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ABSTRACT - This paper presents a theoretical and experimental study of the correlation between 
successive waves. The theoretical model developed here, uses as starting point Rice's 
results on the autocorrelation function of the envelope of a narrow band random gaussian 
signal. Recent developments by Hasselmann et al. on wave spectra and Cavanie et al. on 
wave heights and periods statistics used as input in Rice's model, lead to a theoretical joint 
probability for successive wave heights. This model is compared to experimental results 
computed from 169 North Sea storm wave recordings corresponding to more than 
26 000 individual waves. - 
The model leads to correlation coemcients between successive waves of 0.29  when using 
"a growing-sea" Jonswap type spectrum, and 0 .  16 for a "fully arisen sea" Pierson 
Moskowitz one. This confirms previous experimental observations. The theoretical joint 
probability function p (Hi, Hi+ ,) is very similar to the experimental one. Good agreement 
between theory and observation is also found for the conditional probability of Hi+ 
given Hi. Both theoretical and experimental probabilities are fitted by a two-parameter 
Weibull law as a function of Hi. Moreover, it is found theoretically and conhrmed by 
observation, that for heights smaller than 0.75  Hl,,, waies can be considered as 
uncorrelated while for high waves the ratio H, to expectancy of Hi+,  tends towards 1 .9.  

Oceanol. Acta, 1978, 1 ,  2, 151-158. 

RÉSUMÉ Relations statistiques 
entre hauteurs de vagues successives 

- Cet article présente une étude théorique et expérimentale sur les relations entre vagues 
successives. Le modèle développé ici utilise comme point de départ les résultats de 
Rice (1944) sur la fonction d'autocorrélation de l'enveloppe d'un signal gaussien à bande 
de fréquence étroite. L'application à cette théorie des résultats récents de Hasselman et 
al. (1975) sur la forme des spectres de houle, et de Cavanie et al. (1976) sur la distribution 
composée des amplitudes et des périodes des vagues, a permis de déterminer la loi 
théorique de distribution composée des hauteurs de deux vagues successives. La densité 
de probabilité ainsi obtenue est comparée à la distribution expérimentale obtenue à partir 
d'un ensemble d'enregistrements en Mer du Nord. *. 
Le modèle permet une estimation théorique du coefficient de corrélation entre vagues 
successives. Un bon accord est observé entre les distributions composées théorique et 
expérimentale. La distribution liée d'une vague Hi+, ,  étant donnée la vague 
précédente Hi, est bien représentée par une loi de Weibull dont les paramètres sont 
fonction de Hi. Une corrélation non nulle entre Hi et Hi + , n'apparaît que lorsque Hi est 
supérieur à 3 fois l'écart type du signal. Pour chiffrer cette corrélation. le rapport de Hi 
sur l'espérance mathématique de Hi+,  a été calculé. Ce rapport tend vers une valeur 
de 1,9 pour les vagues extrêmes, œ qui est confirmé par l'expérience. 
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INTRODUCTION The theoretical joint probability density for successive 

Groups of high waves occuring from time to time are 
always observed in sea wave recordings. This phenome- 
non corresponds to a non-zero correlation between 
successive waves. Information concerning this correla- 
tion is of importance in order to determine the behaviour 
of structures at sea, and to judge the influence of this 
dependence on the computation of design wave heights 

heights p(Hi, Hi+,) is then computed. This theoretical 
density is found, on comparison, to be close to the 
experimental one. The conditional distribution of H i+ ,  , 
given Hi,  seems to be well htted by a two-parameter 
Weibull law. The Weibull parameters, as well as the 
expected values of the distributions, are determined as 
function of Hi and compared to experimental results. 

and wave groups. 

Up to now, the hypothesis of independence between BASIC RESULTS FROM PREVIOUS WORK 
successive waves has been largely accepted and 
commonly applied; however several publications have 
previously been devoted to waves groups. Nolte and 
Hsü (1972) have determined the mean duration of groups 
of successive waves higher than a given threshold. 
Starting from this value and assuming independence 
between successive waves, these authors conclude that 
group durations are distributed according to a Poisson 
law. Rye (1974) computed the correlation between 
successive waves for several Waverider recordings in the 
North Sea; a mean value of 0 .24  was found, but Rye 
noticed that higher coefficients occured for growing seas 
and lower ones for fully arisen seas. Assuming a Rayleigh 
type distribution for heights and independence between 
successive waves, Rye proposed a theoretical distribution 
for the length of wave groups. 

