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Abstract

We propose and compare two supervised algorithms of the segmentation of textured sonar images with respect
to seafloor types. We characterize sea-floors by a set of empirical distributions estimated on texture responses for a
wide set of different filters with various parameterizations and we introduce a novel similarity measure between sonar
textures in this feature space. Our similarity measure is defined as a weighted sum of Kullback-Leibler divergences
between texture features. The weight setting is twofold. First each filter is weighted according to its discrimination
power: the computation of these weights are issued from a margin maximization criterion. Second, an additional
weight, evaluated as an angular distance between the incidence angles of the compared texture samples, is considered
to take into account sonar image acquisition process that leads to a variability of the backscattered (BS) value and
of the texture aspect with the incidence angle range. A Bayesian framework is used in the first algorithm where
the conditional likelihoods are expressed using the proposed similarity measure between local pixel statistics and
the seafloor prototype statistics. The second method is based in a variational framework as the minimization of a
region-based functional that involves the similarity between global region texture based statistics and the predefined

prototypes.

Index Terms

Texture, sonar images, feature selection, angular backscattering, segmentation, MMP, active regions, level sets.

I. INTRODUCTION

Acoustic remote sensing, such as high-resolution multibeam and sidescan sonars, provides new means for in-situ
observation of the seabed. The characterization of these high-resolution sonar images is important for a number
of practical applications such as marine geology, commercial fishing, offshore oil prospecting and drilling [1], [2],
[46], [47].

The segmentation and the classification of sonar images with respect to seafloor types (rocks, mud, sand,...) is
the key goal behind the analysis of these acoustic images. This task raises however two major difficulties. The
first task is to deal with texture in these images. Previous methods are generally based only on backscattered
(BS) intensity models and several parametric families of probabilistic distribution functions have been suggested
(Rayleigh distribution, K distribution, Weibull distribution etc) [5], [6], [44]-[47]. These first order statistics are not

sufficient when high-resolution sonar images involve textures, which is the case of most sonar images (Fig.1).
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Fig. 1. A typical sidscan sonar image, (Rebent, Ifremer)

—— Sand

Mud
-5 . —— Sand ripples
N

L L L L L L L
—80 —60 —40 -20 o 20 40 60 80

Fig. 2. BS evolution with the incidence angles for the threafleer types of Fig.1: sand, mud and sand ripples

The other important issue arising in seabed texture characterization is a built-in feature of sonar observation: the
value of BS measure depends both on the seafloor type and on the incident angle of the reflected acoustic signal,
ranging typically from—85° to +85°. Figure 2 shows the BS evolution for three different seafloor types : sand,
sand ripples and mud. In addition to the BS variability within incidence angles, seafloor textures are dependent on
the incidence angles. Figures 3 and 4 show a sonar image composed by sand ripples and rocks respectively for two
angular sectors80°, 85°] and [5°,40°]. The texture of sand ripples shows a loss of contrast in the specular sector
[5°,40°] : the steep grazing angle reduces the backscatter differences between facing and trailing slopes, while at
low incidence angles much of the variation is lost due to increasing sonar shadow. A similar loss of contrast is
observable in the rock samples (Fig.4). BS behavior according to the incidence angles has been of wide interest for
sonar imaging [9]-[12], [46]. Parametric and non parametric techniques have been proposed to model sonar image
behavior with respect to the incidence angle variations. The effect of the incidence angle on the BS has also been
explored as a discriminating feature for seafloor recognition [13], [14], [47]. However no studies have proposed
a method to accurately compensate this phenomena because of the joint dependency of the seafloor types and on

the local bathymetry which is generally unknown for sidescan sonar images. To our knowledge, the effects of the
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Fig. 3.

Fig. 4. Rock texture for two angular sectors. L&, 40°] and right[80°, 85°].

incidence angle on textured seabed features have not been addressed for segmentation issues. Only some studies
were interested in simulating the behavior of oriented and textured seafloor types [15]-[18]. These methods are
mainly based on shape-from-shading [19] and were restricted to synthetic images or to real sonar images involving
only one seafloor type.

