 7.41 0.19 8.5 11.25 2.75 0.31 1.65 0.16	49.6 18.77 9.52 4.47 0.14 6.1 12.05 2.79 0.30 1.28 0.13 100.68
Lol	-13.8	-4.2	-11.6	-0.9	-1.1	-1.3	1-8.7	-1.2	-9.5	-1.5	-0.8	-4.9	-1.4	-7.6	-0.6	-9.1	-1.0	-1.5
		i		1			L	1				I		L		1	L	

 TABLE 1

 Site 395, Hole 395, Major-Element Data (volatile-free concentrations, wt. %)

Note: G = gabbro, s = serpentinite, V = variolitic, B = basalt, aphy. = aphyric, pl = plagioclase, al = altered

In Hole 396, three units have been recognized, named P_a , P_b , and P_c , as a function of depth and are listed in Tables 5 and 6.

All the trace element results obtained confirm the classification and the definitions of chemical units made on-board ship. Since we bring no change or very little change to the definition of chemical units, we ask the reader to examine Chapters 7 and 8 in this volume for detailed information about particular units.

The alkali metals, Cs and Rb, together with Sr, show variations even within a given unit. Average values of other elements, which are more homogeneous within a given unit, are reported for each unit, together with associated σ (standard deviation) values, in Tables 7, 8, 9, and 10 for Sites 395 and 396, respectively. Examination of Tables 7 and 10 shows that concentrations of all elements investigated are typical of midocean ridge tholeiites. Nevertheless, Th and Ta values are rather low, and some Sr values are high, especially in phyric units P_2^* of Hole 395, P_2 and P_5 of Hole 395A. This problem of high Sr is still being investigated to determine if what we are seeing is enriched Sr because of plagioclase phenocrysts or is a result of alteration effects (since many vesicles filled with secondary minerals are present in these samples). Generally, trace element concentrations, except for Ni and Cr, are lower within phyric units than in aphyric units; this can be explained in part by the dilution effect of phenocrysts (mainly plagioclase), since many of these elements have low partition coefficients and low abundances in phenocryst phases, especially plagioclase.

Sc and Co vary within a narrow range, 30 to 38 ppm and 38 to 48 ppm, respectively, and show only a slight difference between aphyric and phyric units, as mentioned above. Taking into account the dilution effect of phenocrysts, one would obtain roughly similar concentrations for the matrix of phyric units as for aphyric units. Finding so little variation for those elements means that their behavior depends little on crystallization and melting processes; in addition, this means that the initial material (before melting) was homogeneous with respect to them. If the source had been heterogeneous, then melting and crystallization would have had to occur in such a way as to compensate for the possible variations in the initial material, and this would be purely matter of chance.

Average values of Ni and Cr for Holes 395 and 395A are reported in Table 7, except for Units P_4 and P_4 '; Ni and Cr are more variable in these units, because of a variable content of olivine and clinopyroxene phenocrysts.

ALTERATION EFFECTS

Among the trace elements investigated, three can vary considerably because of alteration: Cs, Rb, and Sr (Hart, 1971). The problem of whether strontium is enriched in plagioclase or in the matrix, or is high because of alteration, is being investigated, as already mentioned.

As Figure 1 shows, the abundance of K_2O is somewhat random even within a given unit. Similar observations can be made for Cs and Rb. Cs is plotted versus K_2O in Figure 2, and versus Rb in Figure 3. Considering all points on Figure 2, no correlation between Cs and K_2O is evident. But within each unit, a positive correlation exists between Cs and K_2O , even taking into account the analytical precision (about 0.02 ppm for Cs and 0.2% for K_2O). Cs increases linearly with K_2O from low concentrations which could be considered as initial values before secondary alteration processes. In Figure 2 a general positive correlation between Rb and Cs can be observed, but there is no possibility of distinguishing between units, because of the analytical precision in determining Rb (\sim 1 ppm).

The general correlation Cs = f(Rb) and the intraunit correlation of $Cs = f(K_2O)$ contrast with the homogeneity of other trace elements within units, allowing us to state that *these variations result from second*ary processes (probably alteration).

GEOCHEMICAL METHOD OF INVESTIGATION

Properties of Trace Elements

It is assumed that trace element behavior follows the high-dilution law; as a consequence, a partition coefficient between different phases can be defined directly in connection with the chemical potential of a given element in the different phases concerned. As a convention, the partition coefficient D of an element is defined as the ratio of its concentration in a mineral to its concentration in the liquid.

Among the investigated elements, one can find highpartition-coefficient (HPC) elements such as Cr and Ni (D>1) and low-partition-coefficient (LPC) elements such as Th and Ta $(D \le 1)$. The bulk partition coefficients of some elements are variable, depending on the proportion of phases in equilibrium, and in this respect, their concentrations depend on the nature of magmatic processes, such as partial melting or fractional crystallization. This is the case, for instance, for V, Co, and Sr. The diverse partition coefficients are interpreted to reflect high stabilization energy in octahedral coordination for such elements as Cr and Ni (Burns, 1970; Curtis, 1964; Orgel, 1964; Allegre et al., 1968; Bougault and Hébinian, 1974, and the ability of other elements-Ta and Th, for instance-to form stable complexes in the liquid phase (Treuil and Varet, 1973; Treuil and Joron, 1975).

Behavior of Trace Elements During Crystallization and Melting Processes

As crystallization proceeds in a given magma, we assume that that Rayleigh law is valid:

$$\frac{C_L}{C_{LO}} = F^{(D-1)}$$

where

- C_L = concentration of the element in the liquid,
- C_{LO}^{L} = initial concentration of the element in the liquid, F = fraction of remaining liquid,
- D = bulk partition coefficient of the element.

Considering two elements (subscripts 1 and 2), the relationship between elements 1 and 2 is:

$$\log C_{L2} = \frac{D_2 - 1}{D_1 - 1} \log C_{L_1}$$
(Eq. 1)

+
$$\frac{(D_1-1) \log C_{LO2} - (D_2-1) \log C_{LO1}}{D_1 - 1}$$

1) If elements 2 and 1 have low partition coefficients, Equation 1 is simplified to:

$$C_{L2} = A C_{L1}$$
 $A = \frac{C_{L01}}{C_{L02}}$ (Eq. 2)

The slope A depends on the initial concentrations in the liquid C_{LO1} and C_{LO2} (Treuil and Varet, 1973; Treuil and Joron, 1975).

2) If elements 2 and 1 have high partition coefficients and if the proportion of phases crystallizing is constant, the plot of log C_{L2} as a function of log C_{L1} is a straight line, the slope of which is

$$\frac{D_2 - 1}{D_1 - 1}$$

3) If element 2 is a HPC element and element 1 a LPC element, the slope of the line $\log C_{L2} = f (\log$ C_{L1} is approximated to (D₂-1); this can be considered as a way of determining the bulk partition coefficient D_2 of element 2.

In fact, these assumptions are valid insofar as we start from given values of C_{LO2} and C_{LO1} , which means starting from a given liquid with magmatic differentiation resulting only from crystallization processes. CLO2 and C_{LO1} depend on partial melting; it is necessary to determine to what extent they can vary (if at all) when partial melting occurs, using the elements investigated.

When partial melting occurs, let us assume that C_{LO} is given by the formula of Shaw (1970):

$$\frac{C_{LO}}{C_{SO}} = \frac{1}{D_O + F(1-D)}$$

where

- C_{LO} = concentration of the element in the liquid (which is the initial value with respect to the crystallization process),
- C_{SO} = initial concentration in the solid,
- = initial bulk partition coefficient,
- = bulk partition coefficient corresponding to melting phases,
- F = fraction of liquid produced.

Considering very low-partition-coefficient elements 1 and 2, it is easy to see that

$$\frac{C_{LO1}}{C_{LO2}} \approx \frac{C_{SO1}}{C_{SO2}}, \text{ almost independent of F.}$$

In this case, the slope A mentioned in Equation 2 is not dependent on F, and gives direct information about the initial solid (before melting) (Treuil and Joron, 1976),

$$A = \frac{C_{LO1}}{C_{LO2}} = \frac{C_{SO1}}{C_{SO2}}$$

If elements 1 and 2 are LPC elements but have partition coefficients with different orders of magnitudes, A depends on F; liquids with different values of C_{LOI} / C_{LO2} can be produced by different partial melting. Basalts experiencing further crystal fractionation derived from these different liquids plot on lines with different slopes A (Treuil and Varet, 1973; Treuil and Joron, 1975).