Other authors have been working on this topic: Wilson 
and Baird (1972), Goda (1970). Ewing (1973). A compre- 
hensive review of research in this field may be found in 
Goda's 1976 paper. 

In the present work a somewhat different approach has 
been chosen. The starting point is 1944 Rice's random 
noise theory. In view of recent developments in wave 
statistics, it has been possible to apply his results, 
concerning the autocorrelation function of the envelope 
of a narrow band signal. to sea waves. Wave energy 
spectra as expressed by Pierson and Moskowitz (1964), 
Hasselmann et al. (1976) have been used in this work. In 
order to compare theoretical results with experimental 
data, the continuous envelope signal had to be converted 
in terms of individual wave heights. This was done using 
the joint probability density for heights and periods 
developped at Cnexo by Cavanie et al. (1976). 
Testing joint properties of stochastic processes always 
requires a considerable amount of experimental data; 
here the data are 169 sea waves storm recordings, from 
the North Sea, providing more than 26 000 individual 
waves. These records have been lent by the Ukooa 
(United Kingdom Offshore Operators Association) and 
partialy processed by the Arae (Association de Recherche 
Action des Éléments). 

This paper begins with a review of Rice's envelope theory 
and of Hasseimann's latest results concerning wave 
energy spectra and the choice of their parameters 
depending on meteorological conditions. Then, starting 
from these results, an estimation of the correlation 
coefficient between successive wave heights is computed. 
These estimates are found to be close to experimental 
values, and subject, as already mentioned. to variations 
depending on the spectral shapes for growing or fully 
arisen seas. 

Rice's envelope theory 

Let 1 (t) be a gaussian noise with a narrow band energy 
spectrum, fm being a representative midband frequency. 
I ( t )  may be represented as the sum of sinusoidal 
components of fixed amplitude and random phase 

where the qn are uniformly distributed over the 
range [O, 2 n]: 

and @(f) is the spectral energy density. 

The random noise may be reformulated as 

1 (t) = 1, COS a, t - Is sin O, t ,  

with wm = 2 n f, , 

N 

Ic= 1 C, COS(O, t-O, t-q,), 
n =  1 

N 

1, = C C, sin (on t - o, t - q n ) .  
n= 1 

The envelope is defined as 

R (t) = [Ic2 + IsZ]"2 

Rice studied the correlation between R (t) and R ( t  + r). 
Following his notation, the subscripts 1 and 2 will be 
writen for the times t and t +T. 

The four random variables ICI, 1,,, I,,, I,, have a four 
dimensional normal distribution determined by the 
second moments 

m 

where mo = <D (f) df. 
O 

Using the transformation 



Ici = Ri COS Oi, 

ISi = Ri sin Oi, i = 1 or 2, 

and averaging the resulting probability density over 0, 
and O,, Rice obtains 

p(Rl ,  R2)=R, R2 A - '  

x Io (RI R, A-'  [ P ~ ~ ~  + ~ ~ ~ ~ l ~ ~ ~ )  

x e ~ p ( - m ~ ( 2 A ) - ' ( R ~ ~ + R , ~ ) ) ,  

2 where A = mo2 - pl, - and Io is the Bessel function 
of the first kind with imaginary argument. 

The previously defined envelope is a "crest to mean level" 
envelope. Since these theoretical results are to be 
compared to wave, height data, Ri is transformed 
into Ri/2, which leads to the equation 

p(R1, ~ , ) = ( 1 6 ~ ) - '  RI R, 

X Io (Ri R2 (4A)-' [ P l ~ Z + ~ ~ 4 2 1 " 2 )  

x e x p ( - m , ( 8 A ) - ' ( ~ , ~ + R ~ ~ ) ) .  (1) 

which will be used in the following. 

Pierson - Moskowitz and Jonswap Spectra 

As can be seen from (1). the shape of the energy spectrum 
is needed to apply Rice's result. Various spectral shapes 
for sea-waves have been proposed in the past 20 years. At 
present, the most commonly used are the Jonswap and 
the Pierson and Moskowitz spectra, which correspond 
respectively to growing and fully arisen seas. 