In this work, we aim at using texture information within sonar seabed images, and at developing segmentation
algorithms that take into account angular variability of BS and textural features. We propose to characterize seafloors
by a wide set of marginal distributions of their filter responses and we measure seafloor similarities according
to a weighted sum of Kullback-Leibler divergences [28] in this feature space. To cope with seafloor angular
dependency, we introduce an additional weighting factor, evaluated as an angular distance between the compared
texture samples: this angular distance is measured according to Gaussian kernels, whose variance sets the level of
the angular variability depending on textures and sea-floor types. The proposed incidence-angle-and-texture based
similarity measure is exploited to develop two different segmentation schemes. We first state the segmentation issue
as a Bayesian pixel-based labeling according to local texture features. The second approach relies on a region-level
variational framework, which resorts to a level-set minimization of an energy criterion involving global region-based
seafloor statistics.

The paper is organized as follows. The seafloor similarity measure is introduced in Section Il. The Bayesian
segmentation method is detailed in Section Ill. The region based segmentation algorithm is described in Section

IV. Experiments are reported and discussed in Section V and conclusions are drawn in Section VI.
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Fig. 5. Co-occurrence distributions computed for paransetérf) = (6,0°). Left [5°,40°] and right[80°, 85°].

Il. SONAR TEXTURE SIMILARITY MEASURE

Texture based segmentation of seabed sonar images generally relies on Haralick [30] parameters or scalar spectral
and filter coefficients to model textures [20]-[22]. Recently, in the field of texture analysis, features computed as
statistics of local filter responses have been shown to be relevant and discriminant texture descriptors [23]-[27].
Motivated by these studies, we propose to use texture features computed as marginal distributions of a wide set of
filter seafloor responses. Each seafloor type denotefi;hig characterized by a s€; composed of the marginal
distributions of the seafloor with respect to the predefined filters. The following is issued:
121 co-occurrence distributions with horizontal and vertical displacements denotégd &yd d, respectively
(ds,dy) € {0,1,...,10}.

« 50 distributions of the magnitude of Gabor filter responses, computed for combination of parafiigters)
where fj is the radial frequencyy is the standard deviation arfdthe orientation, such thafk € {%}
o€ {2¥v2}, _, . andf € {0°,25° 45°,90°,135°}.

« 48 distributions of the energy of the image wavelet packet coefficient computed for different bands (we used

1
k=1:6

three wavelet types: Haar, Daubechies and Caoiflet).

Sonar texture variability with respect to the incidence angles induces a variability in texture features. Figures 5
and 6 show the co-occurrence matrices of the images involving sand ripples and rocks displayed on figures 3
and 4 respectively. A change in co-occurrence distributions can be noticed. In the angularsed@i, the
co-occurrence is bimodal due to the alternation of dark and light values in the image of sand ripples, whereas in the
sector[80°, 85°], the loss of contrast between dark and light values in the image of sand ripples leads to unimodal
distribution. For co-occurrence distributions related to rock samples, a change in the variance is depicted. To
deal with this problem, we propose to define angular subdomains, in which texture characteristics can be regarded
as homogeneous. Each angular sector is indexed &yd is characterized by a mean incidence angle vélue
Formally, this leads to introducing a state variableassigning pixek to a given angular subdomaits, z;) where
0, is the incidence angle of pixa| is then modeled as a Gaussian mixture, and the assignment like}i©odz)
is given by:

exp (465092)

O./zs) = J 1
»( J/ ) Z;]:I exp(,(@;ggs)z) 1)
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Fig. 6. Co-occurrence distributions computed for paransetdrf) = (6°,0). Left [5°,40°] and right[80°, 85°].

Hence, the assignment of a given regiBrto an angular subdomain is given by:

) = L i/zs)ds
mw5) = o | (O3/204 @

The angular bounds, defined by the parameseraindo; are set experimentally and each seafloor type is character-
ized byQr = {Qy,j(Tk)} j_1.p j—., its filter responses estimated on thengular domains. Note thgtaccounts
both for filter types and various associated parameterizatiprs:1 — 121 refers to co-occurrence distributions,
f =122 — 171 to Gabor filter andf = 172 — 219 to wavelet based distributions. These statistics are computed
using Parzen window estimation [29]. Formally; ; (Ty, o) = ﬁ /k P(0©;/25)95, (hy(s) — ) ds, whereh
is the filter response indexed By(for a co-occurrence matrix with parameters= (d,6), hy : Q@ — [1, Ng|x[1, Ng]
andhy (s) = (I (s),1 (s + u)) wherel (s) is the gray value at pixed and Ng the total gray level number),, a
Gaussian kernel with zero mean and standard deviatjon