Considering HPC elements, it can be shown that for Ni the ratio C_{LO}/C_{SO} is almost independent of the extent of partial melting (F) and of the composition of

H. BOUGAULT, M. TREUIL, J. L. JORON

	Element		Sc	Ti	v	Cr	Mn	Fe	(Co	1	Ni	Cu	Zn
	Analytical Method	Unit	NA	FX	FX	FX	FX	FX	FX	NA	FX	NA	AA	AA
	Sample (Interval in cm)											,		
	10, CC #1 10, CC #2 10, CC #3		8.25 1.92	180 240 540	49 3.6 34	2805 323 1071	1007 542 774	69650 26670 74620	111 39 104	99.6 41.6	2160 554 1128	1716 563	12 50 91	45 17 39
	11-1, 105-107	A2*	38.4	10200	301	279	1548	80810	48	49.3	161	1 6 0	69	92
÷.	11-2, 62-64 12-2, 109-111 14-1, 112-114 11-1, 131-132 15-1, 71-73 15-2, 130-133 16-2, 104-105	A2*	36.6 37.3 40.8 37.3 38 37.9 36.9	9660 9660 10980 9780 9660 9720 9780	263.7 266 323 269 274 266 270	271 269 274 269 279 265 267	1394 1394 1548 1316 1316 1316 1394	83650 83300 96320 83790 82320 85540 85820	48 47 49 51 48 49	40.4 49.6 48.8 49.9 49.9 50.4 48.9	173 172 177 182 176	190 189 183 186 181 186 183	68 68 65 70 64 68 69	81 85 101 87 84 89 87
	17-1, 50-69	1	35.2	2340	153	165	852	45640	40	43	155	170	0	19
	18-1, 37-41	P1*	31.3	6060	217	361	1084	60340	38	41.3	139	152	68	53
	18-1,61-70		6.58	180	29	2677	852	71750	127	123	2370	2543	11	44
	18-2, 33-38	P1*	30	6120	208	341	1084	58590	37	37.9	130	137	60	57
	18-2, 85-95		1	240	52	4788	774	65520	116		2110		33	42
	19-1, 18-20	A2*	38	9900	200	293	1472	77350	41	44	141	137	61	79
	20-1, 32-36	P2*	30.6	7680	219	222	1084	66640	34	35	186	90	55	58

 TABLE 2

 Site 395, Hole 395, Trace-Element Data (expressed in ppm)

the presumed initial material. For Cr, the ratio C_{LO}/C_{SO} is somewhat dependent on F, increasing when partial melting increases, and is dependent on the composition of the presumed initial material (spinel content, for instance).

DISCUSSION AND INTERPRETATION OF RESULTS

From the shipboard data, we see that Ti and Zr behave similarly (Figure 4). It has been already shown that in mid-ocean ridge basalts, Ti behaves as an LPC trace element (Bougault, 1977). This is confirmed by the correlation shown on Figure 4. Leg 37 samples from Hole 332B plot on the same line as Leg 45 samples. The only difference between Leg 37 and Leg 45 samples is a shift along the line, both for phyric samples on one hand and aphyric samples on the other. This can be attributed either to a difference of range of the extent of partial melting or to a different initial mantle material. In the remainder of this section, we shall examine to what extent a difference can be determined for the extent of partial melting and/or the composition of initial mantle material between 23 °N (Leg 45) and 36°N (FAMOUS area).

The hygromagmatophile elements with low partition coefficients—Ta, Hf, Tb, Zr, and Ti—have been plotted on Figures 5 through 9 as a function of Th. Th is thought to have the lowest partition coefficient among these elements. On the same figures, the field where the FAMOUS samples plot is shown and the dispersion indicated. Both Leg 45 and FAMOUS samples plot on straight lines passing through the origin, with dispersions more or less significant. For Leg 45 samples straight lines can be drawn because in fact each point represents an average value of many samples analyzed in the same unit.

The first striking feature is the different slopes between Leg 45 samples on the one hand and FA-MOUS samples on the other. Leg 37 data are not included in the FAMOUS range, because they were determined by other laboratories and there may be a problem of reproducibility of trace elements among them. Even so, Leg 37 data for Th and Ta from other laboratories fall in the field of FAMOUS samples and not at all in the field of Leg 45 samples.

From the theoretical discussion presented earlier, this has to be attributed to a difference between FA-MOUS area and Leg 45 initial mantle materials. Samples from Hole 396, which is roughly symmetric to Site 395 on the other (eastern) side of the Mid-Atlantic Ridge, plot very near the line defined for Site 395.

Of all the fields of FAMOUS samples presented on Figures 5 to 9, Ta versus Th (Figure 5) has the lowest dispersion. This is because Ta and Th have the lowest partition coefficients among the studied elements and, from our earlier discussion, the slope of the line relating these elements is not dependent on partial melting. The other elements plotted versus Th are LPC elements, but their partition coefficients are higher than those of Th and Ta. The slopes corresponding to given series of crystallization differentiation depend on the initial concentration in the liquid, that is to say on the extent of partial melting. This is why the dispersion for these elements is higher around "average lines."

Table 11A presents the values of slopes of a given LPC element i, plotted against other LPC elements j,

Rb	Sr	2	Lr	Sb	Cs	La	Eu	Tb	Hf	Ta	Th
NA	FX	FX	NA	NA	NA	NA	NA	NA	NA	NA	NA
	6	3	<27	0.189	<0.027	< 0.84	≪0.057	<0.014	<0.14	<0.008	0.05
	99 4	8 4	<14		<0.015	0.11	0.15	0.008	<0.067	<0.004	0.015
3.3	127	121	112	0.50	0.099	3.25	1.5	0.87	2.84	0.200	0.137
<1.4	119	112	126	0.020	0.024	3.2	1.33	0.82	2.71	0.183	0.132
<0.9	120	119	120	0.01 6	0.037	2.12	1.42	0.83	2.73	0.194	0.137
4.1			137	0.98	0.027	3.6	1.49	0.93	3.18	0.207	0.141
2.4	120	114	136	0.017	0.08	3.1	1.36	0.84	2.86	0.193	0.134
<1.1			108	0.018	0.05	4.1	1.40	0.83	2.83	0.192	0.138
1.9	118	116	112	0.015	0.020	3.4	1.45	0.85	2.88	0.187	0.130
<1.8	118	120	108	0.033	0.036	3.3	1.40	0.83	2.83	0.190	0.130
3.8	324	16	<27	0.017	0.34	0.44	0.41	0.193	0.19	<0.057	<0.019
2.1	112	67	63		0.038	2.04	0.95	0.52	1.65	0.103	0 .079
<1.8	6	4	<25	0.018	< 0.02	0.12	< 0.05	0.011	< 0.13	<0.007	<0.027
2.3	114	67	68	0.033	0.066	1.9	0.97	0.54	1.66	0. 109	0.083
	10		1								
<1.5	130	127	131	0.026	0.040	3.8	1.42	0.84	3.00	0.201	0.154
8.1	162	94	98	0.101	0.40	2.77	1.18	0.64	2.21	0.149	0.113

TABLE 2 - Continued

both for FAMOUS and Leg 45 samples. The major differences between Leg 45 and FAMOUS samples are shown by comparing slopes (i versus j) when i or j corresponds to Ta or Th (the lowest partition coefficient elements). Table 11B also shows absolute values of LPC elements for both Leg 45 and FAMOUS aphyric basalts (Unit A₃ and Sample ARP 7-7, respectively) and plagioclase phyric basalts (Unit P2 and Sample ARP 31-36, respectively). One can observe that for both types of basalts, Th and Ta values are lower, and other LPC elements are higher for Leg 45 samples than they are for FAMOUS samples. This confirms that there is a difference between the initial mantle compositions of these areas; whatever the partial melting or crystallization processes involved, it would not be possible after partial melting and crystallization to have some LPC elements lower and others higher if the mantle had the same initial composition in both cases.

