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ABSTRACT -The present paper is a study of the nonlinear deformations of sea-wave profiles in 
intermediate (20 m depth) and shallow (4 m) water, based on wave staff and bottom 
pressure in situ measurements. The nonlinear deformations have been decomposed 
into two elementary classes: asymmetry with respect to the mean water surface. 
and asymmetry with respect to a vertical line passed through the wave crest. 
The extend of the deformation of the first kind is estimated by computing the experimentai 
statistical distributions of wave crest heights and through depths. These distributions are 
shown to deviate from the Rayleigh law (applicable to linear sea states), and are well fitted 
by a second order perturbation model deduced from the Stokes theory. 
The second kind of nonlinear deformation was observed in shallow water only, and 
studied by a bi-spectral analysis: this kind of deformation may be interpreted in terms ofa 
phase shift between first and second order components, and related to the phase of the 
bispectrum. It has been possible, applying this technique to the shallow water data set, to 
find anew the steepening of the wave front during its progression towards the breaking 
point. - 
Oceanol. Acta, 1981,4 2,107-115. 

RÉSUMÉ Déformations non linéaires du profil des vagues 
en eau de profondeur intermédiaire et en eau peu profonde 

-Les déformations non linéaires du profil des vagues en eau de profondeur intermédiaire 
(20 m )  et en eau peu profonde (4 m) sont étudiées sur la base de mesures in situ effectuées 
par perches de houle et capteurs de pression. Ces déformations peuvent être classées en 
deux types : dissymétrie du profil par rapport au niveau moyen de la surface libre, et 
dissymétrie du profil par rapport à une verticale passant par la crête de la vague. 
L'importance des déformations du premier type est évaluée en calculant les distributions 
statistiques expérimentales de hauteurs de crêtes et profondeurs de creux. Ces 
distributions, qui diffèrent sensiblement de la loi de Rayleigh (applicable aux états de mer 
linéaires), sont comparées, avec un bon accord, à un modèle de perturbation du second 
ordre déduit de la théorie de Stokes. 
Le second type de déformation. observé en eau peu profonde seulement, est étudié par 
analyse bispectrale : cette déformation peut être interprétée en termes de déphasage entre 
composantes du premier et du second ordre, et est donc reliée à la phase du bispectre. On a 
pu suivre de cette façon, à partir des données en eau peu profonde, le raidissement du front 
des vagues à l'approche du point de déferlement. - 
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INTRODUCTION 

The extend of non-linear deformations of real sea-waves 
is still subject to discussion. I n  situ measurements in 
intermediate and deep water. generally performed by 
waverider buoys. show very little non-linearity. On the 
other hand, numerous experiments carried out in wave 
tanks lead to highly non-linear wave profiles. When 
analysing the results, both kinds of studies may be 
suspected to deviate from reality; the former, because the 
sensor does not furnish an exactly Eulerian representa- 
tion of the free surface displacement; the latter, due to the 
man-induced unidirectionality of wave tanks, which, for 
equal energy, must produce non-linearities higher than 
those present in multidirectional real wave fields. 
An attempt to estimate correctly some non-linear 
parameters is made in the present study, hased on two 
distinct sets of in situ measurements: weakly non-linear 
wave staff data from a 20 m depth site in the Gulf of 
Mexico, and highly non-linear bottom pressure data at a 
3 to 4 m depth. on a beach in Brittany. The deviations 
from linearity are studied by a "zero-crossing" method 
and a bispectral analysis; results are compared in both 
cases to simple second order models. 
The data are brieiiy presented in the first paragraph of the 
paper. Evidence is then given of non-linearity and its 
causes, by studying the variations of some typical 
deformation parameters as functions of individual wave 
heights and periods. It is well-known that the 
distribution functions of crests and troughs of linear sea- 
waves are correctly represenled by the Rayleigh law. The 
deviations from this law are estimated and compared to a 
second order perturbation model deduced from the 
Stokes theory. The last paragraph deals with bispectral 
analysis and its application to the study of waves in 
shallow water; it is shown in particular that the phases of 
the bispectrum are related to the asymmetry of the wave 
profile with respect to the vertical axis drawn through the 
crest. 