We define the similarity measure between a texture saffipteith feature setD(T) = {Dy;(T)};_,.p;_;.;
and a given seafloor typg, as follows:

F
ZWT YwIKL(QY ,, Dy (T
1f=1

KLO Qk _
J

®3)

J

10
g
[\v}

where Dy ;(T) is the distribution related to filtef and estimated on regiadfi for angular sectoy: Dy ; (T, a) =

1( 3 / P(0;/25)90,; (hf(s) — @) ds, {wj%}f_l_F are the feature weightdy L denotes for the Kullback-Leibler
Tr\J)Jr o
divergence [28]; for two probability distribution§ and D, KL (Q, D) = /Q(a)log (%) da.

(6%

The resulting weighting factor{w;%}f:l:F are exploited on one hand for filter selection to keep only the
distributions corresponding to the significant weights, and, on other hand, for the definition of an optimized texture-
based similarity measur& L given the selected distributions. In a supervised context, the weights are estimated
from a training sel’ composed ofV labeled texture sample§: ={(D (T"), sr)} wheresr is the class of sample

T. Formally, {w}}le.F are issued from the maximization of the global margin defined as follows:

=" M,(T) (4)
TeT
where
M, (T) = KLQ(Q™, D(T)) — KLg(Q*", D(T)) 5)
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wheredr is the nearest class B different from s according to the similarity measurIéLg:
dr = arg min KLJ(Q", D(T)) (6)
sT

The maximization of the margin criterioh/” is carried out using a stochastic gradient method as detailed in our

previous work [48].

IIl. BAYESIAN SONAR IMAGE SEGMENTATION

As far as bayesian image segmentation is concerned, the most popular criteria are the Maximum A Posteriori
(MAP) [42] and the Maximum Marginal Probabiility (MMP) [31]. It has been shown that the MMP estimation
criterion is more appropriate for image segmentation than the MAP criterion [31]. The MAP estimate assigns the
same cost to every incorrect segmentation regardless the number of pixels at which the estimated segmentation
differs from the true one, whereas the MMP algorithm minimizes the expected value of the number of misclassified
pixels. As shown in [31], the MMP procedure is equivalent to maximizing the marginal of the class labels. Let us
introduce the following notations:

« S the image lattice composed of pixels;

o X ={a;}

o Y ={ys},cq the random field of the observations, the textural feature in our case.

scg the label random field;

Formally, the MMP scheme is equivalent to the maximization of:

~MMP
_ L=k 7
T arg err{lgﬁ}p(:v /) (7)

In general, pixel conditional likelihood are computed according to local texture features like Gabor or wavelet
coefficients. Here, we aim at using the proposed similarity mea&Ut€. We associate to each pixela set

of featuresD (W) = {Dy (Ws)};_, - estimated according to a Parzen estimation method [29], within a square
window W, centered at. The window size that we denote By is set by the user according to texture coarseness.

In our case, the observation denoted by a random fiélis specified by{y; = D (W)} The conditional

seS”
likelihood at each pixek with respect to class is then defined from the similarity measukeL® by:

expiKLg(Qk'fD(Ws))

Zi}il exp~KLZ(Q,D(W:))

p(ys/zs = k) = 8

As a prior Px, we consider a Markov random field associated to an 8-neighborhood system with potential functions
given by:
Up () =Y e (1= 0 (s, 21)) ©)

seStecs

where/ is the delta functione. € {ap,ay,ap} are real parameters assigned respectively to horizontal, vertical
and diagonal cliques.These parameters are estimated using the ICE (Iterative Conditional Estimation) procedure

[43]. Using Bayes rule the posterior distribution is expressed as follows:

(Z > —ae (1= 6 (zs,20)) +log (p (ys/xs)))
p(X,Y) = p(Y/X)p(X) = p(X) [ [ p(ys/s) ~ exp \s&S t€es (10)
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The maximization of local probabilities (x5 = k/y) is carried out as follows [31]: we use the Gibbs sampler
to generate a discrete-time Markov chair(¢) which converges in distribution to a random field with probability
mass functiond?(X/Y"). The marginal conditional distributions(xs = k/y) are then approximated as the fraction
of time the Markov chain spends in statefor each class: and each pixek. The MMP segmentation steps are
the following:

