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Abstract

We propose and compare two supervised algorithms of the segmentation of textured sonar images with respect

to seafloor types. We characterize sea-floors by a set of empirical distributions estimated on texture responses for a

wide set of different filters with various parameterizations and we introduce a novel similarity measure between sonar

textures in this feature space. Our similarity measure is defined as a weighted sum of Kullback-Leibler divergences

between texture features. The weight setting is twofold. First each filter is weighted according to its discrimination

power: the computation of these weights are issued from a margin maximization criterion. Second, an additional

weight, evaluated as an angular distance between the incidence angles of the compared texture samples, is considered

to take into account sonar image acquisition process that leads to a variability of the backscattered (BS) value and

of the texture aspect with the incidence angle range. A Bayesian framework is used in the first algorithm where

the conditional likelihoods are expressed using the proposed similarity measure between local pixel statistics and

the seafloor prototype statistics. The second method is based in a variational framework as the minimization of a

region-based functional that involves the similarity between global region texture based statistics and the predefined

prototypes.

Index Terms

Texture, sonar images, feature selection, angular backscattering, segmentation, MMP, active regions, level sets.

I. I NTRODUCTION

Acoustic remote sensing, such as high-resolution multibeam and sidescan sonars, provides new means for in-situ

observation of the seabed. The characterization of these high-resolution sonar images is important for a number

of practical applications such as marine geology, commercial fishing, offshore oil prospecting and drilling [1], [2],

[46], [47].

The segmentation and the classification of sonar images with respect to seafloor types (rocks, mud, sand,...) is

the key goal behind the analysis of these acoustic images. This task raises however two major difficulties. The

first task is to deal with texture in these images. Previous methods are generally based only on backscattered

(BS) intensity models and several parametric families of probabilistic distribution functions have been suggested

(Rayleigh distribution, K distribution, Weibull distribution etc) [5], [6], [44]–[47]. These first order statistics are not

sufficient when high-resolution sonar images involve textures, which is the case of most sonar images (Fig.1).
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Fig. 1. A typical sidscan sonar image, (Rebent, Ifremer)
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Fig. 2. BS evolution with the incidence angles for the three seafloor types of Fig.1: sand, mud and sand ripples

The other important issue arising in seabed texture characterization is a built-in feature of sonar observation: the

value of BS measure depends both on the seafloor type and on the incident angle of the reflected acoustic signal,

ranging typically from−85◦ to +85◦. Figure 2 shows the BS evolution for three different seafloor types : sand,

sand ripples and mud. In addition to the BS variability within incidence angles, seafloor textures are dependent on

the incidence angles. Figures 3 and 4 show a sonar image composed by sand ripples and rocks respectively for two

angular sectors:[80◦, 85◦] and [5◦, 40◦]. The texture of sand ripples shows a loss of contrast in the specular sector

[5◦, 40◦] : the steep grazing angle reduces the backscatter differences between facing and trailing slopes, while at

low incidence angles much of the variation is lost due to increasing sonar shadow. A similar loss of contrast is

observable in the rock samples (Fig.4). BS behavior according to the incidence angles has been of wide interest for

sonar imaging [9]–[12], [46]. Parametric and non parametric techniques have been proposed to model sonar image

behavior with respect to the incidence angle variations. The effect of the incidence angle on the BS has also been

explored as a discriminating feature for seafloor recognition [13], [14], [47]. However no studies have proposed

a method to accurately compensate this phenomena because of the joint dependency of the seafloor types and on

the local bathymetry which is generally unknown for sidescan sonar images. To our knowledge, the effects of the

July 23, 2008 DRAFT



IEEE GEOSCIENCE AND REMOTE SENSING SOCIETY, 3

50 100 150

50

100

150

200

250

300

350

400
50 100 150

50

100

150

200

250

300

350

400

Fig. 3. Sonar image composed of sand ripples, Left[5◦, 40◦] and right [80◦, 85◦].
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Fig. 4. Rock texture for two angular sectors. Left[5◦, 40◦] and right [80◦, 85◦].

incidence angle on textured seabed features have not been addressed for segmentation issues. Only some studies

were interested in simulating the behavior of oriented and textured seafloor types [15]–[18]. These methods are

mainly based on shape-from-shading [19] and were restricted to synthetic images or to real sonar images involving

only one seafloor type.