PRESENTATION O F  DATA 

Wave data from intermediate water 

the orbital velocities and wind measurements, and only 
the data from the wave staff facing the waves were 
retained. A total of 143 records have been selected in this 
way, which corresponds to about 40 hours in duration. 
The actual significant wave heights range between 2.5 
and 4 m. and the spectral peak frequencies between 0.10 
and 0.12 Hz. 

Shallow water data 

The data are part of the measurements performed at 
Exxon's Ocean Test Structure (OTS), at 20 m depth in 
the Gulf of Mexico, from December 1976 to June 1978. 
From this important data set, only the six channels (out 
of 96) corresponding to wave measurements were 
retained. The platform itself was equipped with five wave 
staffs, situated at each corner and at its center. and during 
the last winter, a Datawell waverider buoy was operated 
at a distance of a few hundred meters. Our study is 
restricted to the analysis of Storm Sea States periods 
( H l , ,  >2.5 m) for which the non-linearities are expected 
to be the highest. These selected periods were cut 
into 17 min. 4 sec. records, which corresponds to 
2 048 points for the chosen digitizing rate (2 Hz). For 
each record a mean wave direction was estimated from 

The data were obtained during an expriment carried out 
by the Physical Oceanography Team of the Centre 
Océanologique de Bretagne, in January 1974, on the 
beach of La Palue. in the Crozon Peninsula, Brittany. It 
consists of bottom pressure measurements in a 4 m depth 
zone, where the severe Atlantic swell has come close to its 
breaking point. Twenty two 34 min. 8 sec. records were 
obtained, with significant wave heights ranging from 1.2 
to 2 m, and spectral peak frequencies around 0.07 Hz. 

EVIDENCE O F  NON-LINEARITY AND ITS 
CAUSES 

Previous studies of the shallow water data 

Important non-linear features of these shallow water 
data have already been set in evidence in previous studies 
(Arhan, Gouriten, 1976; Cavanié, Ezraty, 1976). 
- The histogram of bottom pressure variations was . found to deviate considerably from a Gaussian law. 
- Secondary peaks were present at  harmonics of the 
main peak of the power spectra 
- The Rayleigh law. which in a linear context furnishes a 
correct representation of the probability density of wave 
heights. had to be replaced by a Weibull law, to take into 
account the saturation effect at the highest waves caused 
by the presence of the bottom. 

The third order moment 

The normalized third order moment of a process 
furnishes a first indication of the importance of its non- 
linearities. The mean values of this parameter and of the 
fourth order moment, computed from both data sets and 
the waverider data, are summarized in the Table. 

The m, values reported in the first two lines of the 
Table reveal the presence of an important non-linearity in 
shallow water, and a lower but non negligible non- 

Table 

Water 
depth Number 

Sensor (m J or records ni, , K, 

Bottom pressure 3 to 4 22 0.62 3.03 
Wave Stafl 20 141 0.148 3.02 
Wave Stafl 20 55 0.173 3.07 
Waverider buoy 2ü 55 0.026 2.73 



linearity in intermediate water. The values computed 
from the wave staff data are comparable to other 
experimental values given by Longuet-Higgins (1963). In 
the same paper, Longuet-Higgins derived theoretical 
limits for m, - these were not tested here -and predicted 
that: (m,-3)=0(m,)~. This relation appears to be 
satisfied for both bottom pressure and wave staff data 
sets. 
The two last lines allow a comparison between the third 
and fourth moments values estimated from the wave staff 
data and the waverider buoy data, for the same periods. 
It clearly appears that the latter sensor is unfit for 
detecting the non-linearities of sea waves. The reason for 
this must lie in the horizontal movements of the buoy 
with the surface water particles, from which two sources 
of error may be expected: a Doppler shift of the highest 
frequencies, and erroneous informations concerning 
possible phase links between different components. 
The Table shows that the fourth moment values are 
also underestimated by this sensor. 

