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Abstract − This paper is the second part of a work on the modelling of larval migration and growth for the sole of the
Bay of Biscay (Solea solea (L.)). The goal of the paper is twofold: first of all, it aims at presenting a numerical
application of the formulae (concerning the recruitment rate) elaborated in the first paper. Results show a high sensitivity
with respect to some parameters. Then, a comparison is made with a numerical model using a 3D circulation model
provided by Ifremer. © 2001 Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS

Résumé − Modélisation et simulations de la migration des larves de sole,Solea solea (L.), du golfe de Gascogne,
2e partie : simulation. Cet article est la deuxième partie d’un travail sur la modélisation des processus de migration et
croissance larvaire de la sole du golfe de Gascogne (Solea solea (L.)). L’article a un double objectif : d’abord, présenter
une application numérique des formules (sur le taux de recrutement) établies dans le premier article ; les résultats
montrent une grande sensibilité par rapport à certains des paramètres du modèle, ensuite, de comparer ce modèle avec un
modèle numérique de déplacement utilisant un modèle de circulation 3D mis au point à l’Ifremer.
© 2001 Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS

population dynamics / diffusion and advection processes / recruitment
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1. INTRODUCTION

In the first part of this study (Ramzi et al., 2001), a 2D
mathematical model describing the dynamics of the larva
of the Dover sole,Solea solea (L.), of the Bay of Biscay
has been derived. The model is itself an extension of a 1D
model presented in (Arino et al., 1996). Our goal here is
two-fold: first of all, using the formulae stated in part 1 of

this study (Ramzi et al., 2001), and data extracted from
the literature, we perform a computational analysis of the
recruitment. The main formula is a lower estimate of the
rate of recruitment, which reads as:

Rlow� s � = �
D

SL� a*� s � � inf
Y∈X

kL� a*� s �, X, Y; u � dX (1)

The formula relates the recruitment to various factors,
including some characteristic features of the spawning
ground and the nursery. A prerequisite for the computa-
tion of (1) is the determination of the age at the beginning
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of metamorphosis. For this, it is necessary to have
available specific functions, which give the duration of a
stage at a given temperature, to be used as shown in part
1 of this study (Ramzi et al., 2001). We use functions
described in detail in (Horwood, 1993). Compared to
recent findings reported in (Amara and Lagardère, 1995),
the values we compute in paragraph 2.3 for the time spent
from egg fertilization to the beginning of metamorphosis
tend to be an overestimate, while the mean length of the
sole at this stage is about the same, 8.5 mm. Computa-
tions have been made in a number of cases, showing in
fact a wide range of sensitivity of the parameters: the
current speed in particular has a dramatic effect, since it
appears that changing this parameter by an order of
magnitude may entail changes in the recruitment rate of
several orders.

As a secondary goal, section three presents numerical
simulations of larval dispersion based on a completely
different approach from the one followed in part 1 of this
study (Ramzi et al., 2001). In this section, we are using a
model for the migration and growth of the larvae that is
very close, after obvious modifications, to a model for the
dynamics of the larvae of the Bay of Biscay anchovy.
Such a model was built up and investigated in the
framework of a European project, and is amply discussed
in (Arino and Prouzet, 1998; Arino et al., 1999). To
summarize its main features, the model describes growth
as a function of the temperature and migration as the
result of 3D advection by currents and 1D (vertical)
diffusion. Current introduces itself as a forcing term,
computed by means of a simulation model due to Lazure
and Jegou (1998). In the absence of data on the initial egg
distribution for the sole, simulations were run starting
from a guessed initial egg patch seeded in the spawning
ground.

The organization of the paper is as follows: section two
deals with numerical computations using formula (1). A
central ingredient of the formula is the age at metamor-
phosis a*� t �, as a function of the birth date, evaluated as
the sum of the durations of the stages preceding the
metamorphosis. The computation of the various stages is
carried out in some detail in the next three paragraphs.
Section three is devoted to simulations by means of the
above-mentioned 3D model. The main new feature,
compared to the model used in section two, is vertical
migration, both the passive migration induced by currents

and the active one corresponding to circadian movement.
Finally, the two approaches are compared in a short
discussion.