« Simulation of7T},,, realizations ofry, zo, ..., x1,,,, 0f X using Gibbs sampler;

« Using the realizations, zo, ..., 21,,.., p (xs/y) is estimated using the the frequency of each realizations:

p (e = o fy) = O = B) o 4 0 — ),

Tmaz '
« Choose ag; the class that maximizes(z; = k/y).

IV. VARIATIONAL SONAR IMAGE SEGMENTATION

Unlike the Bayesian scheme, the second approach is stated at a region level as the minimization of a constrained
energy criterion® ({Qx},_,.,) = E1 + E2, where;, is the domain composed of all pixels attributed to the class

k, Fy is a texture-based data-driven term aligl a regularization term as detailed below.

A. Functional terms

E' ({Qx},_,.) is evaluated as the log-likelihood of a given partition with respect to texture models. It is
evaluated as the sum of the similarities according to the me&shifg between each regidn, and its corresponding

classTy:

K
By ({Qhimri) = ) KLy (QF, D (%)) (11)
k=1

where Dy ;(€2,) is the marginal distribution of the image response to the filter indexegl. B3or angular domain
J, Dy ;()is estimated according to Parzen method [29].

E5 is a regularization term, it penalizes the lengths of region contours and is expressed by:
K

Ey = [Tl € Ry (12)
k=1

where|T';| the length of the contour, associated to the regidny.

B. Computation of the evolution equation

We solve for the minimization of the functional using a gradient descent technique. It relies on the computation
of the first derivative ofE! according to region$},_,.,. The evolution equation of region contou®; },_;.

is then given by the following dynamic scheme [32]:

T (1) )
—F——==F t)N,

9 (2, t) Nk (13)
Li(z,0) =T}

where]\7,C is the unit inward normal td@';, at pixelz and at timet and F), the velocity field (in our casé}, = V Ey,

the derivative ofZ with respect tal'y,).
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The explicit implementation of the curve evolution according to the latter dynamic scheme using a difference
approximation scheme can not deal with topological changes of the moving front. This could be avoided by
introducing the level set method proposed by Osher and Sethian [33]. The basic idea of the method is the implicit
representation of the moving interfa€eby a higher dimensional hypersurfage(the level set function) such that

the zero level set op is actually the set of* and:
Qinside = {S € Q/QP(S) > 0}
Qoutside = {S € Q/‘P(S) < O}
The evolution of the contourfl’, }, ;. (equation 13) is then equivalent to the evolution of the level set functions

{0k} eey.x [33]:

T Fr(s,t) [Vor(s,t)|,Vs € Q (14)
E5 can be expressed using level set functigns[36]:
K
B> = Z% lin})/ 0a(pr) Vi | ds. (15)
=1 7
whered,, is a regularized delta function:
1 T$
— (14 cos [ — if |s| <a
sy = { 0 (e eon () 1= o
0if |s] <«

In order to cope with multi-class segmentation and to fulfill the image partition constraint, we use an additional

term E5 given by the following functional [34]:

A X ’
E3 = §/Q (; H, (¢1) — 1) ds, A e RF (17)

where H,, is a regularized Heaviside function:

1 S 1 . /7ws .
= 1—|——+—szn(—) if|s| <«
2 a  m @

Ho() =4 1if s> a (18)
0if s < —a
B O, Opp 93 93 Oey . _
As E = Ey + Es + E3, we have ot (s,t) = 5 (s,t)+ 5 (s,t)+ 5 (s,t) where i 1,2, 3 are the

evolution equation terms associated respectively to functiabigls= 1,2, 3.

The derivatives of the energy ternis, and E5 are directly estimated from level set functions [35], [36].