Study of some deformation parameters 

Following Kjeldsen and Myrhaug (1979) the non-linear 
deformations of sea-wave profiles are decomposed into 
two elementary classes: 
- asymmetry with respect to the mean water surface; 
this deformation, characterized by an enhancement of 
crests and a îiattening of troughs, is the only kind 
apparent in deep water, and leads, in the limit, to spilling 
breakers; 
- asymmetry with respect to a vertical line passed 
through the crest, which aiïects essentially shallow water 
waves. The wave front steepens as it propagates 
shorewards, causing a plunging breaker at the end. 

Figure 1 
The six zero-crossing parameters. Les six paramétres zero-crossing. 

Those two types of deformation have been detected by 
performing a "zero-crossing" analysis on both data sets. - 
Six parameters have been computed for each individual 
wave(Fig. 1): Hl and Hz are respectively the crest height 
and trough depth with respect to the still water level. T,, 
Tb, T,,T, are the time lags separating the zero up or down 
crossings from the crests or troughs occurences. The 
ratios: 

Pl(j)=(Hi(i)-H2(i))/(H1(i)+H2(i)), . 
and 

characterize the asymmetry with respect to the still water 
level. P, compares the amplitudes of crest heights and 

Figure 2 
Isocontours of the deformation - parameters, - in the plane (H, T), for the 
intermediate water case. a) P l ;  b )  P,. 

lsolignes des param&res de déformation da's le plan (H. T) pour In 
données en eau intermédiaire : a) P ,  : b )  P, .  

trough depths, while P, compares the durations spend 
under and above the still water level. A third parameter 
P, measures the asymmetry of the wave with respect to a 
vertical axis in its crest: 

The subscript ( i )  refers to the individual zero-up-crossing 
waves. The subscript (j) refers to zero-up-crossing waves 
for Pl and P,, and to trough-to-trough waves (defined 
between two successive troughs) for P,. The three 
parameters are expected to be zero on the average for 
linear sea-states and to be positive when non-linearities 
are present. 
All waves of both data sets have been classified as a 
function of their height H and period T, and the mean - - -  
values of P,, Pz,  P,, noted P,, Pz,  P,, computed insi* 
of elementary subsets AH x AT. The variations of the Pi  
are reported on Figure 2, for intermediate water, and on 
Figure 3 for shallow water. The diagrams correspond to 
AH and AT values of 0.5 m and 1 s respectively, and only 
the P i  computed from 5 or more Pi  values were retained. 
The shallow water (H, T )  domain appears to be limited in 
wave height at 3 m. that is about three quarters of the 
maximum water depth. 
The dotted parabolic curves reported on Figure 2 a are 
lines of equal steepness, obtained from the-deep water 
relation s=2  n H/g Tl. For low and moderate wave 
heights and periods, the Pi isocontours approximately 
follow those curves, which means that the wave steepness 
is the only parameter influencing Pl in this domain of the 
(H, T) plane. Both sets of curves diverge in the part of the 



Figure 3 
lsorontours of the deformation parameters in the (H, T) plane, for the 

shallow water case. a )  P, .  b )  P,: c)  P,. 
lsolrgnes des paramètres de déformation  da^ le plan (H, T), pour les 
donnees en eau peu profonde : a )  P,  ; b )  P,. r )  P , .  

diagram corresponding to the highest waves, the P, 
values being then higher than would be expected from the 
steepness effect only. This increased non-linear deforma- 
tion must be due to the effect of the bottom. al1 the more 
important as the wave period. hence the wave length, is 
high. These two basic effects-steepness effect and 
bottom effect -may also be clearly distinguished on the 
shallow water P, diapram (Fig. 3 a). Although no 
parabolic isocontour is to be expected here, since the 
ptevious formula for the wave steepness is no longer 
applicable, the closed 0.3 isocontour in the lowest part of 
the diagram must clearly be attributed to bottom effects. 
The maximum values obtained for P, are 0.25 for 
intermediate water and 0.40 for shallow water. 

The Pz isocontours reported in the diagrams 2 band 3 b 
reveal that this parameter is chieiiy dependent on the 
wave height. But as was the case for P, .  the influence of 
the bottom is effective for the highest waves. The highest - 
Pz values are about 0.15 for intermediate water, and 0.30 
for shallow water. 

