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Abstract:  
 
In this study we determined the composition and biogeochemistry of novel, brightly colored, white and 
orange microbial mats at the surface of a brine seep at the outer rim of the Chefren mud volcano. 
These mats were interspersed with one another, but their underlying sediment biogeochemistries 
differed considerably. Microscopy revealed that the white mats were granules composed of elemental 
S filaments, similar to those produced by the sulfide-oxidizing epsilonproteobacterium "Candidatus 
Arcobacter sulfidicus." Fluorescence in situ hybridization indicated that microorganisms targeted by a 
"Ca. Arcobacter sulfidicus"-specific oligonucleotide probe constituted up to 24% of the total the cells 
within these mats. Several 16S rRNA gene sequences from organisms closely related to "Ca. 
Arcobacter sulfidicus" were identified. In contrast, the orange mat consisted mostly of bright orange 
flakes composed of empty Fe(III) (hydr)oxide-coated microbial sheaths, similar to those produced by 
the neutrophilic Fe(II)-oxidizing betaproteobacterium Leptothrix ochracea. None of the 16S rRNA gene 
sequences obtained from these samples were closely related to sequences of known neutrophilic 
aerobic Fe(II)-oxidizing bacteria. The sediments below both types of mats showed relatively high 
sulfate reduction rates (300 nmol·cm–3·day–1) partially fueled by the anaerobic oxidation of methane (10 
to 20 nmol·cm–3·day–1). Free sulfide produced below the white mat was depleted by sulfide oxidation 
within the mat itself. Below the orange mat free Fe(II) reached the surface layer and was depleted in 
part by microbial Fe(II) oxidation. Both mats and the sediments underneath them hosted very diverse 
microbial communities and contained mineral precipitates, most likely due to differences in fluid flow 
patterns. 

http://dx.doi.org/10.1128/AEM.01751-07
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Introduction 51 

Submarine mud volcanoes are geological structures formed by episodic eruption 52 

of gases and muds from deep subsurface reservoirs. Some mud volcanoes continuously 53 

expel reduced muds, fluids and gases to the ocean, supplying chemical energy to cold 54 

seep organisms, such as dense mats of giant sulfur-oxidizing bacteria, siboglinid 55 

tubeworms, and a variety of bivalves (74). Active mud volcanoes with such cold seep 56 

ecosystems are known from the Central Mediterranean Ridge (15, 64, 95), the Central 57 

American continental margin (52), the Gulf of Cadiz (60) and the Barents Sea (61). In the 58 

Eastern Mediterranean, active mud volcanism associated with diverse ecosystems have 59 

recently been detected on the Nile Deep Sea Fan (15, 42, 49, 65).  60 

At mud volcanoes as well as many other cold seeps, methane and sometimes 61 

higher hydrocarbons are transported upwards with rising fluids and muds, and can escape 62 

to the hydrosphere in the form of gas or oil bubbles (53, 61, 71). Anaerobic hydrocarbon 63 

degradation forms the basis of a steep sequence of biogeochemical processes connecting 64 

the carbon and sulfur cycles at these sites (1, 72). When hydrocarbons reach the sulfate 65 

penetrated sediment zones, they are utilized by sulfate reducing bacteria (SRB) as energy 66 

and carbon sources. The products of sulfate respiration with methane and higher 67 

hydrocarbons are sulfide and bicarbonate (1, 8, 30). Hence, hydrocarbon seepage is 68 

generally associated with high sulfide fluxes (61, 84). At methane seeps, most of the 69 

sulfide is produced via the anaerobic oxidation of methane (AOM) mediated by anaerobic 70 

methanotrophic archaea (ANME; (22), and references therein). However, several oily 71 

cold seep systems (30, 60) including some in the Eastern Mediterranean (65) have been 72 



 5

discovered where anaerobic oxidation of higher hydrocarbons coupled to sulfate 73 

reduction was the dominant sulfide source.  74 

Sulfide is central to biogeochemical cycling in marine sediments as an energy-75 

rich microbial substrate and the principle product of one of the most quantitatively 76 

important respiratory processes in ocean sediments, namely sulfate reduction (34). 77 

Sulfide reacts spontaneously with Fe(III) and Fe(II) (83), Mn(II) and Mn(IV) (10), and is 78 

used as an electron donor for a variety of aerobic and anaerobic sulfide-oxidizing 79 

microorganisms. Well-known marine sulfide-oxidizing organisms include the giant 80 

vacuolated γ-proteobacteria, such as Beggiatoa and Thiomargarita spp., which use 81 

oxygen or nitrate for respiration and often form dense mats above hydrocarbon seeps (8, 82 

31, 61, 63). Other types of sulfide-oxidizing bacteria mostly known from hydrothermal 83 

vent systems, but also found sporadically at cold seep systems, belong to the 84 

Epsilonproteobacteria (11). Little is known about the nature and functioning of other 85 

types of bacteria and archaea, which appear commonly associated with cold seep 86 

ecosystems such as the crenarchaeotal groups MBGB and MBG1 (37, 38, 54). 87 

 Here we report on our investigation of the biogeochemistry and microbial 88 

community structure of two types of closely associated bacterial mats. These mats were 89 

discovered during a dive with the submersible Nautile (IFREMER) to a brine-impacted 90 

cold seep at the bottom of the Chefren mud volcano located in a large caldera of the 91 

western Nile Deep Sea Fan (Menes Caldera). Similar types of mats have been seen at 92 

hydrothermal vents (17, 77, 80), but to date have not been described in association with 93 

cold seeps. In this study we combined microscopic, biogeochemical and molecular 94 

analyses to identify the underlying factors that cause the formation of these two distinct 95 
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mat systems. This work was part of the ESF EUROCORES EUROMARGIN project 96 