(e _ - ( Vg ,
dpi =
2550 = =00 (ei) M D (Ha (0x) 1) | k€ {1: K} (20)
k=1

The evolution equation related 8, is more complex, since it involves computations over the spatial support of

each region. To differentiat®’;, we use shape derivative tools, especially the Gateaux derivative theorem given in
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[37]. As detailed in Annex A, it leads to:

(9(,01 J F Qk )
(50 == 303 win(©,/z) |KL(QG 1. D)) = | 5 <o,y 1) [ IVenl - @)
7=1f=1 -
wherex is the convolution symbol.
The evolution equation related to the eneigy (equation (21)) is composed of two terms:
J F
» A global term— Z Zw?p ©;/zs)KL (Q’fcj, Dy ;): this term is always negative or null. It is a contraction
Jj=1f=1

force that reduces the size of heterogeneous regions;

N

k
« A local termZwap i/ %s) (Q d _ 1) * go; (hy(s)): this term locally compares the features values
Dy,
=1 f=1
at each p|er ThIS term can be positive or negative and aims at readjusting the statistics inside the regions

Dy ; (Q) to fit to prototype modeli}?r The contribution of each descriptoysis weighted bwac and

p(0,/zs), the relative contribution of descriptgr and of angular sectoy.
The overall evolution equations of the contodis, },_,., are the following:

k

P e k Qf,j
W(Sat) = —0q (1) Zzw 0;/2s) | KL(QF ;, Dyj) — D

j=1 f=1 A

. Vi &
A div (|Wk|) -\ (Z (Ho (o) — 1))1 , VEe{1,..,K}

k=1

* 9o, (hy(s)) + 1) +
(22)

We apply these coupled evolution equations until convergence.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In previous work, we have tested the method on various optic textures (Brodatz textures). The method was
compared to other texture classification methods and some results are reported in [48], [49]. Here, we evaluate
the proposed seabed segmentation technique for different real sonar images acquired by a sidescan sonar, as part
of a natural seabed mapping project (IFREMER, Rebent Project) [41]. A reference interpretation by an expert is
available [41]. Figure 7 shows the set of images on which we carried out the experiments. We superimposed on
these images the manual expert segmentation. Image 11 is composed of three seafloor types: rock, mud and marl
ripples [41], 12 of rock, marl ripples and mud seafloors, 13 of mud, sand and marl ripples, 14 of marl and marl
ripples and 15 of sand, sand ripples and rock. For 12 and I3, the angular variability of the sefloors especially marl
ripples (for 12) and marl (for 13) is visually clear.

For all these images, we first determine the most discriminant features among the initial set of 219 features: we
apply the algorithm described in Section Il and detailed in [48] and we keep only the feature set such that the
cumulative sum of weights excee@9. Only a small number of features are retained. For example, figure 8 shows
the plot of feature weights computed for image 11 and I5. For 11, the two co-occurrence matrices account for more
than 90% of the total weight sum, these co-occurrence are computed for paraniéiets,) € {(1,4),(2,1)}.

For 15, the co-occurrence distributions computed for paramétgrsi,) € {(2,1),(2,2)} are selected. For sonar

images, we noticed that co-occurrence matrices are the most selected features. In previous work on Brodatz textures
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Fig. 7. Test images and their manual segmentation (in black line).
July 23, 2008

(14)

10

DRAFT



IEEE GEOSCIENCE AND REMOTE SENSING SOCIETY,

0.8r

0.6

0.4r

0.2r

—— Co—occurrenc
— Gabor
Wavelet

121

(@1

171 219

11

1r
— Co—occurrence
—— Gabor

0.8t

Wavelet

0.6

0.4}

0.2r

o . .
1 121 171 219

(b) 15

Fig. 8. Feature weightsl — 121 co-occurrence distributions|22 — 171 Gabor filter based features and2 — 219 wavelet based

distributions.

[48], [49], we remarked that Gabor and wavelet filters were selected for oriented textures whereas co-occurrence

distributions, which in addition to the detection of texture structures detect the intensity values change, are selected

in the case of texture having different intensity values and texture with regular motifs.

For the five test images, three segmentation algorithms are compared:

o The maximum likelihood segmentation denoted by ML. This method consists in maximizing at each pixel the

conditional probabilityp(ys/xs) given by equation (8):

Several analysis window sizes are comparBg: € {7 x 7,17 x 17,33 x 33};

s = arg m]?xp(ys/xs =k)

(23)

« The MMP segmentation described in Section I, applied for several analysis windowBjges:{7 x 7,17 x 17,33 x 33};

« The region-based variational segmentation described in Section IV.