Perceptible deviations of P, from zero were found in the 
shallow water case only. The diagram 3 c confirms that 
this kind of deformation-asymmetry with respect to a 
vertical axis at the crest -is directly related to the wave 
period (or wavelength), and thus must be attributed to 

bottom effects only. The maximum values found for P, 
are about 0.4. 

ASYMMETRY WITH RESPECT TO THE MEAN 
WATER LEVEL. COMPARED DISTRIBUTIONS 
O F  CREST HEIGHTS AND TROUGH DEPTHS 

Second order theoretical mode1 

It is well known since the work of Cartwright and 
Longuet-Higgins(1956) that the statistical distribution of 
the crest heights (and trough depths) in a linear narrow 
banded wave field is well fitted by the Rayleigh law: 

Mo being the total energy of the wave field. When Mo 
increases, there comes a moment when the non-linearities 
are to be taken into account. Retaining only the second 
order terms, it appears that some components must be 
present in the spectrum at twice the frequency of the 
initial spectral band. with a phase coupling between these 
components and those of the main peak. Assuming a 
sufficiently narrow spectrum, and considering the 
individual waves, these phase links between components 
cause an evolution towards profiles of the type "Stokes 
2nd order", with enhanced crests and flat troughs. The 
Rayleigh law for the distribution of these variables is no 
longer valid, and has to be perturbed, as was the wave 
profile. This is the aim of the following model. 
Each individual wave is assumed to have a "Stokes 2nd 
order" profile: 

with: 

whered is the water depth, g is the acceleration ofgravity, 
L and T are the wave length and period respectively. 
All the waves are assumed to have the same period. The 
amplitude, a, of the first order component, is supposed to 
be Rayleigh distributed, as would be the case for linear 
waves: 

where Mo, is the part of the total energy Mo to be 
attributed to first order components. The energy of the 
individual wave described in (1) is: 



from which: 

In the same way, the total energy due to second order 
components is: 

Resolving this integral reveals that: 

Mo, may be expressed in terras of Mo: 

M,?=(- l+J l+  1 6 ~ ~ ~ ~ ) / 8 ~ ~ ,  (4) 

Given Mo, the distribution of the amplitude of the first 
order component, a, is now fully determined. The crest 
height and trough depth of the theoretical wave may be 
obtained from the same condensed relation: 

H=a+cBaZ,  ( 5 )  

with E =  + 1 for crests, and E =  - 1 for troughs. 

The statistical distribution of H is then deduced from that 
of a: 

p(H)dH=p(a)da. 
Replacing p(a) and da in this equation by their 
expressions obtained from equations (2), (3), (4), (S), and 
normalizing H with respect to a, leads to: 

2 3 4 v  

Figure 4 
Variations of thc perturbation parameter a, p function of 1 and y. 

Variations du param&rc de perturbation a. a fonction de p et y .  

with: 

 HI&, 

The parameter B may be considered as a global steepness 
of the wave field, and y, which relates the water depth to 
the wave length. characterizes the importance of bottom 
effects. Both kinds of non-linearities appear in the model 
through the unique perturbation parameter a. Figure 4 
shows the variations of a as function of B and y. 
Developing the second member of equation (6) as 
function of a gives: 

Comparison of the model with weakly non-linear data from 
intermediate water 

A wave length characteristic of each 17 min. 4 sec. record 
of the OTS data was computed from the period TH,,, of 
the record, using the classical dispersion relation in 
intermediate water. TH,,? was chosen because of its 
stability with regards to high frequencies, and because 
only the highest third of crests and troughs were used to 
fit the model, as will be seen later. A value of a, called a 
Stokes, and noted a,, was computed for each record from 
equation (7). using TH,,,, the standard deviation of the 
record. m. and the constant water depth d =  20,27 m. 
The parameter a, was found to Vary in the range [0.13, 
0.251. The 143 records were distributed into ten groups as 
function of a,, so that more than 1 500 individual waves 
were present in each group. The cumulative probability 
of crest heights and trough depths was computed for each 
group, and the theoretical model defined by equation (6) 

Figure 5 
Experimental and theoretical (fitted) distributions ofcrest hrighrs and 
trough deprb. in intermediate water. 