MEDIFLUX, which is an integrated study of fluid and gas seepage through the seabed of 97 

the Nile Deep Sea Fan.   98 

 99 

Materials and Methods 100 

 101 

Sampling location. The Chefren mud volcano of the MENES Caldera was discovered by 102 

bathymetry surveys of the Western Nile Deep Sea Fan during the “FANIL” expedition in 103 

2000 (50). Its sediments were sampled for the first time in the “NAUTINIL” expedition 104 

(this study) with the RV L’Atalante and submersible Nautile (IFREMER) in September 105 

2003. The Menes Caldera (Fig. 1A) is a 8 km diameter circular depression of 106 

approximately 50-100 m depth, located at about 3,000 m water depth in the western 107 

province of the Nile Deep Sea Fan. This caldera hosts three mud volcanoes, Chefren, 108 

Cheops and Mykerinos (Fig. 1B). Chefren is about 500 m in diameter and rises to about 109 

60 m above the bottom of the Caldera (3020 m) (Fig. 1C). At the time of sampling the 110 

center of this mud volcano was filled by a large and deep brine and mud lake. For a more 111 

detailed description of the Menes Caldera and associated structures, see Huguen et al., 112 

(23) 113 

 114 

Sampling. Sediment samples were recovered from the orange and white mats by the 115 

submersible Nautile (Fig. 2A,B; N 32° 06.74’, E 028° 10.35’, 3,024 m water depth). The 116 

samples were collected using 6 cm diameter push cores. Two push cores were taken from 117 

the orange mat (NL18PC1(8); NL18PC2(7); Fig. 2E) and 2 from the white mat above 118 
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black sediments (NL18PC3(5); NL18PC4(6); Fig. 2D), as well as 2 blade cores 119 

(NL18BC1(L3), NLBC2(L7)) from the nearby sediments. Upon returning to the RV 120 

L’Atalante, cores were immediately taken to the cold room and sub-sampled by 1 cm 121 

diameter sub-cores for further analyses as described below. Cores NL18PC3(5) and 122 

NL18PC1(8) were used for microbiological analyses as well as rate measurements, 123 

whereas cores NL18PC4(6) and NL18PC2(7) were used for geochemical analyses. Due 124 

to the exploratory nature of the expedition, the sampling material was limited to one dive. 125 

 126 

Methane concentration. Sub-cores were sectioned and preserved with 2.5% NaOH in 127 

rubber sealed glass vials. Methane concentrations were measured by injecting 100 µl of 128 

head space in a Hewlett Packard 5890A gas chromatograph. 129 

 130 

Methane oxidation rate determinations. Methane oxidation rates were measured using 131 

14CH4 gas, based on previously described methods (26, 84). Subcores were injected with 132 

10 µl of 14CH4 (2.5 kBq total, dissolved in ddH2O) and incubated for 24 hr in the dark at 133 

in situ temperature of 14°C. Following the incubations the cores were sectioned and fixed 134 

with 2.5% NaOH. Further processing was done according to Treude et al. (84). Rates 135 

were determined using the equation below, where 14CO2 = activity of CO2 produced, 136 

14CH4= activity of residual injected 14CH4, [CH4] = CH4 concentration, V= sediment 137 

volume and t= time. 138 

AOM rate = (14CO2/(14CO2 + 14CH4)) * [CH4] / V / t 139 

 140 



 8

Sulfate reduction rate determination. Sulfate reduction rate measurements were made 141 

using 35SO4
-2 based on previously described methods (29). Subcores were injected with 5 142 

µl 35SO4
-2 (100 kBq total, dissolved in ddH2O) and incubated for 24 hours at in situ 143 

temperature in the dark. Following the incubations, the sediment was sectioned and 144 

placed in a polypropylene tube containing 20% zinc acetate. Further processing was done 145 

according to Kallmeyer et al (32). Rates were calculated according to the equation below, 146 

where TRIS35S = activity of total reduced inorganic sulfur, 35SO4
2- = activity of residual 147 

35SO4
-2 tracer, [SO4

-2] = SO4
-2 concentration within the sample, V = sediment volume, and 148 

t = time. 149 

SR rate = (TRI35S/(TRI35S + 35SO4
-2)) * [SO4

-2] / V / t 150 

 151 

Geochemical measurements. For sulfide analysis, 10 µl of 0.1 N NaOH was added to 2 152 

ml pore water sub-samples. Sub-samples were measured on board using a TRAACS800 153 

continuous flow analyzer, applying colorimetric methods after Grasshoff et al. 1983 (21). 154 

Pore-water major element analyses was conducted with inductively coupled plasma 155 

atomic emission spectroscopy (ICP-AES), 2 ml sub-samples were acidified by adding 156 

100 µl of suprapur HNO3 acid (1 M), bubbled to remove sulfide, and stored in the dark at 157 

4°C. Sulfate concentrations were measured as S. The standard deviation for all 158 

measurements was 3% or better. The geochemical composition of the solid phase was 159 

also determined by ICP-AES after total dissolution of sediments in an acid mixture of 160 

HClO4 , HNO3, and HF (67). Organic carbon content was determined according to the 161 

method described by Van Santvoort et al., (89). International and in-house standards and 162 

duplicates were processed to monitor precision and accuracy. Note, very little pore water 163 
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was recovered from 7-9cm sample from the orange mat; therefore there is likely a high 164 

error associated with values from that sample. 165 

 166 

Light and epifluorescence microscopy. Sediment sections were preserved in 2% 167 

formalin and artificial seawater for Acridine Orange (AO) staining as well as for light 168 

microscopy. Samples for Fluorescence In Situ Hybridization (FISH) were initially fixed 169 

in a 2% formalin and seawater solution, washed several times with PBS and finally stored 170 

in a PBS/ethanol solution (1:1). Specific groups of Bacteria and Archaea were quantified 171 

using CARD-FISH (Catalyzed Reporter Deposition) except for the quantification of 172 