2. ESTIMATE OF THE PROPORTION
OF FERTILIZED EGGS REACHING
METAMORPHOSIS

The first step in establishing an estimate of the propor-
tion of fertilized eggs reaching metamorphosis is to
determine the function a*� t �, the duration of the devel-
opment of the larva from egg fertilization to the begin-
ning of metamorphosis. Following the literature, we can
subdivide this period into a number of stages, from
fertilization to hatching (I, II, III, IV) and a number of
stages in the larval phase (stages 1 through 4, the first
one being the yolksac stage (Koutsikopoulos et al., 1991;
Horwood, 1993). It is convenient for the ease of further
computations to group stages 2, 3 and 4 as a single stage,
simply called ‘active’, starting at the end of the yolksac
period and ending at the beginning of metamorphosis.

2.1. Duration of the stages from spawning to
hatching

According to (Horwood, 1993) we have the following
expressions for the duration of each of the stages
preceding hatching. The notation DJ stands for the
duration of stage J.

stage I ln� DI � = 2.0193 − 0.1227 T
stage II ln� DII � = 1.4941 − 0.1530 T
stage III ln� DIII � = 2.5075 − 0.1509 T
stage IV ln� DIV � = 1.4106 − 0.0687 T

This yields:

DI = 7.533 exp − 0.1227 T

(2)
DII = 4.4553 exp − 0.1530 T

DIII = 12.274 exp − 0.509 T

DIV = 4.0984 exp − 0.0687 T

As an example, at T = 10°C, we find the following
values:

Dt = 2.1865; DII = 0.9467; DIII = 2.7142; DIV = 2.0618

So, the time from spawning to hatching at T = 10°C is
equal to DH = 7.9272 days.
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Another formula for the time to hatching (Horwood,
1993) is DH = 137.8T–1.329 which, at T = 10°C gives
DH = 6.4602 days.

As a brief comment, formulae like (2) which detail the
duration of intermediate stages present the advantage of
accounting for possible variations of temperature from
the beginning to the end of the egg stage.

2.2. Duration of the yolksac period

A formula for the time to first feeding (end of the yolksac
period) is given in (Horwood, 1993), that is,
DYS = 270.9T–1.383 which, at T = 10°C, yields:

DYS = 11.215 days

In fact, following the idea presented at the end of the
previous paragraph, it is rather risky to use a single
formula to describe such a long duration. We will not do
this here: instead, we assume the time from hatching to
the end of the yolksac period to be constant, equal to:

DH,YS = 4.5 days (3)

where DH,YS = DYS − DH. In order to determine the time to
metamorphosis, we introduce the length at age, starting at
the beginning of active feeding:

w = w0 exp� b� T � d �

In this formula, d is the time elapsed from the beginning
of the active feeding, and w0 is the initial length.
Assuming that metamorphosis starts at a length w*, the
duration of the active feeding stage, from the end of the
yolksac period through the beginning of the metamorpho-
sis, is:

Dact = � b� T � �
− 1 ln� w*

w0
�

where (Horwood, 1993, p.256)

b� T � = − 0.056 + 0.0092 T − 0.00019 T2 (4)

The function b� T � is increasing for T in the interval
(Arino and Prouzet, 1998), which is the range of allow-
able values of the temperature in the Bay of Biscay. The
subscript act stands for active feeding. If we assume
w0 = 4 mm; w* = 10 mm we have, for T = 10°C:

Dact = 53.899 days

If we assume that the length at the beginning of meta-
morphosis and T = 10°C is 8.5 mm, we obtain:
Dact = 44.34 days, so that the total duration from spawn-
ing to the beginning of metamorphosis, that is to say:
DYS + Dact, lies between 55.55 days and 66.32 days.