In this work, we aim at using texture information within sonar seabed images, and at developing segmentation

algorithms that take into account angular variability of BS and textural features. We propose to characterize seafloors

by a wide set of marginal distributions of their filter responses and we measure seafloor similarities according

to a weighted sum of Kullback-Leibler divergences [28] in this feature space. To cope with seafloor angular

dependency, we introduce an additional weighting factor, evaluated as an angular distance between the compared

texture samples: this angular distance is measured according to Gaussian kernels, whose variance sets the level of

the angular variability depending on textures and sea-floor types. The proposed incidence-angle-and-texture based

similarity measure is exploited to develop two different segmentation schemes. We first state the segmentation issue

as a Bayesian pixel-based labeling according to local texture features. The second approach relies on a region-level

variational framework, which resorts to a level-set minimization of an energy criterion involving global region-based

seafloor statistics.

The paper is organized as follows. The seafloor similarity measure is introduced in Section II. The Bayesian

segmentation method is detailed in Section III. The region based segmentation algorithm is described in Section

IV. Experiments are reported and discussed in Section V and conclusions are drawn in Section VI.
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Fig. 5. Co-occurrence distributions computed for parameters (d, θ) = (6, 0◦). Left [5◦, 40◦] and right[80◦, 85◦].

II. SONAR TEXTURE SIMILARITY MEASURE

Texture based segmentation of seabed sonar images generally relies on Haralick [30] parameters or scalar spectral

and filter coefficients to model textures [20]–[22]. Recently, in the field of texture analysis, features computed as

statistics of local filter responses have been shown to be relevant and discriminant texture descriptors [23]–[27].

Motivated by these studies, we propose to use texture features computed as marginal distributions of a wide set of

filter seafloor responses. Each seafloor type denoted byTk is characterized by a setQk composed of the marginal

distributions of the seafloor with respect to the predefined filters. The following is issued:

• 121 co-occurrence distributions with horizontal and vertical displacements denoted bydx anddy respectively

(dx, dy) ∈ {0, 1, ..., 10}.

• 50 distributions of the magnitude of Gabor filter responses, computed for combination of parameters(f0, σ, θ)

wheref0 is the radial frequency,σ is the standard deviation andθ the orientation, such thatf0 ∈
{√

2
2k

}

k=1:6
,

σ ∈
{

2k
√

2
}

k=2:5
andθ ∈ {0◦, 25◦, 45◦, 90◦, 135◦}.

• 48 distributions of the energy of the image wavelet packet coefficient computed for different bands (we used

three wavelet types: Haar, Daubechies and Coiflet).

Sonar texture variability with respect to the incidence angles induces a variability in texture features. Figures 5

and 6 show the co-occurrence matrices of the images involving sand ripples and rocks displayed on figures 3

and 4 respectively. A change in co-occurrence distributions can be noticed. In the angular sector[5◦, 40◦], the

co-occurrence is bimodal due to the alternation of dark and light values in the image of sand ripples, whereas in the

sector[80◦, 85◦], the loss of contrast between dark and light values in the image of sand ripples leads to unimodal

distribution. For co-occurrence distributions related to rock samples, a change in the variance is depicted. To

deal with this problem, we propose to define angular subdomains, in which texture characteristics can be regarded

as homogeneous. Each angular sector is indexed byj and is characterized by a mean incidence angle valueΘj.

Formally, this leads to introducing a state variablezs assigning pixels to a given angular subdomain.(θs, zs) where

θs is the incidence angle of pixels, is then modeled as a Gaussian mixture, and the assignment likelihoodp(Θj/zs)

is given by:

p(Θj/zs) =
exp

(

−(Θj−θs)
2

σ2

j

)

∑J

i=1 exp
(

−(Θi−θs)2

σ2

i

) (1)
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Fig. 6. Co-occurrence distributions computed for parameters (d, θ) = (6◦, 0). Left [5◦, 40◦] and right[80◦, 85◦].