ANME-2 and aerobic methanotrophic bacteria (Mγ705 probe, ref 16) for which 173 

monolabeled FISH probes were used because no result was obtained with CARD-FISH 174 

probes. AO staining (7), FISH (76) and CARD-FISH (25) were all performed according 175 

to previously described methods. All FISH and CARD-FISH slides were counter-stained 176 

with DAPI (4´,6´- diamidino-2-phenylindole). At least 30 grids were counted randomly 177 

from each slide for AO, FISH and CARD-FISH counts. Probe hybridization details are 178 

given in Table 1. Cell numbers within conspicuous ANME-SRB aggregates were 179 

estimated using a semi-direct method (8). All aggregates and cells were assumed to be 180 

spherical. The average cell volume was estimated to be 0.065 µm3. The volume of an 181 

average aggregate (82 µm3) was divided by the cell volume, and a ratio of 1:1 archaeal to 182 

bacterial cells was used to calculate bacterial and archaeal cell numbers within the 183 

consortium. 184 
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SEM-EDX. Formalin-fixed samples were analyzed with the scanning electron 185 

microscope LEO 1550VP equipped with an inlense detector. Element analysis was 186 

performed with an INCA Energy 300 System equipped with a Si(Li) detector. 187 

 188 

16S rRNA gene construction and phylogenetic analysis. Sectioned sediment samples 189 

were frozen at -20°C until processing. 16S rRNA gene, archaeal and bacterial libraries 190 

were created after Niemann et al. (60). Briefly, total community DNA was extracted from 191 

sediment sections and orange flakes using the FastDNA spin kit for soil (Q-Biogene, 192 

Irvine, California, USA). Total DNA was extracted from formalin preserved white 193 

granules using Chelex-100 resin. Granules were boiled at 100°C in presence of Chelex-194 

100 resin, the beads were allowed to settle and the supernatant was used for PCR. The 195 

16S rRNA gene was amplified from archaea using the primers ARCH20F (51) and 196 

Uni1392R (40), and from bacteria using GM3F (55) and GM4R (33). Amplification 197 

products were cloned, and purified plasmid sequenced using an ABI 3100 genetic 198 

analyzer. Plasmids were sequenced initially in one direction (approximately 0.6 kb). 199 

Sequences were manually inspected, and poor quality sequences removed from further 200 

analysis. Sequences were also screened for chimeras using the program Mallard (4). 201 

Anomalous sequences were then further investigated using BLAST and the program 202 

Pintail (3). Sequences with genuine chimeras were then excluded from further analyses. 203 

Selected clones were then sequenced fully (approximately 1.5 kb) and used for 204 

subsequent phylogenetic analysis within the ARB (46) software package. Statistical 205 

analysis on 16S rRNA gene libraries was performed using the s-libshuff program by 206 

Schloss et al. (73). Distances matrices calculated in ARB using the Neighbor-joining tool 207 
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were used for s-libshuff. Sequences from this study were deposited within the GenBank 208 

database and are accessible under the following accession numbers: EF687138-209 

EF687656 and EF688595. 210 

 211 

Fluid flow models. Mass transfer models including fluid flow and molecular diffusion 212 

were created in the modeling suite Comsol-Multiphysics and calibrated against the 213 

measured Cl- concentration. As Cl- can be regarded as non reactive, the mass balance is 214 

governed by diffusion and advection according to the equation below, where Cl- = pore 215 

water Cl- concentration, z = vertical distance, φ= porosity, Ds = diffusion coefficient for 216 

Cl- in the pore space and v = the vertical velocity.  217 

o = φ*Ds *d2C/dz2 - v φ dC/dz 218 

 Diffusion coefficients were corrected for tortuosity via the interpolated porosity in 219 

each depth following the procedure from Iversen and Jørgensen (27). Concentrations at 220 

the surface were set to the Cl- concentration measured in the bottom water of the push 221 

cores and the concentration at the lower boundary of the modeled regime (1 m) was set to 222 

the concentration measured below 15 cm (below white mat) or 17 cm (below orange mat) 223 

in both cores. This leaves the pore water flow as the only unknown, which can be 224 

estimated by numerically finding the best fit to the measured Cl- profiles. Each steady 225 

state calculation was followed by 10 hours of stagnation to include the time the sediment 226 

was contained in the core liner before sectioning. 227 

 228 
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Results 229 

 230 

Visual observations. White mats and orange mats were located at a small brine seep, on 231 

a steep slope at the bottom of a small mound adjourning the northwestern rim of the 232 

Chefren mud volcano (Fig. 1C), at 3,020 m water depth. The mats showed a patchy 233 

distribution and covered about 25 m2 (Fig. 2A,B). Shimmering brine fluid flowed 234 

downwards from black sediments above the white mats (Fig. 2B). Associated with the 235 

orange patches at this site, but also at other areas of Chefren we observed many crabs 236 

feeding on the sediments, which were populated by small worm tubes sticking out 1-2 cm 237 

above the sediment. The surfaces of the cores recovered from the white mat were 238 

composed of thick white cotton ball like precipitates that resembled filamentous S 239 

aggregates (Fig. 2C), which have previously been observed at hydrothermal vents (81). 240 

Polychaete larvae (Fig. 2C) were observed crawling through the white mats as well as 241 

through the surface of the core. The surfaces of the cores from orange mat were 242 

composed of a thick layer of fluffy yellow material, as well as flaky, bright orange 243 

particles, resembling Fe(III)-(hydr)oxides (Fig. 2D). Similar to the core from the white 244 

mat, polychaete larvae were also associated with the orange mat. 245 

 We followed the orange and white mat structure to the SW along the same depth 246 

contour for about 50 m. Irregular patches of orange mat occurred within a band of about 247 