2.3. Computation of the age at the beginning
of metamorphosis as a function of the birth date

We now give a formula for the age to begin metamor-
phosis a*� t � as a function of the date of birth t in terms
of the ages to stage I, II, III and IV and the duration of the
active feeding stage. For each time t, we denote a*

J
� t � the

duration of the Jth stage, where J = I, II, III, or IV, act in
terms of the time when this stage begins, and we use the
following notations: tI = tI(t) is the time at the end of the
first stage, tII = tII(t) is the time at the end of the second
stage, etc. We have the following obvious relationships:

tI� t � = t + a*
I
� t � (5)

tII� t � = tI� t � + a*
II
� tI� t � �

tIII� t � = tII� t � + a*
III
� tII� t � �

tIV� t � = tIII� t � + a*
IV
� tIII� t � �

tact� t � = tIV� t � + 4.5 + a*
act

� tIV� t � + 4.5 �

where we have used the estimate of 4.5 days for the
duration of the yolksac stage. From formula (5), we
obtain immediately:

a*� t � = tact� t � − t

The calculation of each aJ
*
� t � is done the same way as in

part 1 of this study, paragraph 4.2.1 (Ramzi et al., 2001),
that is, a*

J
� t � is obtained as the root of the following

equation:

�
t

t+a
1

DJ� T� s � �
ds = 1

Suppose for example that

T� t � = T0 + Tm sin � �t + c �

T0 would be a mean temperature, say T = 10°C while the
other term would correspond to oscillations near T0,
Tm = 2°C and

� = 2p
7 and c = 0
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The time unit is day. We assume that t = 0 is the birth date
of a cohort of larvae. So, the first computation to be made
is the one of a*

I
� t � and, for this, we have to solve for a

such that:

�
0

a
1

DI� T� s � �
ds = 1

that is, using 2,

�
0

a

� 7.533 �
− 1 exp� 0.1227� 10 + 2 sin � 2p

7 s � � � ds = 1

A reasonable approximation of a*
I is 1.86 days. We then

turn to the computation of a*
II
� t �, using the formula:

�
0

a
1

DII� T� s + 1.86 � �
ds = 1

or,

�
0

a
1

4.4553 exp� − 0.1530� 10 + 2 sin � 2p
7 � s + 1.86 � � � �

ds = 1

We obtain a*
II
� t � = 0.73 days, and tII = 2.59 days. We

now compute a*
III. In analogy with the previous compu-

tations, we will obtain a*
III as a solution of:

�
0

a
1

12.274 exp� − 0.1509� 10 + 2 sin � 2p
7 � s + 2.59 � � � �

ds = 1

We obtain a*
III
� t � = 2.95 days, and tIII = 5.54 days. We

compute a*
IV as follows:

�
0

a
1

4.0984 exp� − 0.0687� 10 + 2 sin � 2p
7 � s + 5.54 � � � �

ds = 1

We obtain a*
IV
� t � = 2.14 days, and tIV = 7.68 days. We

add 4.5 days for the yolksac period, so that the end of the
yolksac period, which is also the beginning of the active
feeding period is tys = 12.18 days. The duration of that
period is the solution of the following equation:

�
0

a
1

Dact� T� s + 12.18 � �
ds = 1

which, in terms of the expressions stated above, reads:

� ln � w*
w0

� �
− 1 �

0

a

b� T� s + 12.18 � � ds = 1

or,

� ln � w*
w0

� �
− 1 �

0

a

�− 0.056 + 0.0092

� 10 + 2 sin � 2p
7 � s + 12.18 � � �

− 0.00019� 10 + 2 sin � 2p
7 � s + 12.18 � � �2 � ds = 1

With w0 = 4 mm and w* = 8.5 mm, we obtain
a*

act
� t � = 45.465 days, so that tact = 57.645 days which,

in this case, is also the time to juvenile stage, that is,
a = 57.645 days.

2.4. A lower estimate of the rate of larvae
initiating metamorphosis

We are going to compute a lower estimate of the rate of
metamorphosis using formula (1). We note that the
formula is the product of two independent quantities:
SL� a*� s � �, the survival rate up to the beginning of
metamorphosis, and:

qD,X� s � =def �
D

inf
Y∈X

kL� a*� s �, X, Y; u � dX (6)

a lower estimate of the rate of migration from X at age
0 to D at age a*� s �; s being the birth date. That the two
processes, the demographic one and the physical one, are
independent follows from the assumption that the move-
ment is supposed to be entirely governed by physical
environment. Since our main interest here is in deter-
mining the specific role of the physical environment and
especially the role of diffusion on the recruitment, we
will now concentrate on the computation of expression
(6). For this, we need to estimate several parameters,
those defining a spawning area X and a nursery area D,
the diffusion matrix K and the advective component u,
and a*� s �. According to the estimates given in paragraph
2.3 and the literature (Horwood, 1993; Koutsikopoulos
et al., 1991), it is legitimate to assume that the range of
the values of a*� s � is within the interval [40, 60] days.