Table | summarizes the different error classification rates for all segmentations. All segmentation methods give quite

ML: Tyww =7 | ML: Ty =17 | ML: Tw =33 | MMP: Ty =7 | MMP: Ty = 17 | MMP: Ty, = 33 | Variational

11 T=15% T =10% T=13.2% T=12.5% T=9.2% T =13% T="75%

12 T=15% T=11.5% T=T% T=10% T =4% T=5% T=38%

13 7T=10% T=8% T=9% T=T% T=8% T=8% T=4%

14 T=5% T =4.5% T=6% T =4% T =4% T=6% T=38%

15 7=9.5% T=9% T=11% T=8% T=8% T =10% T=T%
TABLE |

SEGMENTATION ERROR RATES

good results according to the mean classification error rates. MMP and variational approaches are more efficient than
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Fig. 9. MMP Segmentation of 11 usifflyy = 7 x 7, 7 = 12.5%.

the ML based segmentation because they take into account the spatial dependency between pixels. The difference
between these later approaches (MMP and variational methods) mainly lies in the accuracy of the localization of
region boundaries and in the dependency of MMP based segmentation on the winddf sise fact, for the

MMP segmentation the use of of small neighborhdBgl (= 7 x 7) leads to more accurate region frontiers but small
misclassified patches appear because of the neighborhood inefficiency for texture characterization. Conversely, the
use of large window sizes]{y = 33 x 33) resorts to a lack of accuracy in the localization of the boundaries of the
seabed regions because texture features extracted for pixels close to region boundaries involve a mixture of texture
characteristics. The variational region-based approach does not need the choice of an analysis window and operates
globally on region composed of pixels belonging to the same class. It resorts to a trade-off between segmentation
accuracy and region homogeneity. Figures 9, 10, 11, 12 and 13 illustrate examples of the dependency of MMP
segmentation on the sizes of analysis window and on the robustness of the variational approach. In figure 14, we
plot the mean error rate for different window sizes.

We note that MMP and variational segmentations give similar results when the analysis window size is well
chosen for instancd,yy = 17 x 17 for image 12 (figure 15), but its performance depends a lot on the choice of this
parameter. This method can however be appropriate when the aim of the segmentation is to detect texture regions
and without a seek of accurate boundaries.

The variational approach is also interesting because it is much faster than the MMP segmentation. Being
deterministic, the variational approach, can be very fast especially if we use appropriate initialization such as an
initial segmentation based on the Maximimum Likelihood criterion (ML). Whereas the MMP segmentation needs
a large number of iterations, each iteration is also complex and involves Gibbs sampling. For our implementations
the convergence time of a variational image typically corresponds to one iteration of the MMP algorithm.

To stress the interest of taking into account texture variability with respect to incidence angles, additional

segmentation results are reported for image 12 and I3 for witch the seafloor texture variability is more clear. In table
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Fig. 10. MMP Segmentation of 11 usirfy = 17 x 17, 7 = 9.2%.

Fig. 11. MMP Segmentation of 11 usirify = 33 x 33, 7 = 13%.

Fig. 12. Region based segmentation of 1= 7.5%.
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@ MMP: Tw =7, 7 =4% (b) MMP: Tw = 33, 7 = 6% (c) Variational method; = 3%

Fig. 13. Segmentations of 14

1

X —=— ML
—e— MMP

101 ——Var

Mean error rate

4
TW=3X3 TW=17X17 TW—33X33

Fig. 14. Mean segmentation error rate for several windowssize

(@) MMP based segmentatidiy = 17, 7 = 4% (b) Variationl based segmentation= 3%

Fig. 15. 12 segmentations.
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(a) Region based segmentatidn= 1, 7 = 23.5% (b) Region based segmentatidn= 3, 7 = 3%

Fig. 16. 12 Region based segmentation with and without angular weighting.