2 m in diameter, and also in association with the edge of the brine lake in the center of the 248 

Chefren (Fig. 2E). When using the manipulator arm of Nautile to dig into the orange 249 

patches, we could observe that the subsurface sediments were dark grey to blackish while 250 

the surrounding seafloor was of light brown-beige color, typical for pelagic sediments in 251 
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the deep Eastern Mediterranean. No trace of gas ebullition was observed upon 252 

disturbance of the seafloor. Wide areas of the brine lakes located at the top of Chefren 253 

and Cheops mud volcanoes were covered with white mats (Fig. 2F) similar to those 254 

observed on the sediments. 255 

 256 

Microscopy. Examination of the granules recovered from the surface of the white mat 257 

(Fig. 3A), revealed the presence of tufts of thin filaments (Fig. 3B), morphologically 258 

similar to those produced by the Epsilonproteobacterium “Candidatus A. sulfidicus” (80, 259 

81). Scanning electron microscopy (SEM) coupled to energy dispersive X-ray analysis 260 

(EDX) revealed these tufts to be characterized by high amounts of Fe and S (Fig. 3C). 261 

Framboidal pyrite grains (not shown) were also detected within these granules. 262 

Fluorescence in Situ Hybridization (FISH) with probe Arc94 (Fig. 3D), which targets 263 

“Ca A. sulfidicus” and related species indicated that this group of organisms constituted 264 

up to 25% of the total cells within the white granules and in the underlying black 265 

sediment (Table 2). However, several morphologies (e.g. filamentous, coccoid) of cells, 266 

which hybridized with the probe were observed, some of which were not the typical 267 

crescent shaped “Ca. A. sulfidicus” cells. 268 

 Microscopic examination of flakes recovered from the surface of the orange mat 269 

(Fig. 2D and Fig 3E) revealed numerous microbial sheaths of assorted sizes (Fig. 3F, G), 270 

similar to those produced by or attributed to the neutrophilic Fe(II)-oxidizing bacterium 271 

Leptothrix ochracea (17, 18, 87). EDX revealed that many of these sheaths were 272 

associated with high amounts of Fe and O, indicating encrustation by Fe(III)-273 

(hydr)oxides. Most sheaths were sheared and empty (Fig. 3G). DAPI and AODC staining 274 
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both showed that only very few sheaths (< 1%) were populated with cells. FISH with 275 

EUB I-III revealed that these sheaths contained bacteria some of which could be targeted 276 

by Mγ705 probe (Fig. 3H) for type I methanotrophs, but not by domain specific probes 277 

for Alpha-, Beta- or Gammaproteobacteria. Two morphotypes of sheathed bacteria were 278 

targeted by the Mγ705 probe; one with rectangular cells similar to Clonothrix fusca (90), 279 

and the other square cells similar to Crenothrix polyspora (78). These two morphotypes 280 

often appeared bundled together. 281 

 282 

Fluid flow model. The orange mats had a shallow Cl- gradient indicative of relatively 283 

low fluid flow. Hence, the 10 hours stagnation of the flow in the core liners had little 284 

effect on the shape of the profile and the upward fluid flow velocity could be calculated 285 

with good accuracy to 0.6 m a-1 (Fig. 4B). The white mats were associated with a much 286 

steeper Cl- gradient indicating higher fluid flow velocities. The relaxation of the gradient 287 

during the 10 hour recovery caused the maximum velocity to be uncertain, but the 288 

minimum upward fluid flow under the white mat was estimated to be 15 m a-1 (Fig. 4A).  289 

 290 

Biogeochemistry. Close to the white mat, Cl- and Na+ concentrations were up to 1.8 291 

times higher than in the bottom water (water overlying the sediment in the core), 292 

indicating upward brine flow through the sediments (Table 3). Pore water sulfate 293 

concentrations under the white mat (Fig. 5A) were close to seawater values at the surface 294 

and decreased to about 19 mM immediately below the surface, possibly reflecting sulfate 295 

concentrations in the upward seeping fluids. Sulfate reduction (SR) rates (Fig. 5A) were 296 

highest in the top 4 cm (300 nmol*cm-3*d-1) and 70-fold higher than anaerobic oxidation 297 
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of methane (AOM) rates (Fig 5B). Methane concentrations (Fig. 5B) ranged from 0.1 298 

mM at the top of the core to about 0.05 mM at the bottom. AOM rates were low 299 

throughout the top 12 cm of sediment, with a maximum (10 nmol*cm-3*d-1) at 2 - 4 cm 300 

sediment depth (Fig. 5B). Sulfide concentrations (Fig. 5C) approached 1 mM within the 301 

zone of highest SR activity. Concurrently, Fe(II) (Fig. 5C) was depleted to <0.01 mM 302 

above 5 cm, but increased to about 0.2 mM below this zone. These gradients match visual 303 

characteristics of the core, namely the precipitation of Fe(II) with sulfide in the black, 304 

highly reduced sediment horizon of up to 6 cm below the white mat (Fig. 5D). In this 305 

layer, the Fe and S content (Table 3) of the solid phase was several times higher than in 306 

underlying sediments, indicating a high content of FeS and pyrite. 307 

Below the orange mat, sulfate concentrations decreased from 28 mM at the 308 

surface to about 5 mM at 8 cm sediment depth (Fig. 5E). Cl- and Na- concentrations 309 

indicated that these sediments were also brine impacted, although to a lesser extent than 310 

the sediment underlying the white mat (Table 3). Maximum SR rates (400 nmol*cm-3*d-311 