Hence, the assignment of a given regionR to an angular subdomain is given by:

πR (j) =
1

|R|

∫

s

p(Θj/zs)ds (2)

The angular bounds, defined by the parametersΘj andσj are set experimentally and each seafloor type is character-

ized byQk = {Qf,j(Tk)}
f=1:F,j=1:J , its filter responses estimated on theJ angular domains. Note thatf accounts

both for filter types and various associated parameterizations:f = 1 → 121 refers to co-occurrence distributions,

f = 122 → 171 to Gabor filter andf = 172 → 219 to wavelet based distributions. These statistics are computed

using Parzen window estimation [29]. Formally,Qf,j (Tk, α) =
1

πTk
(j)

∫

Tk

p(Θj/zs)gσf
(hf (s) − α) ds, wherehf

is the filter response indexed byf (for a co-occurrence matrix with parametersµ = (d, θ), hf : Ω → [1, Ng]×[1, Ng]

andhf (s) = (I (s) , I (s + µ)) whereI (s) is the gray value at pixels andNg the total gray level number)gσf
a

Gaussian kernel with zero mean and standard deviationσf .

We define the similarity measure between a texture sampleT with feature setD(T ) = {Df,j(T )}
f=1:F,j=1:J

and a given seafloor typeTk as follows:

KLΘ
w(Qk, D(T )) =

J
∑

j=1

F
∑

f=1

πT (j)w2
fKL(Qk

f,j, Df,j(T )),

F
∑

f=1

w2
f = 1. (3)

whereDf,j(T ) is the distribution related to filterf and estimated on regionT for angular sectorj: Df,j (T, α) =
1

πT (j)

∫

T

p(Θj/zs)gσf
(hf (s) − α) ds,

{

w2
f

}

f=1:F
are the feature weights,KL denotes for the Kullback-Leibler

divergence [28]; for two probability distributionsQ andD, KL (Q, D) =

∫

Q(α)log

(

Q(α)

D(α)

)

dα.

The resulting weighting factors
{

w2
f

}

f=1:F
are exploited on one hand for filter selection to keep only the

distributions corresponding to the significant weights, and, on other hand, for the definition of an optimized texture-

based similarity measureKLΘ
w given the selected distributions. In a supervised context, the weights are estimated

from a training setT composed ofN labeled texture samples:T ={(D (T ) , sT )} wheresT is the class of sample

T . Formally,
{

w2
f

}

f=1:F
are issued from the maximization of the global margin defined as follows:

MT
w =

∑

T∈T
Mw(T ) (4)

where

Mw(T ) = KLΘ
w(QdT , D(T )) − KLΘ

w(QsT , D(T )) (5)
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wheredT is the nearest class toT different fromsT according to the similarity measureKLΘ
w:

dT = arg min
k 6=sT

KLΘ
w(Qk, D(T )) (6)

The maximization of the margin criterionMT
w is carried out using a stochastic gradient method as detailed in our

previous work [48].

III. B AYESIAN SONAR IMAGE SEGMENTATION

As far as bayesian image segmentation is concerned, the most popular criteria are the Maximum A Posteriori

(MAP) [42] and the Maximum Marginal Probabiility (MMP) [31]. It has been shown that the MMP estimation

criterion is more appropriate for image segmentation than the MAP criterion [31]. The MAP estimate assigns the

same cost to every incorrect segmentation regardless the number of pixels at which the estimated segmentation

differs from the true one, whereas the MMP algorithm minimizes the expected value of the number of misclassified

pixels. As shown in [31], the MMP procedure is equivalent to maximizing the marginal of the class labels. Let us

introduce the following notations:

• S the image lattice composed ofN pixels;

• X = {xs}s∈S the label random field;

• Y = {ys}s∈S the random field of the observations, the textural feature in our case.

Formally, the MMP scheme is equivalent to the maximization of:

x̂MMP
s = arg max

k∈{1:K}
p (xs = k/y) (7)

In general, pixel conditional likelihood are computed according to local texture features like Gabor or wavelet

coefficients. Here, we aim at using the proposed similarity measureKLΘ
w. We associate to each pixels a set

of featuresD (Ws) = {Df (Ws)}f=1:F estimated according to a Parzen estimation method [29], within a square

windowWs centered ats. The window size that we denote byTW is set by the user according to texture coarseness.