For Leg 45 samples, it is not possible to determine differences in the extent of partial melting on the basis of LPC elements, because of the steep slopes of the lines and the analytical precision that would be required. Nevertheless, this can partly be shown through Cr and Ni data.

Log Cr versus log Ni is plotted on Figure 10. Leg 37 and FAMOUS samples define two common fields: one for aphyric samples, the other for plagioclase-phyric samples. Since the Ni concentration in the liquid is almost independent of partial melting and the CR concentration is somewhat dependent, these trends are mainly representative of crystallization history. The FAMOUS aphyric field is narrow, but cannot be resolved to a straight line because of variations in the proportions of crystallizing minerals. The FA-MOUS plagioclase-phyric field is above and larger than the aphyric field, probably because of the variable content of clinopyroxene phenocrysts (the partition coefficient of Cr in clinopyroxenes is higher than 10). But the clinopyroxene content of FAMOUS plagioclasephyric basalts is not at all sufficient to account for their high Cr concentrations relative to FAMOUS aphyric basalts for a given value of Ni. This is because the Cr concentration in the liquid increases with partial melting, as discussed theoretically earlier. In this respect, plagioclase-phyric basalts appear to derive from liquids produced by a higher degree of partial melting than aphyric basalts. This is in agreement with LPC element abundances, which are generally higher for plagioclasephyric basalts than for aphyric basalts.

On Figure 10, both the fields of plagioclase-phyric basalts of Site 395 and 396 and of aphyric basalts, except A_3 and A_4 Sample 67-2, 54-59 cm, are shifted compared with FAMOUS and Leg 37 data. The different relative positions of the various Leg 45 aphyric basalts and the plagioclase phyric basalts is a consequence of different degrees of partial melting and of different proportions of crystallizing minerals. A plot of Ni or Cr versus an LPC element would result in a similar conclusion about partial melting; at least two and probably three different degrees of partial melting are represented.

It is somewhat difficult to draw conclusions about crystallization processes with Leg 45 samples, because of the low number of different rock types we have, compared with FAMOUS-Leg 37 data, and because of the different degrees of partial melting. Nevertheless, it

Unit				A2								P2							P3			······			P4							P 5	
Sample (Interval in cmi)	4-1, 91-113	5-1, 100-103	6-1, 130-134	7-1, 76-82	8-1, 50-52	9-2, 18-21	11-1, 117-129	13-1, 106-110	14-1, 92-99	14-2, 98-112	14-2, 98-112	15-1, 93-102	15-2, 102-108	15-3, 128-142	15-5, 0-11	16-1, 69-74	16-1, 90-98	16-1, 100-104	17-1, 115-124	18-1, 140-146	20-1,43-45	22-1, 87-92	22-2, 72-76	23-1, 65-68	23-1, 117-122	23-1, 145-147	24-1, 125-129	26-1, 129-133	27-1, 127-131	28-1. 116-122	29-1, 119-122	30-1.82-87	31-1.63-67
Depth (m)	105	115	116	124	134	143	163	182	188	190	190	195	197	199	201	210	210	210	220	229	240	258	260	269	270	270	278	298	306	317	327	335	34-1
Rock Type	G	aphy. B	aphy B	aphy. B	aphy B	aphy. B	aphy B	plol.B	pl. ol. B	pL ol B	pl. ol. B (al- tered)	pl. ol. B	pl.ol B	pl.ol B	pl. ol B	pl. ol B	рIol руг В	pl.ol. pyr.B	pl.ol. pyr Bi	plol. pyrBi	plol. pyrBi	pl.ol. pyr Bi	pl.ol. pyr B	pl.ol pyr B	plol pyr.B	plol. pyr Bi	plol pyr.B	pl.al pyr B	pi.ol. pyr B	p) ol. B	plol. pyr B	pl. ol. B	pl.ul. pyr B
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ (I) FeO MnO MgO	51.6 18.86 7.11 0.13 5.5	49.4 14.87 12.20 8.07 0.18 8.8	49.6 15.19 12.03 0.18 8.5	494 1492 1227 0.18 84	49 14 89 12.49 0.20 84	494 1514 1220 838 0.18 85	49 8 15.06 12.65 0.19 8.6	49 9 18.64 8.37 0.14 6.5	492 1781 943 634 014 71	49 5 18 28 8 94 0.13 6 9	49.0 17.93 9.24 0.15 6.1	497 18.25 940 0.14 73	50 2 17 97 9.73 5 78 0 14 6 8	499 1772 991 0.15 73	49 1 19 17 8.49 7 0 0.13 7 0	50.3 17.74 9.61	48 8 17 84 8 94 0.14 7.5	49.5 17.36 8.67 0.14 7.8	49 9 17.84 8 49 4.51 7.2	49.4 17 57 8.58 0.14 7 3	49.6 17 71 9.20 0 15 8 0	49.6 17.8 8.73 0.13 8.0	50 1 16 25 9 32 5 65 0 15 8 4	494 1754 924 015 76	50.1 17.65 8.51 0.14 8.4	491 1733 824 014 85	49.7 17.76 8.69 0.14 7.8	49.6 17.20 8.76 0.14 7 9	496 1690 884 014 83	49.6 18.61 8.56 0.15 6.6	49 18 3 8.71 5.11 0.14 7.2	493 1769 8.8 013 83	497 1859 867 406 013 68
CaO Na2O K 2O TIO2 P2O5	12.42 4 03 0.10 0.81 0 17	10.53 29 0.10 1.62 0.17	10.60 2 85 0.16 1 64 0 19	1061 283 017 163 017	10.49 2.85 0.13 1.64 0.16	10.65 2.83 0.11 1.64 0.16	10.74 2.79 0.16 1.65 0.18	12.62 2.75 0.15 1.39 0.16	11.97 2 73 0 11 1 36 0 14	12:10 2:88 0:08 1:33 0:15	2.88 0.20 1.36 0.14	12 10 2 72 0 09 1 34 0 14	2 94 0.10 1 39 0 14	2.82 0.11 1.37 0.14	2 72 0.07 1.16 0 14	2.87 0.18 1.40	2 32 0.12 1.05 0 12	2.42 0.12 1.07 0.12	2 34 0 12 1.04	2 42 0.11 1 05 0 11	2 42 0 16 1.07 0 11	2 34 0.10 1.02 0.11	2 42 0 08 1 13 0.09	2 62 0 25 1 12 0 11	2.54 0.16 1.11 0.11	2 39 0 11 1 07 0 12	2.59 0.10 1.12 0.11	2.42 0.06 1.13 0 11	2 57 0 06 1 13 0 10	2 74 0 15 1 19 0 12	2 62 0.21 1 25 0 14	2 62 0 09 1 15 0 10	2 77 0.17 1 17 0 12
Total Lol	100.73 -11	100.77 -0.9	100 74 -1 9	100.58 ~1 0	100.35 0.1	100.B1 -0.7	100.82 -1.3	100.48	99 99 -1 6	100 29 -1 8	99.11 -2.0	101 18 -19	101 42 -2.1	101 57 -1.2	100 14 -1.4	100.81 -2.0	99.50 -0.7	99.77 -0.5	99.75 -2.0	99 36 -1 7	101.27 0 4	100 74 -1.9	100.33	100 52 -0 9	101.11 -0.7	99.26 -0.6	-09	99.53 -1.7	99 75 -1.6	-1.4	9976 -12	-1.7	-2.5

 TABLE 3

 Site 395, Hole 395A, Major Element Data (volatile-free concentrations, wt. %)

Note G = gabbro, B = basalt, aphy = aphyric, pi = plagioclase, ol = olivine, pyr = clinopyroxene, Dol = dolerite.