1) (Fig. 5E) were located between 6 - 10 cm. This coincided with blackish, reduced 312 

sediment similar to that observed directly beneath the white mat. A second SR maximum 313 

(150 nmol*cm-3*d-1) was detected at 0 - 2 cm just below the orange mat. Methane 314 

concentrations (Fig. 5F) under the orange mat ranged from less than 0.01 mM at the 315 

surface to about 0.1 mM at the bottom of the core (Fig. 5F). AOM rates were highest in 316 

the first few centimeters (13 nmol*cm-3*d-1). SR in these sediments also exceeded AOM 317 

rates by 11-fold. Sulfide concentrations under the orange mat were below 0.01 mM. In 318 

contrast, Fe(II) concentrations decreased from 0.7 mM just below the sediment surface to 319 

zero below 16 cm sediment depth (Fig. 5G). Fe(II) was completely consumed in the 320 
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surface layer below the orange mat. Solid phase Fe and S contents (Table 3) were high 321 

throughout the core, but Fe was elevated in the orange mat and in the 5 - 7 cm zone. In 322 

view of the Fe and much lower S content, it is likely that both horizons contained 323 

substantial amounts of Fe oxides. 324 

 Organic carbon content (Table 3) in both cores were low (0.18 - 0.77%), which is 325 

typical for oligotrophic Eastern Mediterranean deep-sea sediments, indicating that the 326 

energy source for microbial reactions was not detritus-based.  327 

  328 

CARD-FISH and FISH counts. Total cell numbers (Table 2) for both cores were around 329 

109 cells*cm-3 in the upper 10 cm. In the white mat and its underlying sediment, total cell 330 

numbers decreased to 108 cells*cm-3 after 10 cm, whereas below the orange mat total cell 331 

numbers were more or less stable over the first 18 cm of sediment. Archaeal cells 332 

accounted for less than 3% of the total cells in both mats, but generally accounted for 12 - 333 

38% of the total cells in the underlying sediments. In accordance with the 334 

biogeochemistry of the cores, anaerobic methanotrophic archaea (ANME) were detected 335 

in the top 6 cm of both cores (Table 2 and Fig. 6A,C). ANME-2 cells formed consortia 336 

with SRB belonging to the Desulfosarcina/Desulfococcus cluster (Fig. 6A). Free-living 337 

ANME-2 cells were not detected in the sediments. In contrast, ANME-3 were all single 338 

cells, and comprised 6 - 27% of the total cells in the 6 - 10 cm zone under the white mat 339 

and 7% in the 8 - 12 cm zone under the orange mat (Table 2 and Fig. 6B).  340 

 The mats as well as the top 2 cm of sediment from both cores were dominated by 341 

bacteria (52 - 67% of total cells in the sediments, Table 2). DSS658-targeted SRB made 342 

up less than 1% of the white mat community (Table 2 and Fig. 6C). They increased to 5 - 343 
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25% of the total cells in the top 6 cm of sediment underneath it, where the SR rate 344 

maximum was detected, and dropped again to < 1% in deeper sediment. DSS658-targeted 345 

SRB were more abundant in the orange mat and underlying sediment where they 346 

comprised 8 - 19% of the total cells.  347 

 Arc94-targeted cells made up 8 - 24% of the white mat and top 4 cm of 348 

underlying sediment (Table 2 and Fig. 3D). These cells comprised 4% of the total cells 349 

within the orange mat and < 1% of the total cells in the underlying sediment. Type I 350 

methanotrophs targeted by Mγ705 (Table 2, Fig 3H) comprised < 1% in the white mat 351 

and in the sediment, but 2 - 8% in the orange mat and the 2 cm interval beneath it. 352 

 353 

16 rRNA gene analyses. 16S rRNA gene libraries for bacteria were constructed for both 354 

mats and the top 4 cm of sediment beneath them, whereas archaeal libraries were only 355 

constructed for the sediments. Phylotypes identified in bacterial libraries from the mats as 356 

well as the underlying sediment were very diverse, and corresponded to microorganisms 357 

capable of many types of C, Fe, N, O and S transformations. The Deltaproteobacteria 358 

represented the largest group of sequences from any of the libraries except from the 359 

orange mat (Table 4 and Fig. 7). Most of these sequences were closely related to those of 360 

the SRB clades Desulfobacteraceae and Desulfobulbaceae. Sequences belonging to 361 

relatives of the Desulfuromonadaceae were recovered from the sediments underneath the 362 

orange mat as well as from the white mat (Table 4 and Fig. 7). Members of this family 363 

are capable of Fe(III) and S reduction (44, 69). 364 

Gammaproteobacteria were the largest group of bacterial sequences (74 - 34%) 365 

from the orange mat and a major group of sequences in the sediment underneath it (Table 366 
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4 and Fig. 8). Most of these sequences belonged to type I methanotrophs (46 - 12%), with 367 

the most closely related cultivated isolates (< 91% identity) being Methylobacter 368 

marinus, Crenothrix polyspora, Clonothrix fusca and others. Sequences most closely 369 

related (> 95% identity) to “Ca. A. sulfidicus” and Sulfurimonas autotrophica made up 370 

32% of the sequences recovered from the white mat. Sequences closely related to those 371 

from Sulfurospirillum arcachonense (> 95% identity) were also recovered from both 372 

mats. 373 

Sequences from ANME-2a, ANME-2c and ANME-3 made up 63 - 78% of 374 

archaeal sequences from the sediment below the white and orange mats (Table 4 and Fig. 375 

9). ANME-3 sequences were only detected under the white mat and not under the orange, 376 

although ANME-3 cells were detected by FISH in both sediments. The ubiquitous seep- 377 

and subsurface sediment-associated groups of Cren- and Euryarchaeota, marine benthic 378 

groups B and D (MBGB and MBGD), respectively, made up significant portions (25 - 379 