As concerns the geographic location, we consider part of
the spawning ground and nurseries north-east of the Bay
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of Biscay, offshore from the Loire estuary (Koutsikopou-
los et al., 1991). The spawning ground is roughly parallel
to the coast, between isobaths 100 m and 50 m, while the
nursery is within the 20 m isobath. To this rough descrip-
tion, is associated a coordinate system made up of a line
perpendicular to the coast with inshore-offshore positive
orientation, as a first axis (x1) and a line SE–NW, which
is located inside the 20–40 m isobath, as the second axis
(x2), and the zero of the second coordinate, that is, on the
axis ‘parallel’ to the coast, corresponds to the estuary of
the Loire river. We assume that:

X = �x1
1, x2

1
� × �x1

2, x2
2
� and D = �d1

1, d2
1
� × �d1

2, d2
2
�

where x1
i < x2

i and d1
i < d2

i for i = 1, 2. We will also
assume that d2

1 < x1
1, that is, there is no overlap between

the nursery and the spawning areas. Finally, to facilitate
some of the calculations to come, we also assume that
d1

1 > 0 and d1
2 < x1

2 < x2
2 < d2

2. The latter assumption is in
fact quite natural. It means that we expect that the larvae
will diffuse both northward and southward from the
spawning area. As an example, we might consider:

X = �80 km; 120 km � × �20 km; 20 km �

and,

D = �20 km; 40 km � × �− 40 km; 40 km �

The mean drift speed is about 1–30 cm s–1 and is parallel
to the x2 axis and oriented northwestward (Koutsikopou-
los et al., 1991), so that u is of the form u = (0, u2) with
u2 ≥ 0.

Values for K were found in the literature (Pond and
Pickard, 1983), we assume K to be diagonal and k1,1 =
k2,2 = k = 102–104 cm2 s–1.

Using some of the formulae derived in part 1 of this study
(Ramzi et al., 2001, section three) and notations intro-
duced therein, we arrive at the following inequality:

�
D

inf
Y∈X

kL
1
� a, X, Y; u � dX ≥

(7)

1
4pak exp�−

� u2 �
2 a

4k ��
d 1

1

d 2
1

exp�−
� x1 − x2

1
�

2

4ka � dx1

×��
d 1

2

x 1
2+x2

2

2 exp�−
u2� x2 − x2

2
�

k −
� x2

2 − x2 �
2

4ka � dx2

+ �x 1
2+x 2

2

2

d 2
2

exp�u2� x2 − x2
2
�

k −
� x1

2 − x2 �
2

4ka � dx2�

The only change in the estimate for kL
2 is that � x1 − x2

1
�

becomes � x1 + x2
1
� in the integral on the right of (7). We

are now in position to propose an estimate for
�D inf

Y∈X

kL� a*� s �, X, Y; u � dX that is,

qD,X� s � ≥ 1
4pa*� s � k

exp�−
� u2 �

2 a*� s �

4k �

(8)

×��
d 1

1

d 2
1�exp�−

� x1 − x2
1
�

2

4ka*� s � � + exp�−
� x1 + x2

1
�

2

4ka*� s � �� dx1�
×��

d 1
2

x 1
2+x2

2

2 exp
u2� x2 − x2

2
�

k −
� x2

2 − x2 �
2

4ka*� s �
dx2

+ �x 1
2+x2

2

2

d 2
2

exp
u2� x2 − x2

2
�

k −
� x1

2 − x2 �
2

4ka*� s �
dx2�

The above estimate is expressed in terms of parameters
and quantities all of which can be evaluated. As an
example, we are now going to compute its value for the
set of parameters we introduced above and a few other
cases.