In our case, the observation denoted by a random fieldY is specified by{ys = D (Ws)}s∈S . The conditional

likelihood at each pixels with respect to classk is then defined from the similarity measureKLΘ
w by:

p (ys/xs = k) =
exp−KLΘ

w(Qk,D(Ws))
∑K

i=1 exp−KLΘ
w(Qi,D(Ws))

(8)

As a priorPX , we consider a Markov random field associated to an 8-neighborhood system with potential functions

given by:

U2 (x) =
∑

s∈S

∑

t∈cs

αc (1 − δ (xs, xt)) (9)

whereδ is the delta function,αc ∈ {αH , αV , αD} are real parameters assigned respectively to horizontal, vertical

and diagonal cliques.These parameters are estimated using the ICE (Iterative Conditional Estimation) procedure

[43]. Using Bayes rule the posterior distribution is expressed as follows:

p (X, Y ) = p(Y/X)p(X) = p(X)
∏

s

p(ys/xs) ≈ exp

0

B

@

∑

s∈S

∑

t∈cs

−αc (1 − δ (xs, xt)) + log (p (ys/xs))

1

C

A

(10)
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The maximization of local probabilitiesp (xs = k/y) is carried out as follows [31]: we use the Gibbs sampler

to generate a discrete-time Markov chainX(t) which converges in distribution to a random field with probability

mass functionsP (X/Y ). The marginal conditional distributionsp (xs = k/y) are then approximated as the fraction

of time the Markov chain spends in statek for each classk and each pixels. The MMP segmentation steps are

the following:

• Simulation ofTmax realizations ofx1, x2, ..., xTmax
of X using Gibbs sampler;

• Using the realizationsx1, x2, ..., xTmax
, p (xs/y) is estimated using the the frequency of each realizations:

p (xs = k/y) =
δ(x1

s − k) + ... + δ(x1
s − k)

Tmax

;

• Choose asxs the class that maximizesp (xs = k/y).

IV. VARIATIONAL SONAR IMAGE SEGMENTATION

Unlike the Bayesian scheme, the second approach is stated at a region level as the minimization of a constrained

energy criterionE ({Ωk}k=1:K) = E1 +E2, whereΩk is the domain composed of all pixels attributed to the class

k, E1 is a texture-based data-driven term andE2 a regularization term as detailed below.

A. Functional terms

E1 ({Ωk}k=1:K) is evaluated as the log-likelihood of a given partition with respect to texture models. It is

evaluated as the sum of the similarities according to the measureKLΘ
w between each regionΩk and its corresponding

classTk:

E1 ({Ωk}k=1:K) =

K
∑

k=1

KLΘ
w

(

Qk, D (Ωk)
)

(11)

whereDf,j(Ωk) is the marginal distribution of the image response to the filter indexed byf . For angular domain

j, Df,j(Ωk)is estimated according to Parzen method [29].

E2 is a regularization term, it penalizes the lengths of region contours and is expressed by:

E2 =
K
∑

k=1

γk |Γk| , γk ∈ ℜ+ (12)

where|Γk| the length of the contourΓk associated to the regionΩk.

B. Computation of the evolution equation

We solve for the minimization of the functionalE using a gradient descent technique. It relies on the computation

of the first derivative ofE according to regions{Ωk}k=1:K . The evolution equation of region contours{Γk}k=1:K

is then given by the following dynamic scheme [32]:






∂Γk(x, t)

∂t
= Fk(x, t) ~Nk

Γk(x, 0) = Γ0
k

(13)

where ~Nk is the unit inward normal toΓk at pixelx and at timet andFk the velocity field (in our caseFk = ∇Ek,

the derivative ofE with respect toΓk).
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The explicit implementation of the curve evolution according to the latter dynamic scheme using a difference

approximation scheme can not deal with topological changes of the moving front. This could be avoided by

introducing the level set method proposed by Osher and Sethian [33]. The basic idea of the method is the implicit

representation of the moving interfaceΓ by a higher dimensional hypersurfaceϕ (the level set function) such that

the zero level set ofϕ is actually the set ofΓ and:






Ωinside = {s ∈ Ω/ϕ(s) > 0}
Ωoutside = {s ∈ Ω/ϕ(s) < 0}

The evolution of the contours{Γk}k=1:K (equation 13) is then equivalent to the evolution of the level set functions