37%) of the sequences recovered from both cores.  380 

  381 

Discussion 382 

 383 

Primary productivity and organic matter fluxes to the seafloor have varied greatly 384 

in the history of the Eastern Mediterranean Sea, but today it is one of the most 385 

oligotrophic seas. Its bottom waters are fully oxygenated and organic matter flux to the 386 

seafloor is very low (9, 39, 62). Surface-exposed reduced sediments and accumulations of 387 

organisms, such as sulfide-oxidizing bacteria, tubeworms and bivalves (Figs 2 and 3) are 388 

clear indications of seepage of energy-rich compounds such as methane, higher 389 
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hydrocarbons, or sulfide. Living cold seep communities and biogeochemically active, 390 

fluid-flow impacted sediments have been found along the Eastern Mediterranean Ridge 391 

system (64) and the Nile Deep Sea Fan (5, 15, 65). 392 

Generally at cold seeps, sites of high sulfide fluxes across the seafloor are marked 393 

by mat-forming bacteria, which oxidize sulfide to sulfur or sulfate, using oxygen or 394 

nitrate as the electron acceptor. These cells are often mobile and hence can bridge the gap 395 

between sulfide and oxygen penetration in the sediments. The giant vacuolated sulfide 396 

oxidizers store elemental sulfur internally, which gives the mats a characteristic white 397 

color (31, 58, 63). Mats formed by giant vacuolated sulfide oxidizers typically appear 398 

smooth (61), furry (attached vacuolated filamentous cells) (63) or crusty (i.e. 399 

Thiomargarita spp. cold seep mats (31)). The mats described here have a different 400 

appearance both macroscopically (cotton ball structure), as well as microscopically 401 

(external sulfur storage).  402 

To our knowledge, the orange mats have not been previously described from 403 

marine cold seeps, but similar mats are known from a few hydrothermal vent settings (17, 404 

36, 77) and ground water Fe(II) seeps (18). At these sites, they are thought to be created 405 

by Fe(II)-oxidizing β- or γ-proteobacteria belonging to the genera Gallionella, Leptothrix 406 

or Marinobacter, as well as the γ-proteobacterium PV-1. Both, the orange and white mats 407 

investigated here appear to represent important communities at brine-impacted cold seeps 408 

of the Eastern Mediterranean, and were commonly observed floating on the brine (white 409 

mats, e.g. Fig 2F, H) or at the edge of brine lakes (orange mat, e.g. Fig. 2E).  410 

 411 
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Composition of the white mats and orange mats. The granules recovered from the 412 

white mat were composed of elemental S filaments as shown by light microscopy, SEM 413 

and EDX (Fig. 3). These filaments were most likely produced by chemoautotrophic 414 

sulfide-oxidizing organisms related to “Candidatus Arcobacter sulfidicus” as indicated 415 

by 16S rRNA gene analysis, and FISH, which showed that up to 25% of the cells within 416 

the mat were made up by close relatives of this strain. “Ca. A. sulfidicus” secretes long S 417 

filaments as a byproduct of sulfide oxidation (75), forming dense accumulations of 418 

elemental S at hydrothermal vent settings (75), and in laboratory bioreactors (80). “Ca. A. 419 

sulfidicus” has also been detected at cold seep settings (68). These environments are 420 

typically sulfidic, high fluid-flow environments where sulfide and oxygen gradients 421 

overlap due to advective processes.  422 

Sequences closely related to Desulfocapsa sulfoexigens, which is capable of S 423 

disproportionation into sulfide, sulfate and H+ (20), represented another significant 424 

portion of the sequences from the white mat. Their activities within this mat would likely 425 

enhance S cycling as it would consume S, as well as provide additional sulfide. 426 

 The flakes that made up the orange mat were composed of Fe(III)-(hydr)oxide 427 

encrusted sheaths (Fig. 3F,G) similar to those produced by the neutrophilic Fe(II)-428 

oxidizing Betaproteobacterium Leptothrix ochracea (87). Such sheaths have been shown 429 

to be encrusted with Fe(III)-(hydr)oxides (35, 77) and were identified in several 430 

hydrothermal vent settings (17, 36, 77). The metabolism of Leptothrix ochracea is 431 

unclear as it has not been obtained in pure culture. Yet, it is generally regarded as a 432 

heterotroph and is often found in organic-rich environments. It is unlikely that the low 433 

organic carbon content of the Chefren sediments provide energy to heterotrophic mat-434 
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forming iron-oxidizers (Table 3). Hence we speculate that the organisms responsible for 435 

the mat formation are unknown chemoautotrophs, which gain energy from aerobic Fe(II) 436 

oxidation utilizing the high flux of upward flowing, Fe(II) rich porewater.  437 

Fe(II)-oxidizing bacteria are thought to form Fe-oxide encrusted sheaths in order 438 

to locate the electron transfer process close to the cell as well as provide a means for the 439 

cell to escape encrustation by Fe(III)-(hydr)oxides. The energetic yield of this process is 440 

very low; therefore large amounts of Fe(II) need to be turned over in order to provide 441 

enough energy for growth, leading to high amounts of Fe(III)-(hydr)oxide but very few 442 

cells (17). Neutrophilic Fe(II) oxidation, although it occurs in a variety of environments, 443 

such as hydrothermal vents (17), freshwater springs (28), and plant root nodules (19), 444 

remains somewhat enigmatic, as under these conditions Fe(II) spontaneously oxidizes to 445 