The units are as follows: the x’s and the d’s are in metres,
the speed u2 is in m s–1 and the diffusion coefficient k is
in m2 s–1: We assume in the next computations that
a*(s) = 55 days = 4.755.106 s. Each row of table I is made
up of a set of values for the parameters entering the
computation of (8). A given set is denoted E(i) where E
stands for ‘experiment’. Table II gives the value of the
right hand side of (8) associated with each experiment.
We denote it E� i �|. Each value is evaluated as a product
of three quantities:

E� i �| = A × B × C

where

�
A = 1

4pa*� s � k
exp�−

� u2 �
2 a*� s �

4k �
B = �

d 1
1

d 2
1�exp�−

� x1 − x2
1
�

2

4ka*� s � � + exp�−
� x1 + x2

1
�

2

4ka*� s � �� dx1

C = �
d 1

2

x 1
2+x2

2

2 exp
u2� x2 − x2

2
�

k −
� x2

2 − x2 �
2

4ka*� s �
dx2

+ �x 1
2+x2

2

2

d 2
2

exp
u2� x2 − x2

2
�

k −
� x1

2 − x2 �
2

4ka*� s �
dx2

(9)

Some comments are in order. Estimates inferior to 10–15

are of no interest since the number of eggs laid during a
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whole spawning season is lower than 1014 (Horwood,
1993), so that in fact such an estimate is the same as a
zero estimate. On the other hand, the estimate obtained
using E(2), which differs from the other simulations by
the speed of the current, is very interesting: in this case,
the rate of failure of the recruitment implied by physical
causes is surprisingly low. Two other situations when the
failure rate is reasonably low are E(7) and E(8). In these
two cases, the diffusion coefficient was modified to a
value higher than in the other cases, while the other
parameters were left unchanged. Comparing the results of
E(8)/E(7) to those of E(9)/E(2), one can see that the
estimate is primarily sensitive to the current speed, the
diffusion coefficient comes next in the scale of sensitivity;
the geographic parameters x j

i and dj
i have a much lower

impact. Finally, the age at metamorphosis does not
influence the failure rate very much, as simulation E(10)
shows.

3. INFLUENCE OF VERTICAL MIGRATION

Figure 1 depicts variations of the horizontal components
of the current as a function of depth, suggesting that the
vertical position of a larva may have a significant
influence on its horizontal movement, thus justifying the
simulations undertaken in this section using a model
where vertical migration is accounted for.

The model describes the movement of the larvae under
the combined action of vertical diffusion and 3D- advec-
tion by currents. A quick description of the model is as
follows: it is a purely mechanical model with no growth
no death, focusing on the movement of sole. In addition,
the model has a built-in mechanism that drives the
circadian movement, with a strength which increases
with age. We use a function of the following type:

f� a, z � =
�� a, z � a

12 cos � 2pa �, for a ≥ 12

Table I. Ten different situations are proposed in this table.

x1
1

103

x2
1

103

x1
2

103

x2
2

103

d1
1

103

d2
1

103

d1
2

103

d2
2

103

u2 k

E(1) 80 120 –20 20 20 40 –40 40 10–1 102

E(2) 80 120 –20 20 20 40 –40 40 10–2 102

E(3) 80 90 –20 20 20 40 –40 40 10–1 102

E(4) 80 90 –2 2 20 40 –40 40 10–1 102

E(5) 80 90 –2 2 20 40 –80 80 10–1 102

E(6) 80 90 –2 2 20 40 –40 90 10–1 102

E(7) 80 90 –20 20 20 40 –40 40 10–1 103

E(8) 80 90 –20 20 20 40 –40 40 10–1 5 × 102

E(9) 80 90 –20 20 20 40 –40 40 5 × 10–2 102

E(10)* 80 90 –20 20 20 40 –40 40 10–1 102

E(10) is the same as E(3) except for a*(s) = 40 days = 3.456 × 106 s.

Table II. Intermediate (A, B, C) values and estimated proportion E� i �| of larvae initiating metamorphosis for ten different situations E� i �| specified
in table I.