From Hasselmann et al., the Jonswap spectral energy 
density is properly expressed by 

In the case of time or fetch-limited sea-states, the 
Jonswap experiment, conducted in the North Sea 
in 1969, led to the following mean values for the 
parameters in this formula: 

0=0,=0.07  for w 5 2 n  f,, 

a=o ,=0 .09  for w > 2 n  f,, 

y = 3 . 3 ,  

where ji = X  g / ~ , , ~  is the dimensionless fetch. 

The fetch X is expressed in meters, and the wind velocity 
at 10 m height, Ulo,  in meters per second. g is the 
acceleration due to gravity. 

It must be noticed that different values of these 
parameters have been found by other authors working in 

different areas, but since the data used in this paper were 
collected in the North Sea, the Jonswap values were 
chosen. 

In the case of a fully arisen sea, the y parameter reduces to 
unity and the Jonswap formulation becomes equivalent 
to that of Pierson and Moskowitz (PM) in which the 
spectral density depends only on the wind velocity: 

where a = 8 . 1  x and B =O. 74 are dimensionless 
constants. 

Correction for the height at which the wind velocity is 
measured (19.5 m for PM spectrum, 10 m for Jonswap 
spectrum) will be disregarded in the following. From 
Hasselmann et al.. the portion of the (X.  U) plane 
corresponding to growing seas has been found to be 

where X  is the fetch in NM and U the wind celerity in 
meters per second. 

THE AUTOCORRELATION FUNCTION OF THE 
WAVE ENVELOPE 

The water surface signal satisfies both conditions 
required by Rice's model. Except in very shallow water, 
where sea-waves may show important non-linearities, 
the distribution of the free surface does not deviate 
considerably from a normal law. Moreover sea wave 
spectra in storm conditions can always be considered as 
narrow spectra, in the sense required by Rice: although 
one may frequently observe values of the spectral width E 

(as defined by Cartwright, Longuet-Higgins, 1956) close 
to unity, this is due to the spectral decrease at high 
frequencies. As an example, cutting off the five per cent of 
total energy at highest frequencies in a PM spectrum 
makes the spectral width fa11 from 1 to 0.49.  This shows 
that, in spite of high values of E ,  high frequencies 
contribute little to the total energy of the spectrum, the 
main part of which is concentrated near the peak. 

Using Rice's results, the autocorrelation function of the 
wave envelope is computed from the following integral, 

where RM is the mean value of R(t). To deal with a 
dimensionless function p(r), r (r)  is divided by the 
variance of R(t),  0,': 

Since the probability density of R (t) is, for a narrow band 
spectrum, a Rayleigh law: 



values of RM and cR2 are given by 

These expressions and expression (1) are used respective- 
ly for RM. aR2 and p(R( t ) ,  R ( t+ r ) )  in equations (4) 
and (3, leading to the normalized autocorrelation 
function. This computation was carried out for both 
Pierson-Moskowitz and Jonswap spectra, a cut-off 
frequency of 1 Hz being applied. Results are plotted on 
Figure 1. TM being the mean zero-up-crossing period 
deduced from spectral moments. an estimate of the 
correlation coefficient between successive waves, pi. + , , 
is obtained setting t equal to TM. In the same way, the 
correlation coefficients between Hi and Hi+, ,  or Hi 
and Hi+;, are estimated by p (2 TM) or p (3 TM). 

All these values are listed in the following table. together 
with the experimental values computed from North Sea 
data, and the value given by Rye. 

Theory Experiment 

PM .Sonswap North Sea From Rye 
spectrum spectrum spectrum spectrum 

- 

Pi., + 1 0.163 0.298 0.297 0 .  24 
-- 

<0.02 0.113 0.051 Pi.i+2 - -. - - -- - -- - - - - - - - 
<0.02 0,043 0.036 Pi., + 3 

The estimates obtained from the Jonswap spectrum are 
close to the mean experimental values. If Rye 
proposes 0 .24  as the mean value of pi.i + ,, he also 
indicates that during sea growth this coefficient tends to 
be close to 0 .30 ,  while during decay it is closer to. or 
lower than 0.20. These variations explain the relatively 
loir PM estimate of p(i, i+  1) ,  for it has been seen in 
paragraph 1 that the Jonswap spectrum applies to 
growing seas, while the P M  spectrum applies to fully 
arisen sea States. Larger coefficients during wave growth 
may appear as a rather surprising result, for growing seas 
are generally thought to be "confused seas", with much 
energy at high frequencies. The reason given by Goda to 
the observed variations is that the spectrum is more 
sharply peaked during wave growth and this latter 
phenomenon is preponderant for wave group formation. 