																							-			1							
Unit			P5										A3								-	A	4		P4	A4	-	P4			A4		<u>A4</u>
Sample Interval in cm)	31-1, 70-76	32-1, 54-62	32-1, 54-62	32-2, 56-63	33-2, 9-13	33-2, 127-129	35-1, 53-54	37-1, 136-141	39-1, 102-107	41-1, 142-144	42-1, 86-89	45-i, 124-127	47-1, 63-67	48-2, 135-140	49-2, 13-17	51-2, 41-44	52-1, 48-53	53-1, 7-11	55-1, 49-54	56-2, 75-81	57-1, 125-131	58-2, 115-122	59-2.65-69	60 3, 137-143	61 2, 37-45	62-1, 40-42	62-1, 80-87	63-1, 108-116	64-2, 116-122	64-3, 48-53	65-1 , 81-8 6	66-2, 66-71	67-2, 54-59
Depth (m)	344	352	352	353	362	364	381	401	420	438	446	475	492	504	512	530	5 3 9	542	558	568	579	589	598	608	617	521	521	524	535	5 36	546	556	567
Rock Type	pl. ol. B	breccia matrix	breccia clasi	breccia clast	pl. ol. B	aphy. B	aphy B	aphy. B	aphy. B	aphy. B	aphy. B	aphy. B	aphy. B	aphy. B	aphy B	aphy B	aphy. B	aphy. B	aphy B	aphy B	aphy B	glass	aphy B	aphy B	plol pyr Dol	aphy. B	plol pyrDol	piol Pyr Dol.	plul pyr Dol	Jphy. B	aphy. B	Jphy B	aphy B
SiO2 Al2O3 Fe2O3 (I)	49 1 18 42 8.69	49.0 18.25 8.09	49 6 18 79 8.73	49.2 18 94 8.3	50 0 18 44 8 89	49 7 15 29 11.07	49 8 15 14 11 13 7 33	49 9 15.06 10 90	49 9 15 33 10.98	49.7 15.07 11.17	49 7 15.19 11.42	498 15.09 11.45 7.41	49 8 15.81 11.05	49.4 15.09 11.16	49.6 15.08 11.14	49 B 15.08 11.34	49 8 15 03 11.61	496 1511 11.28	49.3 14.88 11.13 6.21	49 9 14 88 11 13	49 2 15 14 11-20	50 5 14 47 10 86	49.0 15.24 11 25 6 26	48 8 15 15 11 39	49 5 16 96 8.97	48.6 15.06 11.15 6.11	49 6 16 30 9 05 4 93	49.5 17 44 8 59	49 3 16 91 8.85	49.2 15 27 11 60 4 96	48.7 15.12 11.45	49 1 15 24 11 65 5.95	499 1510 1056 508
MnO MgO CaO Na 20 K 20 TiO2 P2O5	0.14 7 0 12.31 2.72 0.17 1.14 0.11	0.15 5.9 15.64 2.62 0.36 1.09 0.12	0.13 55 1390 277 0.15 119 011	D.15 71 12.38 2.69 0.12 1.09 0.10	0.14 73 1253 274 017 113 009	0.18 7 7 11 33 2 72 0 24 1 70 0.17	0 18 7 7 11 29 2 74 0 18 1 71 0.17	0.17 7.5 11.24 2.72 0.29 1.70 0.16	0.18 76 11.39 272 0.28 172 017	0.19 7.5 11.25 2.65 0.27 1.74 0.18	0.19 7.4 11 23 2 69 0.16 1.75 0 17	0 19 7.3 11 27 2.62 0.18 1.76 0 17	0.18 7 2 11.52 2.65 0.21 1.67 0.16	0 19 7 9 11.23 2 77 0.25 1 71 0.17	0.18 8 1 11 32 2 72 0.17 1 72 0.18	0.19 7.5 11.33 2.59 0.23 1.72 0.17	0 19 7 3 11 47 2.72 0 18 1 74 0 20	0.18 79 1122 2.69 0.18 172 0.17	0.17 8.0 11.18 2.72 0.17 1.73 0.17	0.18 78 11.18 2.72 0.17 1.74 0.16	0 18 8 1 1 09 2 62 0 22 1.59 0 15	0.18 8 2 10 50 2 65 0 10 I 58 0 12	0.18 8.1 11.18 2.65 0.30 1.59 0.15	0 20 8 4 11 12 2.57 0 17 1 59 0 14	0.14 8 3 11.93 2.44 0.07 1.14 0.10	0 18 8.5 11 09 2.92 0 22 1 59 0.15	015 81 1198 244 012 118 011	0.15 8 5 12 16 2.42 0 07 1 08 0 09	0.14 8 5 12.06 2.44 0.11 1.10 0.09	0 20 8.6 10 87 2 49 0 25 1 63 0 16	0.20 8.2 11 23 2.72 0 23 1.63 0.15	0 20 8 3 11 17 2 69 0 20 1 64 0 15	0.17 73 3140 272 029 1.69 0.15
Total Lol	99.80 -2.4	101.22 -7.7	100.87 -3.1	100.05 -1.9	101.43 -2.1	100 10 -1.7	100 04 -1.l	99 54 -1.9	100.27 -1.9	99.72 -1.3	99.90 0.8	99.83 -L 1	100.25 -1.2	99.87 -1.5	100.21 -1.2	99.95 -1.3	100 24 -1.0	100.05 -1 3	99.32 -1.6	99.76 -1 9	99.49 -2 3	99.16 0.5	99.64	99 53 -1 9	99.55 -1.8	99.46 -1 9	99 03 ~1.8	100 00 -1 8	99.50 -2.0	100 27 -4.9	99.63 -2.1	100 34 -2 6	99.28 -2.6