Fe(III). However, neutrophilic Fe(II)-oxidizing bacteria have been shown to increase Fe 446 

oxidation rates by up to 4 times over abiotic rates (28, 59). The exact mechanism of this 447 

process is currently unknown, but has been suggested to occur through the binding and 448 

sequestration of Fe(II) by bacterial exopolymers (59). 449 

It is possible that the Mγ705 targeted sheaths and related 16S rRNA gene 450 

sequences obtained from the orange mat corresponded to organisms similar to Crenothrix 451 

polyspora and Clonothrix fusca (90). They often occur bundled together as observed in 452 

this study. It remains unclear as to whether these organisms can oxidize Fe(II) in addition 453 

to methane, as they have only recently been cultivated. However, they are often found 454 

environments where Fe(II) and methane co-occur, such as ground water springs. 455 

Additionally, there are several literature reports of C. polyspora sheaths incrusted in 456 

Fe(III)-(hydro)oxides (82, 91). No 16S rDNA sequences recovered from the orange mat 457 
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were similar to known Fe(II)-oxidizing species (e.g. sheath forming Leptothrix spp., stalk 458 

forming Gallionella spp., PV-1 and others).  459 

In contrast, the orange mat contained many 16S rDNA sequences from bacteria 460 

that possibly constitute the reductive portion of the Fe cycle. Interestingly, sequences that 461 

grouped with Sulfurospirillum deleyianum, which is capable of Fe(III)-reduction via S 462 

cycling were detected within this mat (79). The presence of an active group of such 463 

microorganisms could couple and enhance S and Fe cycling, by oxidizing S compounds 464 

with Fe(III). Additionally, enrichments (Straub et. al, unpublished) using sediment from 465 

underneath the white mat with ferrihydrite as the sole electron acceptor, resulted in high 466 

numbers of “Ca. A. sulfidicus” sequences in the 16S rRNA gene libraries, suggesting 467 

that these organisms have a role in Fe(III) reduction. 468 

  469 

Biogeochemical processes supporting white and orange microbial mat formation. 470 

Spatial heterogeneity in fluid flow on scales of meters to kilometers is known from 471 

several cold seep systems (47, 70). Here we observed large variations in fluid flow (Fig. 472 

4) through microbial mats on scales of centimeters to meters associated with brine 473 

seepage. Brine seepage is a common feature of mud volcanoes from the Eastern 474 

Mediterranean Ridge (93, 94) and Western Province of the Nile Deep Sea Fan (23). 475 

These brines often co-migrate with hydrocarbons and sulfides (13, 88). Fluids from the 476 

brine pool at Chefren carried a high methane (2.4 mM) and sulfide (7.2 mM) 477 

concentration, a salinity of 150‰, and sulfate concentrations of around 50 mM (Caprais, 478 

pers. Comm.). Unfortunately we could not sample the brine flowing from black exposed 479 

sediments to the white mats (Fig. 2B), but it is likely that sulfide was present within the 480 
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brine, which precipitated Fe(II). The brine flow across the white mat likely impeded the 481 

exchange with oxygenated water from the water column, providing a microaerophilic 482 

environment for sulfide oxidation. Although, Cl-  and Na+ profiles indicated upward fluid 483 

flow, multidirectional (i.e. lateral and downward) advection cannot be ruled out.  484 

Sulfide underneath the white mat was clearly provided by SR, rather than by 485 

upward transport with brine (Fig. 5). The distribution of DSS658-targeted cells matched 486 

the sulfide profile, as they displayed a maximum of 25% of the total cells between 0 - 2 487 

cm (Table 2). Although our sampling resolution did not allow for the precise 488 

determination of the limits of sulfide penetration, the rapid sulfide consumption at the 489 

fluidic top of the core was likely due to the activity of “Ca. A. sulfidicus” and other 490 

sulfide oxidizers. This environment is similar to high fluid flow environments (75, 80), 491 

where sulfide and oxygen overlap due to advective processes and is likely to be a niche 492 

for “Ca. A. sulfidicus” rather than for the giant vacuolated sulfide oxidizing bacteria.  493 

Similar to the biogeochemistry of the white mat, SR rates under the orange mat were 494 

significantly higher than AOM rates (Fig. 5). SRB cells reached 7 - 19% of total cells 495 

under the orange mat. Maximum SR activity was located roughly at 4 - 10 cm, which 496 

corresponded to increased amounts of solid phase Fe and S (Fig. 5). Sulfide produced in 497 

this subsurface zone likely caused the precipitation of Fe and S complexes, similar to in 498 

the sediment horizon directly under the white mat. No free sulfide was detected within 499 

this core, therefore it is likely that the entire sulfide production went into the reduction of 500 

Fe(III) and precipitation of Fe(II). The source of the very high free Fe(II) concentration 501 

under the orange mat remains unknown; in-situ microbial Fe(III) reduction and upward 502 

flow of Fe-rich subsurface fluids are plausible possibilities. 503 
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 504 

 505 

Bacterial community composition. As predicted from the markedly differing 506 

biogeochemistry, significant differences (P < 1%) were detected in comparisons of 507 

bacterial 16S rRNA gene libraries obtained in this study, between both mats, as well as 508 

between the mats and their underlying sediments. The importance of SR was reflected by 509 

the high percentage of sequences (Table 4) belonging to members of the 510 

Deltaproteobacteria in both sediment libraries (31- 43%, Table 4). As expected these 511 

sequences grouped with those from genera of known sulfate reducers (Fig. 7) present at 512 

cold seeps, such as Desulfobacter, Desulfosarcina, Desulfocapsa, and Desulfobulbus (37) 513 

Some members of these genera are also capable of iron reduction (45), which occurred 514 

within the orange mat and in the underlying sediment. Sequences from members of the 515 