Distributions exptrimentale et thtorique ( a hauteurs de 
mttes et profondeurs de creux, en eau I n t e r m  



fitted to each of these experimental distributions by using 
a as a fitting parameter. The fitting procedure was a least 
squares one, using the Rayleigh probability paper scales, 
and was performed on the highest third of crest heights 
and trough depths only, where the deviations from the 
Rayleigh law are the more pronounced. 
The fitted value of a is noted al. The goodness of fit 
obtained by this model is quite satisfactory, as may be 
seen from Figure 5, drawn for the subset of records 
corresponding to 0.18<a,<0.19. The extend of the 
deviations from the Rayleigh law is shown to be more 
than 10% for the highest values. It is also noticeable that 
the probability functions of crests and troughs begin to 
diverge for low values of these parameters 
(H ~ 0 . 5  &). 

Figure 6 compares the values of a, and a ,  for each group 
of records. The ratio al/u, ranges between 0.4 and 0.7 
which means that the observed difference of behaviour 
between crests and troughs, and the observed deviations 
from the Rayleigh law are less than predicted by the 
Stokes second order theory. This result is to be attributed 
to the fact that a unidirectional model is being fitted to 
data from a multidirectional wave field: For a given value 
of the total energy, the non-linearities need not be as large 
when this energy is allowed to be spread in different 
directions. 

Figure 6 

Comprison between a. and a,. 

Comparaison de a* et a, 

This eflect of directionality on non-linearity is the reason 
for the non-zero interval proposed by Longuet-Higgins 
(1963) for the variations of the coefficient of skewness. 
The present results are also consistent with those of 
Forristall et al. (1978) who showed that the wave- 
induced velocities are overpredicted by non-linear 
unidirectional wave theories, and those of Mitsuyasu et 
al. (1979). and Masuda et al. (1979) in their study of the 
dispersion relation of random gravity waves. 

I 5 1 .* .an 
Figure 7 
Experimenral distributions ofcrests, troughs. anà haIf-heights of wases 
(H12) in shallow water 

Distributions expérimentales des crêtes, des mux et des demi- 
hauteurs de vagues IH12). en eau peu profonde. 

the shallowness of the water. Cavanié and Ezraty (1976) 
found that this latter effect is at the origin of a 
transformation of the wave height distribution towards a 
Weibull type law. It appears from Figure 7 that the 
crests and troughs probability functions are also affected. 
The importance of non-linearities, and the presence of the 
saturation effect obviously prevent from correctly fitting 
to the shallow water experimental probabilities the 
perturbation model of equation (6). 

ASYMMETRY WITH RESPECT TO A VERTICAL 
LlNE TROUGH THE CREST. BISPECTRAL 
ANALYSIS 

Figure 8 reproduced from Arhan and Gouriten (1976), 
shows a portion of bottom pressure record in shallow 
water, with the corresponding power spectrum. The 
presence of a secondary spectral peak at twice the 
frequency of the main one, and the important skewness of 

Statistical distribution of crests and troughs for wsves in 
shallow water 

a *  5 4  3 
* f (8) 

Figure 7 shows the experimental cumulative probability 
curves of crest heights, trough depths, and half wave ~ i g u r e  8 
helghts, for one of the shallow water records. The non- vuriations ofbottom pressure in s h a l l o ~  water. and the corresponding 
Iinear features already noticed for the OTS data appear pwer spectrwn 

be pronounced here. revedl an Variations de pression au fond en eau p u  profonde, et le spctre de 
effect of saturation of the three plotted parameters, due to puissanœ correspondant. 



the profile, suggest that the components of the secondary 
peak are essentially forced waves resulting from 2nd 
order interactions of the main peak. Another charac- 
teristic feature of this portion of record, already set 
in evidence in the paragraph "study of some 
deformation parameters" is the asymmetry of shallow 
water wave profiles with respect to vertical axis through 
the crests. Figure 9 shows that this asymmetry may be 
interpreted as a consequence of a certain phase shift 
between the first and second order components. A way of 
studying this kind of deformation will then be to estimate 
this phase shift from wave records in shallow water. This 
is possible through bispectral analysis, and is the purpose 
of the present paragraph. 