A B C E� i �|

E(1) 7.9052 × 10–62 7.250 × 101 3.9228 × 1010 2.2483 × 10–49

E(2) 1.0195 × 10–8 3.2071 × 102 2.1077 × 104 6.8914 × 10–2

E(3) 7.9052 × 10–62 3.1716 × 103 7.7923 × 1010 1.9537 × 10–47

E(4) 7.9052 × 10–62 3.1716 × 103 1.3168 × 1019 3.3015 × 10–39

E(5) 7.9052 × 10–62 3.1716 × 103 2.3892 × 1035 5.9902 × 10–23

E(6) 7.9052 × 10–62 3.1716 × 103 2.1326 × 1039 5.3469 × 10–19

E(7) 2.3014 × 10–16 2.5922 × 104 6.4438 × 104 3.8442 × 10–7

E(8) 3.1648 × 10–21 1.8116 × 104 1.9829 × 105 1.1369 × 10–11

E(9) 4.1494 × 10–23 3.1716 × 103 7.5541 × 106 9.9414 × 10–13

E(10)* 1.381 × 10–47 1.6291 × 103 3.9228 × 1010 8.8255 × 10–34
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which is to be added to the vertical component of the
larva advection. Here, a represents the age (in days) and
it is assumed that the circadian movement starts after 12
days, that is, roughly after the yolksac resorption. In fact,
it was considered that the direct effect of vertical diffu-
sion on the movement of the larvae decays after the
yolksac resorption, roughly after day 12, and cancels out
after day 22. The function �� a, z � takes effect in the
upper part and the lower part of the column, being equal
to zero when, and as long as the larva stays in the upper
part and cos � 2pa � > 0 or stays in the lower part and
cos � 2pa � < 0 respectively, and being equal to some
positive constant �fl otherwise. Multiplying by a is a
simple way to express the fact that the speed of the larva
increases with age. It was also necessary to introduce
some small upward vertical velocity given to the early
eggs by the Archimedes law: this explains, rather than
diffusion, that soon after spawning in the lower part of the
water column the eggs are displaced upwards and tend to
accumulate under the surface. An explanation for this
would be that the relative density of eggs at this stage is
lower than that of the water, which could be explained by
the presence of “oil globules around the surface of the
yolk” (Horwood, 1993). The upward effect on early eggs
was modeled as follows:

f� a, z � = �
10− 6 m s− 1 for a ≤ 2.5 days and z ≤ − 40

2.10− 6 m s− 1 for a ≤ 2.5 days and − 40 < z ≤ − 30

3.10− 6 m s− 1 for a ≤ 2.5 days and z > − 30

For the numerical treatment, a method of finite volumes
was developed. Details about the mesh-size and the type
can be found in (Arino et al., 1999).

3.1. Physical parameters

Physical parameters include temperature, pressure, salin-
ity, vertical mixing coefficient and current velocity (fig-
ure 2). Of this list, the model explicitly uses temperature,
vertical mixing coefficient and current velocity, all of
them provided by the circulation model due to Lazure and
Jegou (1998): briefly stated, this model generates values
of the physical parameters, based on real data. The data
used here are from the year 1996, end of March through
May, for NE Bay of Biscay. Temperature is roughly
uniform throughout the water column and varies within
the range 10.5–12°C, horizontally. The current speed
varies approximately in the same range as u2 in section
two. Vertical speed is negligible compared to the hori-
zontal one. The variation in direction of the horizontal
velocity is well marked in the western part of the area, the
deepest one, pointing to the south-west in the upper part
of the water column and pointing to the south-east in the
lower part. Over all, the situation is quite diverse, with, in
some places, variation in the south–north direction only,
and in some other places no change in direction.

Figure 1. Zoomed horizontal cross-sections of the currents west of the spawning grounds at two different depths (10 m and 40 m).
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3.2. Vertical cross-sections

Figure 3 represents cross-sections of the sea by a vertical
plane. It is important to notice that in all the simulations
presented in this section the initial number and distribu-
tion of eggs are selected arbitrarily. In fact, the following
distribution was used: 25 eggs m–3 at 39 m deep,
50 eggs m–3 at 40 m deep, 25 eggs m–3 at 41 m deep, and
0 elsewhere. In figure 3a, the material shown is a cross
section of eggs aged one day: we observe a small

heterogeneity. Figure 3b is a cross-section of the larvae
aged 12 days: heterogeneity has increased and vertical
hauls will give quite different results according to where
they are performed.