TABLE 3 – Continued

raement		30	11		<u> </u>	Mn	re			<u>г</u>	V1	<u>(1</u>	Zn	Rb	Sr	2	Zr	Sb	Cs	La	Eu	Тb	Hf	Ta	Th
Analytical Method	Unit	NA	FX	FX	FX	FX	FX	FX	NA	FX	NA	AA	AA	NA	FX	FX	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sample nterval in cm)								·.																	
-1, 91-113	G	33.7	4860	233	247	1007	49770	29	30.7	124	128	73	50	2.1	178	36	59	0.030	0.215	2.3	1.61	0.75	1.17	0.034	0.023
-1, 100-103 -1, 113-134 -1, 76-82 -1, 50-52 -2, 18-21 -1-1, 117-129	A2	37.0 34.2 36.9 37.1 37.1 37.5	9720 9840 9780 9840 9840 9840 9900	270 271 271 265 271 270	272 274 273 264 269 268	1 394 1 394 1 394 1 394 1 594 1 394 1 471	85400 84210 85890 87430 85400 88550	50 50 48 49 50 50	50.5 45.6 49. 48.8 48.7 49.7	173 177 186 178 193 176	197 168 178 184 185 184	77 73 70 72 72 73	81 84 87 83 86	<1.8 1.9 2.3 2.7 3.2 2.2	121 122 122 117 120 124	113 107 111 111 112 108	123 105 105 104 115 143	0.020 0.012 0.043 0.102 0.012	0.038 0.04 0.10 0.018 0.021 0.036	3.1 3.3 3.3 3.2 3.2 3.2 3.4	1.33 1.29 1.4 1.45 1.46 1.42	0.82 0.71 0.82 0.83 0.85 0.88	2.85 2.52 2.72 2.85 2.87 2.91	0.189 0.174 0.197 0.196 0.190 0.187	0.149 0.129 0.136 0.131 0.124 0.110
3-1, 106-110 1-1, 92-99 1-2, 98-112 4-2, 98-112 5-1 93-102 ait 5-2, 102-108 5-3, 128-142 5-5, 0-11 6-1, 69-74	P2	33.1 32.9 32.8 32.2 32.1 32.5 32.3 28.1	8340 8160 7980 8160 8040 8340 8220 6960 8400	241 234 232 234 229 236 239 202 240	232 236 228 236 234 230 228 252 252 226	1084 1084 1007 1162 1084 1084 1162 1007	58590 66010 62580 64680 65800 68110 63370 59430 67270	40 39 36 38 37 36 37 37 37	44.0 38.0 39.5 38.3 38.4 37.3 39.1 35.9	134 88 89 110 98 93 91 95 104	128 104 105 99 99 94 106 104	62 59/61 59 61 61 59 62 59 63	69 63/64 63 65 63 61 65 51 63	2.9 <1.3 3.7 <0.9 1.7 <1.8 <1.8 <1.5	165 160 162 171 160 155 160 158 202	98 97 95 99 100 97 97 84 93	109 109 125 106 95 88 102 92	0.017 0.042 0.008 0.012 0.012 0.010	0.12 0.048 0.175 0.02 0.055 0.030 0.057 0.025	2.9 3.0 2.9 2.90 3.04 3.0 3.1 2.4	1.29 1.22 1.24 1.26 1.21 1.21 1.27 1.06	0.70 0.68 0.71 0.66 0.69 0.68 0.67 0.58	2.47 2.39 2.48 8.29 2.26 2.29 2.38 2.04	0.171 0.163 0.162 0.16 0.160 0.155 0.155 0.157 0.138	0.107 0.117 0.131 0.117 0.104 0.129 0.136 0.107
6-1, 90-98 6-1, 100-104 7-1, 115-124 8-1, 140-146 0-1, 43-45 2-1, 87-92	P3	30.9 32.4 32. 30.9 32.4 30.4	6300 6420 6240 6300 6420 6120	220 221 220 224 223 223	342 362 348 344 358 354	1084 1084 1084 1162 1007	62580 60690 59430 60060 64400 61110	38 39 38 40 39 39	39.9 42.7 40.5 39.7 41.4 39.5	134 144 144 136 141 152	136 156 146 133 144 149	63 70 63 68 63 68	58 59 53 63 63 58	2.6 2.2 2. 2.5 2.6 2.1	115 115 122 118 117 115	66 66 67 64 69 70	77 69 82 72 74 64	0.186 0.048 0.020 0.071 0.055	0.0100 0.068 0.13 0.128 0.043 0.132	2.2 2.2 3.2 2.0 2.02 1.81	0.93 1.01 1.01 0.93 1.00 0.92	0.54 0.57 0.56 0.54 0.56 0.52	1.74 1.76 1.80 1.70 1.75 1.63	0.114 0.111 0.113 0.113 0.113 0.115 0.103	0.083 0.084 0.103 0.074 0.091 0.067
2-2, 72-76 3-1, 65-68 3-1, 117-122 3-1, 145-147 4-1, 125-129 6-1, 129-133 7-1, 127-131	P4	33.4 32.1 31.3 30.9 32. 32.1 33.	6780 6720 6660 6420 6720 6780 6780	237 228 218 263 225 224 224	368 367 375 279 229 315 314	1 162 1 162 1 084 1 084 1 084 1 084 1 084	65240 64680 59570 57680 60830 61320 61880	40 38 40 40 37 41 40	42.1 39.2 40.3 41.8 41.2 39.3 43.1	137 124 147 149 136 127 129	145 129 151 169 146 130 150	73 72 67 66 67 67 71	64 64 68 61 60 72	1.8 6.9 2.2 <1.3 1.3 1.8	136 138 138 127 135 134 133	71 80 75 73 72 70 64	74 80 90 79 75 86 92	0.013 0.140 0.023 0.019 0.013 0.188	0.062 2.90 0.083 0.035 0.040 0.028 0.035	2.1 2.22 2.3 2.1 2.4 2.21 2.32	0.99 1.02 1.05 1.01 0.99 1.03 1.06	0.56 0.57 0.55 0.55 0.56 0.58 0.58	1.81 1.94 1.85 1.83 1.80 1.95 2.00	0.116 0.109 0.106 0.105 0.111 0.107 0.114	0.100 0.081 0.105 0.076 0.068 0.075 0.079
8-1, 116-122 9-1, 110-122 0-1, 82-87 1-1, 63-67 1-1, 70-76 2-1, 54-62 2-18, 54-62 2-2, 56-63 3-2, 9-13	P5	28.9 31.3 30.8 29.9 29.9 27.6 30.9 29.2 30.1	7140 7500 6900 7020 6840 6540 7140 6540 6780	206 215 202 200 200 232 193 200 218	284 295 293 208 288 299 255 260 304	1162 1084 1007 1007 1084 1162 1007 1162 1084	59920 60970 61600 60690 60830 56630 61110 58100 62230	38 38 38 37 35 36 36 37	38.7 38.1 41.4 38.9 39.3 35.5 38.3 36.8 38.9	148 127 142 134 131 165 111 121 135	144 140 169 140 144 145 116 134 135	57 57 63 59 59 49 59 62 62 62	69 65 63 66 60 48 59 62 61	2.1 4.3 <1.3 3.6 4.2 9.1 5.5 3.3 3.5	168 158 158 165 172 172 177 180 162	81 80 76 82 81 70 80 76 69	95 84 96 92 88 74 84 77 77	0.031 0.047 0.016 0.079 0.240 0.147 0.018 0.033	0.167 0.168 0.063 0.243 0.21 0.440 0.43 0.141 0.221	2.6 2.7 2.5 2.4 2.3 2.11 2.4 2.3 2.2	1.07 1.14 1.08 1.06 1.08 0.95 1.07 1.02 1.02	0.57 0.64 0.58 0.57 0.56 0.51 0.58 0.54 0.57	2.01 2.15 1.97 1.98 1.87 1.69 2.03 1.88 1.86	0.126 0.137 0.126 0.124 0.121 0.111 0.124 0.116 0.115	0.0111 0.101 0.095 0.112 0.088 0.080 0.074 0.080 0.087
13-2, 127-129 15-1, 53-54 17-1, 136-141 19-1, 102-107 1-1, 142-144 12-1, 86-89 15-1, 124-127 17-1, 63-67 8-1, 135-140 19-2, 13-17	А3	38.2 39.4 38.3 40.7 39.1 38.8 38.9 38.4 38.3 39.5	10200 10260 10200 10320 10440 10600 10660 10020 10260 10320	303 311 308 304 303 302 308 302 302 302 305	258 260 251 249 243 243 258 250 257	1394 1394 1316 1394 1471 1471 1471 1394 1471 1394	77490 77910 76300 76860 78190 79940 78890 80640 78610 79240	43 45 41 43 44 44 42 42 45	43.2 43.5 44.3 43.3 44.7 43.2 43.7 42.2 44 44.5	114 113 121 128 121 115 111 119 120 118	118 123 122 128 119 114 116 117 120 252	59 61 56 57 61 54 56 57 57 59	79 76 84 81 92 80 90 86	2.9 4.7 3.1 4.4 <1.5 2.8 <1.5 3.6 2.3	132 129 135 129 130 132 131 134 131 128	118 127 117 122 128 131 131 131 118 124 128	124 122 142 137 129 148 123 123 122 135	0.040 0.055 0.050 0.072 0.036	0.018 0.030 0.28 0.175 0.21 <0.02 <0.02 <0.02 0.081 <0.024	4.3 4.0 4.4 4.0 4.0 4.0 4.2 4.0 4.1 4.1	1.50 1.55 1.50 1.51 1.55 1.52 1.55 1.43 1.48 1.60	0.85 0.91 0.85 0.93 0.92 0.90 0.87 0.87 0.90	3.02 3.18 3.10 3.14 3.19 3.28 3.20 3.02 3.04 3.33	0.219 0.232 0.224 0.216 0.236 0.230 0.236 0.220 0.227 0.231	0.153 0.142 0.157 0.146 0.175 0.21 0.158 0.152 0.163 0.161
1-2, 41-44 2-1, 48-53 3-1, 7-11 4-1, 48-51 5-1, 49-54 6-2, 75-81		37.9 38.3 38.2 38.3 38.3 38.9	10320 10440 10320 10320 10380 10380	302 305 309 314 312 311	251 251 241 245 249 246	1471 1471 1394 1316 1394	79310 81270 78960 77770 77910 77910	41 42 40 41 44 43	42.8 42.6 42.6 43.4 44.3	119 118 119 111 116 102	116 115 118 114 118	60 61 56 57 57 57	90 116 92 83 92 103	<1.5 2.2 2.5 <1.5 5.4	130 134 131 124 131 131	128 123 128 132 126 129	137 144 136 131 124	0.039 0.038 0.036 0.032	0.023 0.029 0.015 0.013 0.20	3.9 4.0 3.9 4.0 4.1	1.49 1.52 1.53 1.51 1.55	0.89 0.90 0.88 0.90 0.91	3.19 3.2 3.16 3.22 3.19	0.225 0.224 0.229 0.227 0.241	0.164 0.152 0.174 0.186 0.164
7-1, 125-131 18-2, 115-122 19-2, 65-69 10-3, 137-143	A4	37.4 36.6 36.9	9540 9480 9540 9540	288 273 279 285	302 294 298 206	1394 1394 1394 1549	78400 76010 78750 79730	47 45 46 48	48.2 47.5 46.9	163 169 177 174	177 182 171	63 62 69 68	83 79 83 81	4.7 4.6 3.1	134 119 127 130	105 110 111 119	116 110 118	0.28 0.022 0.0148	0.168 0.11 0.089	3.6 3.4 3.4	1.42 1.43 1.38	0.82 0.80 0.81	2.85 2.79 2.78	0.190 0.194 0.194	0.141 0.159 0.131
1-2, 37-45	P4'	32.4	6840	238	219	1084	62790	39	40.8	133	137	69	65	< 1.2	129	86	77		0.02	2.2	1.08	0.58	1.87	0.111	0.080
2-1, 40-42 2-1, 80-87 3-1, 108-116	A4	36.5 33.2 29.7	9540 7080 6480	282 251 211	316 308 362	1394 1162 1162	78050 63340 60130	48 38 38	48.7 41 37.6	179 116 129	183 133 140	69 68 61	90 64 69	3.6 3. < 0.8	128 129 132	117 74 68	117 82 64	0.019 0.021	0.144 0.126 0.026	3.5 2.35 2.02	1.37 1.09 0.94	0.80	2.87 1.99	0.195	0.144
4-2, 116-122 4-3, 48-53 5-1, 81-86	A4	31.6 36.4 36.9	6600 9780 9780	217 267 277	330 294 298	1084 1549 1549	61950 81200 80150	39 47 47	41 47.4 48.0	144 180 170	149 181 177	61 57 62	63 82 86	2.6 6.7 5.4	139 126 130	66 108 114	74 129 111	0.022 0.079 0.039	0.148 0.171 0.174	2.1 3.7 3.6	1.02 1.37 1.42	0.56	1.81 2.85 3.07	0.103 0.198 0.197	0.064
6-2, 66-71 7-2, 54-59	A4	37.1 3 7.8	9840 10140	275 297	295 263	1549 1316	81550 73920	45 44	46.9 43.8	158 129	171 131	62 54	87 83	4.6 3.1	131 132	106 124	110 112	0.047 0.019	0.172 0.144	3.5 4.0	1.40 1.46	0.83 0.87	2.88 3.07	0.200 0.225	0.138 0.142