Al1 the values reported hereabove for p(i, i+2)  and 
p ( i ,  i + 3) are very weak, from which it must be concluded 
that Hi+, and Hi+, can be considered as independent 
of Hi. 

THE JOINT PROBABILITY DENSITY p(Hi, Hi+ i )  

Equation (1). used as in the preceeding paragraph with r 
replaced by the mean period TM. furnishes a first order 
approximation of the joint probability density between 
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Figure 1 
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successive waves. This approximation which has been 
used to get a brst estimate of the correlation coefficient 
between successive waves, is rigorously valid for infinitely 
narrow spectra only. As the scattering of periods around 
their mean value reflects the importance of the spectral 
width. a better approximation of p(Hi. Hi+ ,). for real 
spectra, has been computed by introducing the period 
distribution in the model. 

The relation ( 1 )  gives the probability for the envelope to 
have values R, and R, at two points separated by the 
time interval t. To underline the importance of this time 
lag. p (R, ,  R,) will be written as p(R,.  R, Ir). It appears 
from this notation that the distribution of lags between 
successive wave crests, given the heights of these waves. is 
needed to transform the autocorrelation function on the 
envelope into the correlation betwen successive waves. 
This distribution has been estimated from the height- 
period joint probability density given by Cavanie et al. 
written here in dimensional form: 

x exp (A, H~ T - ~  [ ( A ~  T2 -CL')' + u2 u 2 ] ) ,  (6 )  

where 

E is the spectral width; 



T is-a dimensionless function of E which has been inserted 
in the formulation to set the expected value of periods 
equal to TM. Because the mean experimental value of E 

was 0.86 ,  this value was used in the theoretical model; 
the corresponding value of 5 is 0.94. Although based on 
the hypothesis of a relatively narrow spectrum, that 
model proved to fit correctly Storm recordings with a 
spectral width value of about 0.9 .  
From expression (6) the conditional probability density 
of periods, given the height H,  can be defined as: 

The joint probability density to have two successive 
waves with heights Hi and Hi+,,  p(Hi, Hi+  ,), is then 
estimated. assuming that the lag between the crests of the 
two waves is equivalent to the period of a wave with a 
height (Hi+Hi+ ,)/2. This simple estimate of the time 
interval between crests has been retained because it is 
likely to furnish the same degree of approximation as 
other hypotheses in the model. It leads to the expression 

This probability density has been computed using a 
Jonswap type spectrum, and plotted on Figure 2 
together with the equivalent experimental density 
deduced from the North Sea data. For reasons of 
symmetry, only the half-plane corresponding to 
Hi 2 Hi+,  has been reported. 

From these drawings it appears that the theoretically 
computed distribution is very close to the experimental 
one. This comparison will be extended, in the next 
paragraph, using the conditional distributions. 
The mean values of Hi + , , given Hi, have been reported 
on the experimental plot of Figure 2. The curve defined 
by these points is a growing function of Hi, which is 
another indication of a non-zero correlation betwwen Hi 
and Hi+, .  

THE CONDITIONAL PROBABILITY DENSITY O F  
Hi+ ,, GIVEN Hi 

The complexity of the expressions involved in the works 
of Rice. Cavanie et al. and Hasselrnann et al., is not suited 
to an analytical formulation of the theoretical probability 
density p(Hi, Hi+,) .  In order to outline the main 
conclusions obtained by numerical means and to simpiify 
the use of the present model, special attention was given 
to the conditional distributions of H i+ ,  , given Hi. If Hi 
and Hi + , were uncorrelated, the conditional and 
individual distributions of H i+ ,  would be identical to 
Rayleigh laws. For that reason. a two-parameter Weibull 
law, of which a Rayleigh law is a particular case, was 
fitted to the conditional distribution of the dimensionless 
variable Hi + ,/JmO. 