3.3. Horizontal cross-sections

Starting from an initial distribution of eggs uniform
throughout the whole spawning ground, we represent

Figure 2. Horizontal cross-sections of tempera-
ture and the currents at respective depths of 3 m
(a), 10 m (b), 20 m (c), and 40 m (d); vertical
latitudinal cross-sections at 2.5°W (e) and 3°W
(f); vertical longitudinal cross-sections at 47°N
(g) and 47.2°N (h).
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Figure 3. Vertical cross-section of eggs aged one day (a), and larvae aged 12 days (b). Units: number of eggs m–3.

Figure 4. Starting from an initial patch of eggs aged zero day, horizontal cross-section of the larval population, computed at 8 different days (1, 2,
4, 6, 12, 22, 32, 51), same hour (14h00, daylight), same depth (10 m) (left panel, a–h). Corresponding picture at night (02h00) instead of the day
(right panel, a–h). Units: number of eggs m–3.
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horizontal cross-sections (at z = –10 m) made on days 1,
2, 4, 6, 12, 22, 32 and 52, at two different hours: 14h00
(daytime) and 02h00 (night). The results are to be
compared to those described in Koutsikopoulos et al.
(1991, figure 10). Note that the values obtained represent
integrals of densities over a 1 m deep layer.

The interpretation of figure 4 is not obvious. The upper
layers tend to get empty during the day while the lower

layers tend to empty during the night. Communication
between the various layers never stops, which explains
that layers that are empty at some time may replenish
later. The main effect in the range of 50 days and over
seems to be a drift along the coast, rather than towards
the coast. A better view of the displacement towards the
coast is provided by figure 5 where the population has
been integrated throughout the whole water column.

Figure 5. Totalization of the larva density
throughout the water column every four
days of a period over a month.

A. RAMZI et al. / Oceanologica Acta 24 (2001) 113–124

122



3.4. Proportions of larvae arriving within a close
distance to the coast

Our objective in performing the simulations presented in
this subsection was to compare estimates of the recruit-
ment rate given by a 3D model incorporating real
physical data (currents) to those provided by the 2D
model of section two. Following the same idea as in
section two, we consider a region X in the spawning
ground and a region D located closer to the nurseries than
X. To the same region X we associate three different
regions D1, D2 and D3, such that D1 ⊂ D2 ⊂ D3. For each
of them, we evaluate the proportion of the eggs produced
in X which survive as larvae at least until they reach the
given region. In section two, the computation was made
with the larvae that reach the admissible region at a
certain threshold size. Since growth in size was not
incorporated in the present simulation, the count must be
done in a different way. What we do here is just count the
proportion of those arrived in Di since day zero. The
results are shown in figure 6.

4. DISCUSSION

First of all, the results of the three domains are mutually
comparable. In general, the proportion is bigger for the
larger domain, though we see that the graphs for D1 and
D3 and for D2 and D3 respectively, cross at some point.
This is certainly a weird fact, which is due to the
approximation process, that is, the grid that approximates
D1 is not strictly a subfamily of the one approximating D2.

Secondly, each graph is made up of two or more parts on
each of which the slope has a fixed sign, positive or
negative: since no mortality is accounted for, the only
admissible interpretation is that larvae can move in and
out of each Di.

Finally, the numbers compare with the highest values of
E� i �| obtained in section two, table II, which, we recall,
are estimates of the proportion of larvae initiating meta-
morphosis. The comparison to be made with the highest
point in the graph of Di: D1 would be with the region
reached by the more mature larvae, the peak reached on
this graph at age a = 50 days would roughly correspond
to the proportion of larvae having reached metamorpho-
sis. Discrepancies between the two counts may be caused
by several factors: on the one hand, the computation of
E� i �| was done on the ground that metamorphosis occurs
at 55 days of age (except for the simulation E(10) where
the age of transition was taken to be 40 days), while the
Di’s are computed over the first fifty days; on the other
hand, as already noticed, none of the regions Di is
invariant: oscillations of the counts suggest that there are
migrations in and out each of these regions. In principle,
the ‘theoretical’ estimate, computed by means of formula
(8) is minimal, and indeed the values of E� i �| for all i 7 2
are small compared to those exhibited by figure 6. E(2)
corresponds to the lowest speed of the current (of all the
simulations), therefore, to the case when horizontal dif-
fusion plays comparatively a bigger role. It is interesting
to observe that this situation leads to results of the same
order as when using the data of the numerical circulation
model, which does not account for horizontal diffusion
explicitly.
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