Figure 9 
Waw pro#le deformarion àue ro a phase shifi betwenJrst and second 
order components. (Y ( t ) = X ( r ) +  X"(r ) ) .  

Délonnation du profil des vagues due i un déphasage mtrc 
composantes du premier et du second ordre : 
(Y ( r ) = X ( l ) + X ' 2 ( f ) ) .  

Theoretical reminder on bispectra (Haubrich, 1% 
Hinich, Clay, 1%8) 

Bispectra were introduced in wave studits by Hassel- 
mann et al. (1963), but they have not been widely used 
until recent years(Houmb, 1974; Liu, 1977). They furnish 
a measure of second order non-linear interactions, and 
must be related to the wave profile deformations studied 
in this work. Bispectral computations were carried out 
for both intermediate and shallow water data sets, but 
significant results were obtained in the latter case only. 
The bispectrum of a stationnary random process X ( t )  is 
defined as the two dimensional Fourier transform of the 
second order covariance: 

with: 

Since al1 third moments of a Gaussian process are zero, 
any deviation from Normality will be detected by a non- 

zero value of the bispectrum. As is currently done for 
power spectra (Hinich, Clay, 1968) the order of 
operations in formula (8)-covariance computation, 
then Fourier transform-may be inverted so that the 
Fourier transform is carried out first. This method 
allows rapid computations of bispectra from finite 
duration records: 

Bjk = E [Xj Xk XÎ+ J, (9) 

where the subscripts are the number of the harmonics, 
and the Fourier transform of the signal, XI, is defined 
from: 

Xf denotes the complex wnjugatc of Xi. 
The expectancy in (9) is taken over a great number of 
finite duration rewrds. 
Let each Xj be written as funaion of its amplitude and 
phase: 

then: 

with: 

Assuming that the amplitudes of the components arc 
known exactly: 

or: 

This formulation leads to an interpretation of bispectra in 
terms of phase links between wmponents. IfX(t) is a 
linear Gaussian process, the ej's are uniformly 
distributed over [O, 2 x], and mutually independent. The 
angle Bi, is then also uniformly distributed over [O, 2x1, 
and the bispectrum is zero. On the other hand, if some 
permanent non-linear phase links exist between the 
components. resulting in a non-uniform distribution of 
Ojk, the bispectrum is different from zero. 
A handy form for bispectra, which has been used in this 
work, is obtained by expressing them in terms of their 
normalized squared amplitude, or bicoherence. and 
phase: 



A second order model for waves in shallow water 

The comments on Figure 8 made at the beginning of this 
paragraph, concerning the phase shift between first and 
second order components, and the narrowness of the 
main peak of the spectrum, suggest representing the 
reported shallow water signal by the following model: 

Y (t)= X (t) + XI2 ( t ) ,  (11) 

where X(t) and X'(t)are narrow banded linear processes, 
with a constant phase shift between their components. 
This may be written, in terms of their Fourier transforms: 

X,= IXjlPl, 

X;= (x;~$J,  with O;=B,+Jrj, 

with Xj and X; different from zero in the narrow 
frequency bands [ j , ,  j,] and [- j , ,  -il] only. X'(t)  may 
be considered as the output of a linear filter applied to 
X(t) .  In the following we restrict ourselves to the 
simplified case of single band spectra for X(t )  and X'(t)  
( j ,  = j ,  = 1). This leads to a simple expression and an easy 
interpretation of the bispectrum of Y (t). 
The Fourier transform of Y([) is readily deduced from 
(11): 

Introducing in (12) the Xi's of the single banded model 
leads to: 

except for: 

Using these relations in B,,=Y, Y, Y;,, shows that 
only Bo,, Bo,, B ,,,, and BI, are different from zero. Now 
considering the phases, it appears that only BI, has a non- 
zero phase: 

BI,= Y, YI y;,, 

B,=X, XI Xi* x;*. 