{ϕk}k=1:K [33]:
∂ϕk(s, t)

∂t
= Fk(s, t) |∇ϕk(s, t)| , ∀s ∈ Ωk (14)

E2 can be expressed using level set functionsϕk [36]:

E2 =

K
∑

k=1

γk lim
α→0

∫

Ω

δα(ϕk) |∇ϕk| ds. (15)

whereδα is a regularized delta function:

δα(s) =







1

2α

(

1 + cos
(πs

α

))

if |s| ≤ α

0 if |s| < α
(16)

In order to cope with multi-class segmentation and to fulfill the image partition constraint, we use an additional

term E3 given by the following functional [34]:

E3 =
λ

2

∫

Ω

(

K
∑

k=1

Hα (ϕk) − 1

)2

ds, λ ∈ ℜ+ (17)

whereHα is a regularized Heaviside function:

Hα(s) =























1

2

(

1 +
s

α
+

1

π
sin

(πs

α

)

)

if |s| ≤ α

1 if s > α

0 if s < −α

(18)

As E = E1 + E2 + E3, we have
∂ϕk

∂t
(s, t) =

∂ϕ1
k

∂t
(s, t)+

∂ϕ2
k

∂t
(s, t) +

∂ϕ3
k

∂t
(s, t) where

∂ϕi
k

∂t
, i = 1, 2, 3 are the

evolution equation terms associated respectively to functionalsEi, i = 1, 2, 3.

The derivatives of the energy termsE2 andE3 are directly estimated from level set functions [35], [36].

∂ϕ2
k

∂t
(s, t) = γkδα (ϕk) div

( ∇ϕk

|∇ϕk|

)

, ∀k ∈ {1 : K} . (19)

∂ϕ3
k

∂t
(s, t) = −δα (ϕk)λ

(

K
∑

k=1

(Hα (ϕk) − 1)

)

, ∀k ∈ {1 : K} . (20)

The evolution equation related toE1 is more complex, since it involves computations over the spatial support of

each region. To differentiateE1, we use shape derivative tools, especially the Gâteaux derivative theorem given in
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[37]. As detailed in Annex A, it leads to:

∂ϕ1
k

∂t
(s, t) = −

J
∑

j=1

F
∑

f=1

w2
fp(Θj/zs)

[

KL(Qk
f,j, D

k
f,j) −

(

Qk
f,j

Df,j

∗ gσf
(hf (s)) − 1

)]

|∇ϕk| (21)

where∗ is the convolution symbol.

The evolution equation related to the energyE1 (equation (21)) is composed of two terms:

• A global term−
J
∑

j=1

F
∑

f=1

w2
fp(Θj/zs)KL

(

Qk
f,j, Df,j

)

: this term is always negative or null. It is a contraction

force that reduces the size of heterogeneous regions;

• A local term
J
∑

j=1

F
∑

f=1

w2
fp(Θj/zs)

(

Qk
f,j

Df,j

− 1

)

∗ gσf
(hf (s)): this term locally compares the features values

at each pixel. This term can be positive or negative and aims at readjusting the statistics inside the regions

Df,j (Ωk) to fit to prototype modelsQk
f,j . The contribution of each descriptorsf is weighted byw2

f and

p(Θj/zs), the relative contribution of descriptorf and of angular sectorj.

The overall evolution equations of the contours{Γk}k=1:K are the following:

∂ϕk

∂t
(s, t) = −δα (ϕk)





J
∑

j=1

F
∑

f=1

w2
fp(Θj/zs)

(

KL(Qk
f,j, Df,j) −

Qk
f,j

Df,j

∗ gσf
(hf (s)) + 1

)

+

γkdiv

( ∇ϕk

|∇ϕk|

)

− λ

(

K
∑

k=1

(Hα (ϕk) − 1)

)]

, ∀k ∈ {1, ..., K}
(22)

We apply these coupled evolution equations until convergence.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In previous work, we have tested the method on various optic textures (Brodatz textures). The method was

compared to other texture classification methods and some results are reported in [48], [49]. Here, we evaluate

the proposed seabed segmentation technique for different real sonar images acquired by a sidescan sonar, as part

of a natural seabed mapping project (IFREMER, Rebent Project) [41]. A reference interpretation by an expert is

available [41]. Figure 7 shows the set of images on which we carried out the experiments. We superimposed on

these images the manual expert segmentation. Image I1 is composed of three seafloor types: rock, mud and marl

ripples [41], I2 of rock, marl ripples and mud seafloors, I3 of mud, sand and marl ripples, I4 of marl and marl

ripples and I5 of sand, sand ripples and rock. For I2 and I3, the angular variability of the sefloors especially marl

ripples (for I2) and marl (for I3) is visually clear.