TABLE 4 Site 395, Hole 395A, Trace-Element Data (expressed in ppm)

can be stated that none of the units mentioned can be considered to represent primary liquids (Ni values should be around 250 ppm). If, however, we can consider that Leg 45 plagioclase-phyric samples are derived from the same, or similar, initial liquids, both HPC and LPC elements allow us to infer that the extent of crystal fractionation increases in the order P₃, P_4 , P_5 , and P_2 .

(

67-2, 54-59

CONCLUSIONS

1. Trace element data are consistent with the classification of chemical units determined on Leg 45 from major-element shipboard study.

2. Alkali metals show significant variations in all the samples studied. Notably, Cs = f(Rb), and, within a given unit Cs = $f(K_2O)$. This is the result of secondary processes (alteration).

3. From high-partition-coefficient and low-partitioncoefficient elements, it can be concluded that none of the basaltic samples recovered can be considered as primary liquids and all have undergone a substantial history of crystallization.

4. Except for Units P_3 , P_4 , and P_5 , which can have been derived from a single parental magma, the different units derive from different magmas obtained by different degrees of partial melting.

Unit	Pa		P	b			F	°c	
Sample (Interval in cm)	14-6, 20-45	15-4, 48-53	16-3, 137-142	18-1, 130-136	19-2, 138-141	22-4, 144-150	23-1, 143-147	24-3, 73-78	25-1, 96-100
Depth (m)	125	135	144	160	173	201	209	219	221
Rock Type	pl. ol. B	pl. ol. B	pl. ol. B	pl. ol. B	pl. ol. B	pl. ol. B	pl. ol. B	pl. ol. B	pl. ol. B
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ (t) FeO MnO MgO	49.3 16.25 9.96 5.36 0.16 7	49.5 16.75 9.17 4.36 0.15 8.5	49.8 16.73 9.24 4.45 0.15 8.1	49.7 16.93 9.68 0.17 7.9	49.7 16.70 9.23 0.17 7.7	49.8 16.93 9.47 4.64 0.15 7.6	49.2 16.68 9.29 0.15 7.3	49.1 16.58 9.68 5.23 0.16 7.9	49.7 16.71 9.49 0.15 7.4
CaG Na2O K2O TiO2 P2 O5	11.57 2.62 0.31 1.50 0.15	11.88 2.59 0.21 1.24 0.12	11.95 2.57 0.24 1.27 0.12	12.09 2.62 0.29 1.27 0.13	11.98 2.73 0.21 1.29 0.13	12.11 2.69 0.25 1.29 0.11	11.96 2.72 0.21 1.29 0.11	12.07 2.65 0.23 1.29 0.12	11.99 2.65 0.13 1.29 0.11
Tot al Lol	98.82 -2.0	100.11 -3.1	100.17 -2.4	100.78 -2.6	99.84 -3.0	100.30 -2.3	98.91 -2.5	99.78 -2.0	99.62 -2.2

 TABLE 5

 Site 396, Hole 396, Major-Element Data (volatile-free concentrations, wt. %)

Note: pi = plagioclase, ol = olivine, B = basalt.

From low-partition-coefficient hygromagmatophile elements, it can be stated, for Sites 395 and 396, that the initial mantle materials are similar, if not exactly the same. The *initial mantle material at 23* °N (Leg 45) is *different from the initial mantle material at 36* °N (FAMOUS area). This is the most important result of this study, which demonstrates mantle heterogeneity.

REFERENCES

Allegre, C. J., Javoy, M., and Michard, G., 1968. Etude de l'abondance des éléments de transition dans l'écorce terrestre, comparée à celle des terres rares. In Ahrens, L. H. (Ed.), Origine et Distribution des Eléments: London.

Ahrens, L. H. (Ed.), (Pergamon Press), p. 914-928.

- Bougault, H., 1977. First transition series elements fractional crystallization and partial melting. In Aumento, F., Melson, W. G., et al., Initial Reports of the Deep Sea Drilling Project, v. 37, Washington (U.S. Government Printing Office), p. 539-546.
- Bougault, H. and Hekinian, R., 1974. Rift valley in the Atlantic Ocean near 36°50'N: petrology and geochemistry of basaltic rocks, *Earth Planet. Sci. Lett.*, v. 24, p. 249-261.
- Bougault, H., Cambon, P., and Toulhoat, H. (1977). X-ray spectrometric analysis of trace elements in rocks; correction for instrumental interferences, X-Ray Spectrometry, v. 6, no. 2, p. 66-72.
- Burns, R. G., 1970. Mineralogical applications of crystal field theory: Cambridge. (Cambridge Earth Sciences Series).

- Curtis, C. D., 1964. Application of the crystal field theory: the inclusion of trace transition elements in minerals during magmatic differentiation, *Geochim. Cosmochim. Acta*, v. 28, p. 389-403.
- Hart, S. R., 1971. Rb, Cs, Sr, and Ba contents, and Sr isotopic values of ocean floor basalts, *Phil. Trans. Roy. Soc. London*, ser. A., v. 268, p. 573-587.
- Orgel, L. E., 1964. Chimie des éléments de transition. Dunod Ed., Paris.
- Peck, L. C., 1964. Systematic analysis of silicates, *Geological Survey Bulletin 1170*: Washington (U.S. Government Printing Office).
- Shaw, D. M., 1970. Trace elements fractionation during anatexis, Geochim. Cosmochim. Acta, v. 34, p. 237-243.
- Treuil, M. and Joron, M., 1975. Utilisation des éléments hygromagmatophiles pour la simplication de la modelisation quantitative des processus magmatiques: exemple de l'A-FAR et de la dorsale medio-atlantique. Societa Italiana Mineralogia et Petrologia, v. 31, p. 125-174.
- _____, 1976. Etude geochimique des éléments en trace dans le magmatisme de l'Afar. Implication petrogénétique et comparaison avec le magmatisme de l'islande et de la dorsale medio-atlantique. Inter-u. ion Commission on Geodynamics: Scientific Report 16. Proceedings of an international symposium on Afar region and related rift problems, Bad Bergrabern F. R. Germany, April 1-6 1974.
- Treuil, M. and Varet, J., 1973. Critères volcanologiques petrologiques et geochimiques de la génèse et de la différenciation des magmas basaltiques: exemple de 'AFAR, Bull. Soc. Geol. France, v. 15, p. 506-540.