Figure 2 
Joint probability density function p ( H i ,  H,, ,). 
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A two-parameter Weibull distribution is expressed as: 

which can be written 

Log[-Log(1-P(X))]=c LogX-c Loga. 

This latter expression furnishes estirnates of both c and a 
since on a Weibull probability paper c and - c Log a are 
respectively the slope and zero ordinate of the straight 
line fitted through the data. 

Since high waves are of special interest, the conditional 
distributions of H i + ,  were determined for H~/,/&, 
equal to 2, 3, 4, 5. 6 and 7. These theoretical and 
experimental distributions plotted on a Weibull paper 
are presented on Figure 3 with the corresponding fitted 
Weibull straight lines. Quite good agreement is observed 
in every case between the theoretical or experimental 
distributions and the Weibull law, in the range of 
probability P (Hi  + ,)<O. 98. A slight divergence occurs . 
beyond this limit which affects only the highest waves. 

Figure 3 also reveals a monotonous variation of the fitted 
Weibull law parameters as functions of Hi.  Values of 
these parameters are plotted on Figure 4. The deviation, 
appearing on this figure, between the theoretical and 
experimental values of c and a ,  are in every case except 
one less than 10%. The largest difference, corresponding 
to H,/ =6 ,  is 13% and may result from the 
relatively limited number of waves (70) involved in the 
determination of the experimental distribution. 

The variation of the Weibull parameters as a function 
of H i  can be sumrnarized as follows, using the mean 
experimental and theoretical values. When H ~ / J ~ ,  
increases from 2 to 6 ,  c and a Vary in a monotonous and 
almost linear way, respectiveiy from 2.04 to 2.75 and 
from 2 . 5  to 3 .YS. The increase of c is an indication of 
the shift of the mode of the distribution towards the high 
values. This tendency, as well as the increase of a ,  which 
is proportional to the standard deviation of the 
distribution, indicates that high waves generally follow 
high waves. It is well known that the individual 
distribution of H i + ,  is the Rayleigh distribution 
corresponding to the Weibull pararneters c = 2 



Figure 4 
P a r ~ r n ~ t e r s  of a Weihull l a r  jitted ro the conditionul prohubility 
dislribution funclion P ( H i + ,  1 H , )  us ujunction of H i .  

and a= 2 f i= 2.83. The conditional distribution 
found for H,/ J& = 2 has the parameter values 2 .0  
and 2.5 .  This indicates that the conditional law of Hi + , , 
given a small value of Hi, is very close to the global 
distribution of heights. In other words. the correlation 
between Hi and Hi+,  is very weak for small values 
of Hi. 

An important parameter of the conditional distribution 
of Hi + , , given Hi, is itsexpected value. The ratio of Hi to 
thisexpected value, Hi/Exp [Hi+ ,] is plotted on the upper 
drawing of Figure 5. This ratio has been computed for 
several different cases: 
- from the joint probability density presented in 
paragraph III, using results of Rice, Hasselmann et al. 
and Cavanie et ul.; 

- from results of Rice and Hasselmann et  al.. assuming 
that al1 the waves have the same period, equal to TM; 
- from the North Sea experimental data. 

For the highest Hi values some scatter appears in the data 
due to the decreasing number of points used in the 
computation of the mean value. Nevertheless a 
comparison of the three curves can be made which shows 
that the joint probability density for wave heights and 
periods leads to a better agreement between theory and 
experiment, especially for the highest Hi values. 
For H,/JG, = 8  which can be regarded as an extreme 
wave, both theoretical and experimental ratios 

Figure 5 
Ratio of H i  to expected i~ulues of H , + ,  und H,+, as afunction of H i .  
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In order to explain this behaviour correctly by a 
theoretical model, it has proved necessary to develop a 
three stage model starting from Rice's theory for the 
envelope, applying either Jonswap or Pierson- 
Moskowitz spectra, and making use of the joint 
probability distribution for wave heights and periods 
developed by Cavanie et ul. Although this effort proved 
time consuming it offers a satisfactory concordance with 
the previously mentioned features of observations at sea. 
Moreover, the difference in correlation coefficients for 
wave heights of growing or fully arisen seas, noted by 
different authors, is found anew by the theory. 
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