For all these images, we first determine the most discriminant features among the initial set of 219 features: we

apply the algorithm described in Section II and detailed in [48] and we keep only the feature set such that the

cumulative sum of weights exceeds0.9. Only a small number of features are retained. For example, figure 8 shows

the plot of feature weights computed for image I1 and I5. For I1, the two co-occurrence matrices account for more

than 90% of the total weight sum, these co-occurrence are computed for parameters(dx, dy) ∈ {(1, 4) , (2, 1)}.

For I5, the co-occurrence distributions computed for parameters(dx, dy) ∈ {(2, 1) , (2, 2)} are selected. For sonar

images, we noticed that co-occurrence matrices are the most selected features. In previous work on Brodatz textures

July 23, 2008 DRAFT



IEEE GEOSCIENCE AND REMOTE SENSING SOCIETY, 10

Marl

Rock

Marl ripples

(I1)

Rock

Mud

Marl ripples

(I2)

Mud

Marl

Sand

(I3)

Marl

Marl ripples

(I4)

Rock

Sand ripples

Sand

(I5)

Fig. 7. Test images and their manual segmentation (in black line).
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Fig. 8. Feature weights:1 → 121 co-occurrence distributions,122 → 171 Gabor filter based features and172 → 219 wavelet based

distributions.

[48], [49], we remarked that Gabor and wavelet filters were selected for oriented textures whereas co-occurrence

distributions, which in addition to the detection of texture structures detect the intensity values change, are selected

in the case of texture having different intensity values and texture with regular motifs.

For the five test images, three segmentation algorithms are compared:

• The maximum likelihood segmentation denoted by ML. This method consists in maximizing at each pixel the

conditional probabilityp(ys/xs) given by equation (8):

x̂s = arg max
k

p(ys/xs = k) (23)

Several analysis window sizes are compared:TW ∈ {7 × 7, 17 × 17, 33× 33};

• The MMP segmentation described in Section III, applied for several analysis window sizes:TW ∈ {7 × 7, 17 × 17, 33 × 33};

• The region-based variational segmentation described in Section IV.

Table I summarizes the different error classification rates for all segmentations. All segmentation methods give quite

ML: TW = 7 ML: TW = 17 ML: TW = 33 MMP: TW = 7 MMP: TW = 17 MMP: TW = 33 Variational

I1 τ = 15% τ = 10% τ = 13.2% τ = 12.5% τ = 9.2% τ = 13% τ = 7.5%

I2 τ = 15% τ = 11.5% τ = 7% τ = 10% τ = 4% τ = 5% τ = 3%

I3 τ = 10% τ = 8% τ = 9% τ = 7% τ = 8% τ = 8% τ = 4%

I4 τ = 5% τ = 4.5% τ = 6% τ = 4% τ = 4% τ = 6% τ = 3%

I5 τ = 9.5% τ = 9% τ = 11% τ = 8% τ = 8% τ = 10% τ = 7%

TABLE I

SEGMENTATION ERROR RATES

good results according to the mean classification error rates. MMP and variational approaches are more efficient than
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Fig. 9. MMP Segmentation of I1 usingTW = 7 × 7, τ = 12.5%.

the ML based segmentation because they take into account the spatial dependency between pixels. The difference

between these later approaches (MMP and variational methods) mainly lies in the accuracy of the localization of

region boundaries and in the dependency of MMP based segmentation on the window sizeTW . In fact, for the

MMP segmentation the use of of small neighborhood (TW = 7×7) leads to more accurate region frontiers but small

misclassified patches appear because of the neighborhood inefficiency for texture characterization. Conversely, the

use of large window sizes, (TW = 33×33) resorts to a lack of accuracy in the localization of the boundaries of the

seabed regions because texture features extracted for pixels close to region boundaries involve a mixture of texture

characteristics. The variational region-based approach does not need the choice of an analysis window and operates

globally on region composed of pixels belonging to the same class. It resorts to a trade-off between segmentation

accuracy and region homogeneity. Figures 9, 10, 11, 12 and 13 illustrate examples of the dependency of MMP

segmentation on the sizes of analysis window and on the robustness of the variational approach. In figure 14, we

plot the mean error rate for different window sizes.