TRACE ELEMENTS IN BASALTS

		TABLE 6		
Site	396, Hole 396	, Trace-Element I	Data (expressed	in ppm)

																			-					
Element	Sc	Ti	v	Cr	Mn	Fe		Co	1	Ni	Cu	Zn	Rb	Sr	z	r	Sb	Cs	La	Eu	ТЪ	Hſ	Ta	Th
Analytical Method	NA	FX	FX	FX	FX	FX	FX	NA	FX	NA	AA	AA	NA	FX	FX	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sample (Interval in cm)																								
Unit P _a 14-6, 20-25	36.8	9000	312	288		69720	40	40.7	111	114	58	73	4.7	148	109	118	0.021	0.260	3.5	1.38	0.7 9	2.64	0.207	0.161
Unit Pb 15-4, 48-53 16-3, 137-142 18-1, 130-136 19-2, 138-141 21-1, 87-89	34.8 35.4	7440 7620 7620 7740 7140	256 268 262 269 261	415 397 371 391 431		64190 64680 67760 64610 62650	41 40 40 39 41	40.8 41.4	171 143 142 142 189	142 144	65 64 67 67 67	66 67 66 65 65	4.4 3.9	155 155 146 168 150	86 90 87 86 85	90 83	0.020 0.025	0.250 0.255	3.0 2.9	1.14 1.23	0.64 0.66	2.14 2.24	0.167 0.173	1.22 0.132
Unit P _c 22-4, 144-150 23-1, 143-147 24-3, 73-78 25-1, 96-100	34.5 34.2 35.1 34.9	7740 7740 7740 7740 7740	254 255 254 259	284 208 293 288		66290 65030 67760 66430	40 41 41 40	41.5 42.4 42.8 40.9	123 128 124 109	121 125 1340 116	65 65 66 64	70 72 73 71	5.1 4.2 4.3 3.0	135 133 128 130	86 93 86 81	103 89 90 107	0.014 0.011 0.025 0.016	0.289 0.228 0.234 0.056	2.65 2.7 2.7 2.7 2.7	1.23 1.19 1.26 1.20	0.67 0.67 0.68 0.68	2.16 2.16 2.31 2.18	0.153 0.152 0.156 0.153	0.116 0.096 0.116 0.126

Figure 1. Selected major and trace elements concentrations versus depth: definition of chemical units.

H. BOUGAULT, M. TREUIL, J.L. JORON

	Init	4.7*	4.78	41	12						D2	P 2	BA	B4'	
		A2'	A2.	A2	A3		A4	A4	F1.	F2+	F2	r3	г ч	F4	r5
		395				upper	lower	(7.2							
н	lole	105-107 cm	205	3054	395 A	205 A	3954	6/-2, 54.59 cm	305	305	205 A	3954	3954		
		103-107 сш	393	333A			373A	34-39 Cill	393	393	3758	3757	3334		
Sc	NA	38.4	37.8	36.6	38.7	36.8	36.8	37.8	30.6	30.6	32.6	31.5	32.1	31.7	30.12
			1.4	1.2	0.7	0.4	0.4				0.4	0.9	0.9	1.5	0.8
Ti	FX	10200	97 10	9820	10337	9528	9800	10140	6090	7680	8177	6300	6694	6750	7045
	1		59	62	152	26	34				137	114	129	216	245
v	FX	301	268	270	306	281	273	297	212	219	235	221	226	229	206
			3.7	2.3	3.6	5.8	5				4	1.7	6.3	18	8
Cr	FX	279	271	270	251	303	296	263	350	222	232	351	- see	text –	295
			5	4	6	8	2				4	8			8
Co	FX	48	48.6	49.5	42.7	46.8	46.3	44	37.5	34	37.6	38.8	39.4	38.5	37
	[1	8	1.5	1.3	1.1				1.5	.7	1.4	.6	1.1
Co	NA	49	49.7	49.6	43.4	47.3	47.3	44	39.5	35	38.1	40.5	40.8	40.2	38.2
			0.5	0.5	0.7	0.6	0.6				0.7	1.4	1.6	1.5	1.
Ni	FX	161	176	178	117	172	169	129	135	86	94.8	140			136.1
	1		3.9	4.8	4.4	6.5	11				8	4.6	- see	text -	7.6
Ni	NA	160	185	182	118	176	176	131	145	90	101	143.6			145.3
			3.3	9.5	3.8	5.5	5				4.6	8.2			11
Cu	AA	69	67.8	72.8	57.8	65.5	60.3	54	64	55	60.6	65.8	69	64.7	59.5
			2	2.3	2.1	3.5	2.9				1.3	3.2	2.9	4.3	2.5
Zn	AA	92	85.5	84.2	84.6	81.5	84.5	83	55	58	64.3	59	63.8	65	64
			2.8	2.1	5.6	1.9	2.4				2.5	3.7	3.3	2.6	3.3
Sr	FX	127	119	121	131.2	127.5	129	132	113	162	162	117	135.6	132.2	163.8
			1	2.4	2	6.5	2.4		_	_	5	2.8	2.1	4.7	5.6
Zr	FX	121	116	110	125.6	111.2	109	124	67	94	97.6	67	72.1	73.5	78.2
-	1		3.3	2.3	4.8	5.6	4.1				1.6	2.2	4.9	9	5
Zı	NA	112	118	115	131.8	114.7	116	112	65	98	104.8	73	82.3	74.2	88.6
			11	15	8.7	4.2	10				12	6.2	7.1	7.6	7.2
La	NA	3.25	3.39	3.25	4.1	3.5	3.6	4.0	2.0	2.8	3.0	2.1	2.2	2.2	2.45
-			0.3	0.1	0.1	0.1	0.1		ànn		0.1	0.1	0.1	0.1	0.2
Eu	NA	1.5	1.39	1.39	1.52	1.41	1.4	1.46	0.96	1.18	1.24	0.97	1.02	1.03	1.07
			0.04	0.07	0.04	0.03	0.03				0.03	0.04	0.03	0.07	0.04
10	NA	0.87	0.83	0.82	0.89	0.81	0.82	0.87	0.53	0.64	0.68	0.55	0.56	0.57	0.58
			0.01	0.06	0.03	0.01	0.01		0.01		0.02	0.02	0.01	0.04	0.03
HI	NA	2.84	2.82	2.79	3.16	2.8	2.93	3.07	1.65	2.21	2.37	1.73	1.88	1.83	1.97
т.	1.		0.06	0.15	0.09	0.04	0.12	0.000	0.107	0.140	0.09	0.06	0.08	0.14	0.10
1 a	NA	0.2	0.190	0.189	0.228	0.193	0.198	0.225	0.106	0.149	0.161	0.112	0.110	0.106	0.125
TL	1	0.107	0.004	0.008	0.007	0.002	0.002	0.140	0.091	0.112	0.005	0.004	0.004	0.000	0.007
ın	NA	0.137	0.134	0.130	0.164	0.144	0.14/	0.142	0.081	0.113	0.120	0.084	0.083	0.074	0.096
	1		0.004	0.013	0.017	0.014	0.010				0.012	0.013	0.014	0.009	0.013

 TABLE 7

 Site 395, Trace-Element Average Values for Each Unit (expressed in ppm)

TABLE 8		
Site 395, Major-Element Average Values for Each Unit (volatile-free concentrations,	wt.	%)