From this latter expression, the phase of BI,, notedcp,,, is 
obtained: 

Thus assuming the preceding model is a reasonable 
representation of rëality, bispectral computations should 
furnish a measure of the phase shift between first and 
second order components. The usually observed 
deformations of shallow water wave profiles - forward 
side steeper than backside- indicate a phase advance of 
the second order component (+>O, cp<O). It is 
noticeable that a phase delay of these forced second order 
oscillations would be explained by the damping effect of 
the bottom. The observed phase advance must then be 
attributed to another cause, probably the bottom slope. 

Comparison with experiment 

The bicoherences and bispectral phases of the 22 shallow 
water records were computed in the following way. Each 
34 min. 8 sec. record was digitized at a rate of 1 HZ 
and divided into thirty two 64 sec. long non- 
overlapping groups, and the corresponding thirty one 
half-overlapping groups. The expectancy appearing in 
equation (9) was estimated by averaging over those 
63 groups. Retaining the half-overlapping groups has the 
advantage of increasing by a factor of about 1.4 the 
number of degrees of freedom v of spectral estimates 
(Cooley et al., 1967). leading to v=90. Assuming a true 
zero value of the bispectrum, Haubrich (1965). showed 
that the 95% confidence interval of the bicoherence 
was 6/v. In the present case, this limit will then be equal 
to 0.067. Figure 10 shows the bicoherence isocontours 
and the corresponding power spectrum of a record. The 
95% confidence limit is clearly exceeded, revealing 
important non-linear interactions between components 
of the main peak and their harmonies. 

Figure 10 
Powr spectrum and blcoherence computedfrom dota in shaliow i w t e r .  

Spectre de puissance et bicoherence d'un enregkstrernent en eau peu 
profonde. 

T h d s e s  of the bispectra were found negative'over the 
areas of significant bicoherence. in particular at the 
position of the peak ( < p l , ) ,  which confirms a phase 
advance of second order components [equation (13)]. 
The steepening of the forward side of waves as they 
progress shorewards may be interpreted as an increase of 
Icp,,l. This phase value was examined for each 
bispectrum, and is reported on Figure 11 as a function 
of dlh, where d is the water depth and h a wavelength 
characteristic of the record, computed from the spectral 
peak frequency and the deep water dispersion relation. 
The variations of d, due to the tide effect, and those of A 
resulting from the spectral evolution, cause dlh to Vary, 
and simulate the wave shoaling. Figure 11 is a 
confirmation of the expected trend, with a reasonable 
scattering of the 22 reported points. The highest values of 
the phase advance. deduced from this figure, are about 
40" ($,= lcpl11 12). It must be kept in mind, however, 
when analysing this figure, that the cp,, estimates are 
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Figure II  
Phase O/ the bispecrrum (v i l )  os funciion o f d l k .  

Phase du bispectre (v i l )  en fonction de dl) ,  

dependent-as is the estimated peak level of a narrow 
banded power spectrum -on the frequency resolution, 
and thus may be slightly biased. 

CONCLUSIONS 

An asymmetry with respect to the mean water level is the 
only significant non-linear deformation found in the 
intermediate water case. Except for the highest waves, 
where a bottom effect is perceptible, this kind of 
deformation is chiefly dependent on the wave steepness. 
A second order model for the distributions of crest 
heights and trough depths was shown to explain. but to 
overpredict this deformation. This overprediction must 
be attributed to the uni-directionality of the theory, and 
leads to the recommendation that the angular dispersion 
of energy in real wave fields be estimated and taken into 
account in such models, prior to considering higher order 
non-linear terms. 
This kind of deformation is more pronounced in shallow 
water, although partly compensated. for the highest 
crests and lowest troughs, by a saturation effect due to the 
bottom. 

. Another kind of non-linear wave profile deformation is 
observed in shallow water only. It consists in an 
asymmetry with respect to a vertical line passed through 
the crest, and can be interpreted in terms of a phase shift 
between first and second order components. The analysis 
of bispectra, and in particular of their phases, appears as 
a way of studying this kind of deformation. 
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