We note that MMP and variational segmentations give similar results when the analysis window size is well

chosen for instance,TW = 17×17 for image I2 (figure 15), but its performance depends a lot on the choice of this

parameter. This method can however be appropriate when the aim of the segmentation is to detect texture regions

and without a seek of accurate boundaries.

The variational approach is also interesting because it is much faster than the MMP segmentation. Being

deterministic, the variational approach, can be very fast especially if we use appropriate initialization such as an

initial segmentation based on the Maximimum Likelihood criterion (ML). Whereas the MMP segmentation needs

a large number of iterations, each iteration is also complex and involves Gibbs sampling. For our implementations

the convergence time of a variational image typically corresponds to one iteration of the MMP algorithm.

To stress the interest of taking into account texture variability with respect to incidence angles, additional

segmentation results are reported for image I2 and I3 for witch the seafloor texture variability is more clear. In table
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Fig. 10. MMP Segmentation of I1 usingTW = 17 × 17, τ = 9.2%.

Fig. 11. MMP Segmentation of I1 usingTW = 33 × 33, τ = 13%.

Fig. 12. Region based segmentation of I1,τ = 7.5%.
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(a) MMP: TW = 7, τ = 4% (b) MMP: TW = 33, τ = 6% (c) Variational method,τ = 3%

Fig. 13. Segmentations of I4
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Fig. 14. Mean segmentation error rate for several window sizes.

(a) MMP based segmentationTW = 17, τ = 4% (b) Variationl based segmentation,τ = 3%

Fig. 15. I2 segmentations.
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(a) Region based segmentationJ = 1, τ = 23.5% (b) Region based segmentationJ = 3, τ = 3%

Fig. 16. I2 Region based segmentation with and without angular weighting.

II, we summarize the segmentation error rates for the segmentation with (J=3) and with no angular weighting, i.e

using only one angular domainJ = 1, for ML, MMP and variational methods. In figures 16 and 17 are reported the

ML: TW = 33 MMP: TW = 33 Variational

J = 1 J = 3 J = 1 J = 3 J = 1 J = 3

I2 τ = 25% τ = 7% τ = 21% τ = 5% τ = 23.5% τ = 3%

I3 τ = 20% τ = 9% τ = 16% τ = 8% τ = 15% τ = 4%

TABLE II

SEGMENTATION ERROR RATES

associated segmentation results. It can be noticed that a classical segmentation (without taking into account texture

variability within incidence angles) cannot distinguish between visually similar seafloors (mud and marl ripples for

I2 and marl and sand for I3) near the specular domain.

VI. CONCLUSION

We proposed two segmentation algorithms for sonar image segmentation: a Bayesian algorithm using local

statistics and a region based variational algorithm, both based on a novel similarity measure between seafloor type

images in the feature space spanned by a large set of various texture statistics. This similarity measure is expressed as

a weighted sum of Kullback-Leibler divergences between individual seafloor filter response statistics. The resulting

weighting factors are exploited on the one hand for filter selection and, on the other hand, for taking into account

the incidence angular dependency of seafloor textures. The conclusion is the co-occurrence matrices outperform the

other features for our sonar images. The results show that the performance of the Bayesian approach depends on the

size of analysis window. For pixel-based segmentation (maximum likelihood and MMP segmentations), the size must
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(a) MMP based segmentationJ = 1, τ = 16% (b) MMP based segmentationJ = 3, τ = 8%

Fig. 17. I3 MMP based segmentation with and without angular weighting.

not be neither too large neither too small (according to the coarseness of given textures). The results also stress the

suitability of the region based approach compared to the Bayesian pixel-based scheme for texture segmentation and

the effectiveness of the proposed algorithm in taking into account the angular backscatter variabilities to discriminate

between seafloor types especially near the specular sector.