II, we summarize the segmentation error rates for the segmentation with (J=3) and with no angular weighting, i.e

using only one angular domaih= 1, for ML, MMP and variational methods. In figures 16 and 17 are reported the

ML: Ty = 33 MMP: Ty, = 33 Variational
J=1 J=3 J=1 J=3 J=1 J=3
2| 7=25% | 7=7% | 7=21% | T=5% | T=235% | 7=3%
Bl 7=20% | 7=9% | T=16% | 7 =8% T =15% T =4%

TABLE I
SEGMENTATION ERROR RATES

associated segmentation results. It can be noticed that a classical segmentation (without taking into account texture
variability within incidence angles) cannot distinguish between visually similar seafloors (mud and marl ripples for

I2 and marl and sand for 13) near the specular domain.

VI. CONCLUSION

We proposed two segmentation algorithms for sonar image segmentation: a Bayesian algorithm using local
statistics and a region based variational algorithm, both based on a novel similarity measure between seafloor type
images in the feature space spanned by a large set of various texture statistics. This similarity measure is expressed as
a weighted sum of Kullback-Leibler divergences between individual seafloor filter response statistics. The resulting
weighting factors are exploited on the one hand for filter selection and, on the other hand, for taking into account
the incidence angular dependency of seafloor textures. The conclusion is the co-occurrence matrices outperform the
other features for our sonar images. The results show that the performance of the Bayesian approach depends on the

size of analysis window. For pixel-based segmentation (maximum likelihood and MMP segmentations), the size must
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(a) MMP based segmentatioh= 1, 7 = 16% (b) MMP based segmentatioh= 3, 7 = 8%

Fig. 17. 13 MMP based segmentation with and without angular weighting.

not be neither too large neither too small (according to the coarseness of given textures). The results also stress the
suitability of the region based approach compared to the Bayesian pixel-based scheme for texture segmentation and
the effectiveness of the proposed algorithm in taking into account the angular backscatter variabilities to discriminate

between seafloor types especially near the specular sector.

APPENDIXA

EVOLUTION EQUATION COMPUTATION
Using the shape derivative tools, we want to differentiate the functional:
F () = KLy (Q%, D (%))
which can be written as follows:
J F k
Qf (@)
ma (i [ Q) (@)tog (5 L0 ) da
;; ST Ry Dy (Q, )
Let us introduce the following notations:
Q% (@)
« HE =@ (a)log | 21— ).
J Qf,] (Of) og (Df)] (Qk, Oé)
.&:Ap@WMWW®—®@
k

Then, we have:

J F

F) =YY wina, () [ )
j=1f=1 Ry

The Gateaux derivative af (£2;,) in the direction of a vector field’ is given by:

dF (Qk V) - XJ: iwidmk(j) (Qk, 17) /R HYda + 7o, (j)/R dH* (Qk, 17) da (24)
f f

j=1f=1
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Theorem (see [37])
The Gateaux derivative of a functional of the tyfe(Q2) = / k (s,Q)ds is given by:
Q

dK (QV) = /kah (SQV) ds—/rk(s,Q) (Vﬁ) da(s)

where() denoted a region anfl its boundaryk; (s, Q, 17) is the shape derivative df (s, 2).

In our case:

dray, (7) (Qk,V) - /F p(0;/2s) (V.z\?k) da(s)

. m, (7)Q% (@)
B Qf’J (a) log (Gl (ka fvj) Oé)
Using the chain rule, we get:

) (s 05 2 o 07)

ij can be written as:

k
OH} @}
0G4 G1

k
OHF  Qf;

ora, (7)) ma, ()
According to the previous theorem, we get:

461 (0. 7) = = [ (0 /20)ar, (b (s) = @) (V- Nl

k

Finally, we get:

an} (2, V)

7@ @ -
= /Fp(@j/zs) %gaf(hf(s)—a)—ng—u (V.Np,)da(s)
= 1 j '];‘J(a) 4 - — . e - —
- W/pkp (0317 | 5, ey Yo (s (5) = @) = Qs(@) | (V- Ni)da(s)

k

QF; ) * go, (hy(s)) — 1

N L - V.Np)dd(s
Dy (0 (V.Ny)da(s)

/Rf dH* (Qk )da - mkl(j) /ka(e)j/zs)

Finally, according to equation 24:
Q
dF (Qk, ) Z (©;/zs) w?/ frg
Iy

KL(Q’;_J.,D,'J)_<DMQ]€) 1>*ggf(hf(s)) (V.Ny,)da(s)
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