Unit	A2*	A2*	A2	A3	A4	A4	A4	P1*	P2*	P2	P3	P4	P4'	P5
	395				395 A	395 A	395 A							
	11-1,				upper	lower	67-2,							
Hole	105-107 cm	395	395 A	395 A	Core 61	Core 61	54-59 cm	395	395	395 A	395 A	395 A	395 A	395 A
No. Samples	1	6	6	16	4	4	1	2	1	8	6	6	4	6
SiO ₂	48.9	49.37	49.45	49.73	49.37	48.90	49.90	49.40	49.60	49.71	49.47	49.82	49.47	49.54
		0.32	0.23	0.14	0.77	0.29				0.46	0.37	0.26	0.13	0.35
Al ₂ O ₃	15.93	14.93	15.01	15.14	15.00	15.17	15.10	17.77	18.77	18.04	17.69	17.15	16.90	18.29
-		0.12	0.14	0.22	0.36	0.10		0.63		0.32	0.19	0.61	0.47	0.39
Fe ₂ O ₃ (t)	12.83	12.06	12.31	11.20	11.17	11.46	10.56	8.49	9.52	9.33	8.77	8.82	8.87	8.73
		0.15	0.23	0.19	0.23	0.23		0.18		0.49	0.26	0.30	0.20	0.13
MnO	0.20	0.18	0.18	0.18	0.18	0.20	0.17	0.14	0.13	0.14	0.14	0.14	0.14	0.14
		0.01	0.01	0.01	0.01	0.01		0.01		0.01	0.01	0.01	0.01	0.01
MgO	6.8	8.58	8.53	7.61	8.20	8.40	7.30	8.20	6.10	6.84	7.63	7.78	8.35	7.24
	[0.20	0.15	0.25	0.14	0.18		0.42		0.41	0.35	0.83	0.19	0.66
CaO	11.01	10.53	10.60	11.29	10.97	11.09	11.40	12.71	12.05	12.13	12.75	12.25	12.03	12.26
		0.03	0.09	0.11	0.32	0.16		0.19		0.21	0.13	0.19	0.10	0.22
Na ₂ O	2.68	2.66	2.64	2.46	2.40	2.5	2.5	2.15	2.59	2.59	2.16	2.29	2.22	2.48
-	1	0.02	0.04	0.06	0.04					0.08	0.05	0.09	0.01	0.06
K20	0.22	0.11	0.14	0.21	0.20	0.23	0.29	0.10	0.30	0.13	0.12	0.14	0.09	0.16
-		0.02	0.03	0.05	0.08	0.02		0.04		0.04	0.02	0.05	0.03	0.04
TiO ₂	1.70	1.62	1.64	1.72	1.59	1.62	1.69	1.01	1.28	1.37	1.05	1.12	1.13	1.18
-		0.01	0.01	0.02	0.01	0.02		0.01		0.03	0.02	0.01	0.04	0.05
P2O5	0.18	0.15	0.17	0.17	0.14	0.15	0.15	0.11	0.13	0.14	0.11	0.11	0.10	0.11
		0.01	0.01	0.01	0.01	0.01				0.01	0.01	0.01	0.01	0.02
Total	100.45	100.01	100.67	99.71	99.22	99.72	99.06	100.08	100.47	100.42	99.89	99.62	99.30	100.13
LoI		-0.93	-0.98	-1.34	-1.9	-2.87	-2.60	-1.0	-1.5	-1.84	-1.2	-1.3	-1.85	-1.88

	Unit					
	Pa	Pb	Pc			
No. Samples	1	4	4			
SiO ₂	49.3	49.68	49.45			
-		0.13	0.35			
Al ₂ O ₃	16.25	16.78	16.73			
		0.10	0.15			
Fe ₂ O ₃ (t)	9.96	9.33	9.48			
2 5		0.24	0.16			
FeO	5.36					
MnO	0.16	0.16	0.16			
MgO	7.0	8.17	7.55			
-		0.31	0.26			
CaO	11.57	11.98	12.03			
		0.09	0.07			
Na ₂ O	2.40	2.41	2.46			
_		0.07	0.03			
к ₂ 0	0.31	0.24	0.21			
		0.04	0.05			
TiO ₂	1.50	1.27	1.29			
		0.02				
P2O5	0.15	0.12	0.11			
		0.01	0.01			
Total	98.60	100.14	99.47			
LoI	-2.0	-2.8	2.25			
		0.3	0.21			

	TABLE 9
Site	396, Major-Element Average Values
	for Each Unit (volatile-free
	concentrations, wt. %)

Note: Averages and standard deviations listed for Units \mathbf{P}_b and \mathbf{P}_c

TABLE 10 Site 396, Trace-Element Average Values for Each Unit (expressed in ppm)

396		Unit			
		Pa	Рb	Pc	
No. S	Samples	1	4	4	
Sc	NA	36.8	35	34.7	
Ti	FX	9000	7600	7740	
V	FX	312	264	255	
Cr	FX	288	393	290	
Co	FX	40	40	40.5	
Со	NA	40.7	41	42	
Ni	FX	111	142	121	
Ni	NA	114	143	124	
Cu	AA	58	66	65	
Zn	AA	73	66	72	
Sr	FX	148	156	131	
Zr	FX	109	87	86	
Zr	NA	118	87	97	
La	NA	3.5	2.9	2.7	
Eu	NA	1.36	1.2	1.22	
Tb	NA	.79	0.65	0.68	
Hf	NA	2.64	2.2	2.2	
Ta	NA	0.21	0.17	0.156	
Th	NA	0.16	0.13	0.114	

Figure 2. Cesium versus K_2O ; Units P_2 , P_5 , and A_3 of Hole 395A.

Figure 3. Cesium versus rubidium; all units of Hole 395A.

Figure 4. Zirconium versus titanium (TiO₂); comparisons between Leg 45 and Leg 37 results. Shifts along the line from Leg 37 to Leg 45 samples for phyric samples on one hand and for aphyric samples on the other.

Figure 5. Tantalum versus thorium; a very low partition coefficient (LPC) hygromagmatophile element as a function of another very low LPC, hygromagmatophile element; upper mantle heterogeneity (see text).

Figure 6. Hf versus thorium; an LPC element as a function of another very low LPC element, illustrating upper mantle heterogeneity plus variable partial melting (see text).

Figure 7. Terbium versus thorium; an LPC element as a function of another very low LPC element, illustrating mantle heterogeneity plus variable partial melting (see text).

Figure 8. Zirconium versus thorium; an LPC element as a function of another very low LPC element, illustrating mantle heterogeneity plus variable partial melting (see text).

Figure 9. Titanium versus thorium; an LPC element as a function of another very low LPC element, illustrating mantle heterogeneity plus variable partial melting (see text).

TABLE 11A Slope Values of Lines Corresponding to Element i Plotted Versus Element j

$\overline{}$	i						
j	$\overline{\ }$	Th	Ta	Hf	ТЪ	Zr	Ti
Th	F 45	1	0.95 1.38	2.5 20	0.83 5.8	102 830	9500 70000
Ta	F 45	1.05 0.725	1 1	2.63 14.5	0.87 4.2	107 602	10240 50750
Hf	F 45	0.40 5 10 ⁻²	0.38 6.9 10 ⁻²		0.33 0.29	40.8 41.5	3900 3500
ТЬ	F 45	1.20 0.17	1.14 0.23	3 3.4	1 1	122 141	11700 11900
Zr	F 45	9.8 10-3 1.2 10-3	9.3 10-3 1.65 10-3	2.45 10-2	8.13 10 ⁻³ 6.96 10 ⁻³	1 1	95.5 84
Ti	F 45	1.02 10 -4 1.43 10-5	9.7 10-5 1.97 10-5	2.55 10-4 2.86 10-4	8.46 10-5 8.29 10-5	1.04 10 ⁻² 1.18 10 ⁻²	1 1

Note: The dashed line separates values involving either Th or Ta, or both, from values not involving these elements, but which were calculated relative to them. Leg 45 data indicated by 45, FAMOUS data by F.

 TABLE 11B

 Examples of Absolute Values of LPC Elements for Aphyric and Phyric Samples^a

Unit A3		Th	Ta	Hf	ТЬ	Zr	Ti
ARP 7-7	45 F	0.164 0.86	0.228 0.85	3.16 2.37	0.89 0.71	125 110	10337 8520
Unit P ₂							
ARP 31-36	45 F	0.120 0.32	0.161 0.28	2.37 0.94	0.68 0.29	97 40	8177 3300

^aA comparison between Leg 45 (45) and FAMOUS area (F). Note: The dashed line separates representative aphyric or sparsely phyric samples (A₃ and ARP 7-7) from phyric samples (P₂ and ARP 31-36).

H. BOUGAULT, M. TREUIL, J. L. JORON

Figure 10. Log (Cr) versus Log (Ni).