APPENDIX A

EVOLUTION EQUATION COMPUTATION

Using the shape derivative tools, we want to differentiate the functional:

F (Ωk) = KLΘ
w

(

Qk, D (Ωk)
)

which can be written as follows:

J
∑

j=1

F
∑

f=1

πΩk
(j)w2

f

∫

Rf

Qk
f,j (α) log

(

Qk
f,j (α)

Df,j (Ωk, α)

)

dα

Let us introduce the following notations:

• Hk
j = Qk

f,j (α) log

(

Qk
f,j (α)

Df,j (Ωk, α)

)

.

• G1 =

∫

Ωk

p(Θj/zs)gσf
(hf (s) − α) ds.

Then, we have:

F (Ωk) =
J
∑

j=1

F
∑

f=1

w2
fπΩk

(j)

∫

Rf

Hk
j

The Gâteaux derivative ofF (Ωk) in the direction of a vector field~V is given by:

dF
(

Ωk, ~V
)

=

J
∑

j=1

F
∑

f=1

w2
fdπΩk

(j)
(

Ωk, ~V
)

∫

Rf

Hk
j dα + πΩk

(j)

∫

Rf

dHk
j

(

Ωk, ~V
)

dα (24)
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Theorem (see [37])

The Gâteaux derivative of a functional of the typeK (Ω) =

∫

Ω

k (s, Ω) ds is given by:

dK
(

Ω, ~V
)

=

∫

Ω

ksh

(

s, Ω, ~V
)

ds −
∫

Γ

k (s, Ω)
(

~V ~N
)

da(s)

whereΩ denoted a region andΓ its boundary,ksh

(

s, Ω, ~V
)

is the shape derivative ofk (s, Ω).

In our case:

dπΩk
(j)
(

Ωk, ~V
)

= −
∫

Γk

p(Θj/zs)
(

~V . ~Nk

)

d~a(s)

Hk
j can be written as:

Hk
j = Qk

f,j (α) log

(

πΩk
(j)Qk

f,j (α)

G1 (Ωk, f, j, α)

)

Using the chain rule, we get:

dHk
j

(

Ωk, ~V
)

=

(

∂Hk
j

∂G1
dG1

(

Ωk, ~V
)

+
∂Hk

j

∂πΩk
(j)

dπΩk
(j)
(

Ωk, ~V
)

)

∂Hk
j

∂G1
= −

Qk
f,j

G1

∂Hk
j

∂πΩk
(j)

=
Qk

f,j

πΩk
(j)

According to the previous theorem, we get:

dG1

(

Ωk, ~V
)

= −
∫

Γk

p(Θj/zs)gσf
(hf (s) − α)(~V . ~Nk)d~a(s)

Finally, we get:

dHk
j

(

Ωk, ~V
)

=

∫

Γk

p(Θj/zs)

[

Qk
f,j(α)

G1(f, α,Ωk)
gσf

(hf (s) − α) − Qf(α)

πΩk
(j)

]

(~V . ~Nk)d~a(s)

=
1

πΩk
(j)

∫

Γk

p(Θj/zs)

[

Qk
f,j(α)

Df,j(Ωk, α)
gσf

(hf (s) − α) − Qf(α)

]

(~V . ~Nk)d~a(s)

∫

Rf

dHk
j

(

Ωk, ~V
)

dα =
1

πΩk
(j)

∫

Γk

p(Θj/zs)

[

Qk
f,j

Df,j(Ωk)
∗ gσf

(hf (s)) − 1

]

(~V . ~Nk)d~a(s)

Finally, according to equation 24:

dF
(

Ωk, ~V
)

= −
J
∑

j=1

F
∑

f=1

p(Θj/zs)w
2
f

∫

Γk

[

KL
(

Qk
f,j , Df,j

)

−
(

Qk
f,j

Df,j(Ωk)
− 1

)

∗ gσf
(hf (s))

]

(~V . ~Nk)d~a(s)
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[35] J.F Aujol, G. Aubert and L. Blanc-Féraud,“Wavelet-based level set evolution for classification of textured images”. IEEE Transaction on

Image Processing, vol. 12, no.12. pp: 1634-1641, Dec, 2003.
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