Gammaproteobacteria which are able to perform Fe(II) oxidation, sulfide oxidation, or 516 

methane oxidation were very prevalent in the libraries (10 - 73%). Most grouped with 517 

aerobic type I methanotrophs, such as M. marinus, C. polyspora and C. fusca (Fig. 8), as 518 

well as with environmental sequences from methane rich sediments and symbionts in the 519 

gills of methanotrophic clams. Cultivated members of this group primarily oxidize 520 

methane with oxygen, but are also capable of oxidizing other C-1 compounds. As 521 

methane reached the top of both cores and was present in the water column, the sediment 522 

surface and especially the more oxidized orange mats represent potential niches for 523 

aerobic methanotrophy.  524 

 The high numbers of sequences of sulfur-oxidizing Epsilonproteobacteria (Fig. 8) 525 

in the white mat are consistent with the visual and biogeochemical data.  526 
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 527 

Archaeal community composition. Sixty to seventy percent of the archaeal sequences 528 

(Table 4) recovered from sediments underlying the orange and white mats belonged to 529 

the ANME-2 and ANME-3 clusters (Fig. 9). Their quantitative distribution differed 530 

between the sediments underlying the mats, and they overlapped only in one horizon (4-6 531 

cm) under the white mat (Tab 3). In contrast, most other cold seeps typically showed a 532 

mix of ANME communities with a clear dominance of one community (38). The Chefren 533 

seep represents the second known cold seep habitat characterized by a relatively high 534 

abundance of ANME-3 cells (61). However, all of the ANME-3 cells that were detected 535 

were not associated with any bacterial partners. The remaining archaeal sequences 536 

comprised members of the marine benthic groups, (MBGB and MBGD) which are 537 

typical members of cold seep and subsurface communities (24, 38). However, no 538 

members of these two groups have been cultivated; therefore their roles in the sediments 539 

of Chefren and elsewhere remain unknown. Comparing the coverage of archaeal 540 

sequences from sediments underneath the white mat to those from underneath the orange 541 

mat a statistical difference (P < 1%) was found, indicating a different community 542 

structure. The reciprocal test showed that the sediment community under the orange mat 543 

was not significantly different from that under the white mat (P < 5%), possibly rather 544 

representing a subset of the white mat. It is possible that the archaeal community was 545 

more similar to each other than the bacterial community in the sediments because it 546 

largely comprised methanotrophs, which could be less affected by the differences in 547 

sulfide and iron biogeochemistry. 548 

 549 
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Comparison to other cold seep ecosystems. While fluid flow velocities and SR rates 550 

were similar to previously investigated cold seep systems, the associated AOM rates were 551 

comparatively low (60, 61, 65, 84, 86). The ratio between SR and methane oxidation 552 

rates of  > 28:1 deviated strongly from the known stoichiometry of AOM of 1:1 to sulfate 553 

reduction (56). Hence, the sulfate reducing community apparently utilized compounds 554 

other than methane or organic detritus (Table 3). High rates of sulfate reduction 555 

exceeding anaerobic methane oxidation several fold are generally associated with 556 

seepage of higher hydrocarbons and petroleum (30, 41, 60, 65, 66). Besides methane, 557 

higher hydrocarbon compounds have been detected within the pore waters of Chefren and 558 

in the overlying water column and may fuel SR and Fe(III) reduction (Mastalerz, 559 

Unpublished data). Also, ANME-2 cells (Table 2) were only 8 - 25%, and ANME-3 cells 560 

6 - 27% of total cells within this zone. These cell numbers, as well as the total cell 561 

numbers (<109 cells cm-3) are lower than at other sites were AOM is the dominant 562 

biogeochemical process. Sites, such as Hydrate Ridge, the Black Sea and the Haakon 563 

Mosby mud volcano typically have ANME cell abundances of >109 cells cm-3 and were 564 

found to comprise >90% of total cell numbers (8, 37).  565 

 566 

Conclusion. This study has elucidated some of the dominant microorganisms and 567 

processes involved in the formation of Fe(II)-oxidizing and sulfide-oxidizing mats at an 568 

active cold seep. Previously, these types of mats have only been described from 569 

hydrothermal vent settings, where sulfide and reduced iron was produced by seawater-570 

rock interactions, and advected by venting. Our findings suggest that such mats could 571 

also be fueled by microbial sulfate reduction based on anaerobic hydrocarbon 572 
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degradation, maintained by relatively high fluid flow. Several questions still remain, such 573 

as the actual substrates fueling sulfate reduction, the rates of microbial vs. chemical 574 

Fe(II) and sulfide oxidation, the spatial relationship between the organisms that carry out 575 

these processes, and the ultimate fate of the end products (i.e. elemental S and Fe(III)-576 

(hydr)oxide). 577 
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 914 

 915 

Table 1. Oligonucleotide probes and hybridization conditions used in this study. EUB-I, II, III were mixed into a single solution.916 

Probe Target Group Sequence (5' to 3') Type % Formamide °C Hybrid/Wash Reference
ARCH915 Most Archaea GTGCTCCCCCGCCAATTCCT CARD 35 46/48 (2)
ANME-1-350 ANME-1 AGTTTTCGCGCCTGATGC CARD 40 46/48 (6)
ANME-2-538 ANME-2 GGCTACCACTCGGGCCGC FISH 50 46/48 (85)
ANME-3-1249 ANME-3 TCGGAGTAGGGACCCATT CARD 20 46/48 (43)
EUB I Most Bacteria GCTGCCTCCCGTAGGAGT CARD 35 46/48 (2)
EUB II Planctomycetales GCAGCCACCCGTAGGTGT CARD 35 46/48 (12)
EUB III Verrucomicrobiales GCTGCCACCCGTAGGTGT CARD 35 46/48 (12)

 Non338 negative hybridization probe ACTCCTACGGGAGGCAGC CARD/FISH variable 46/48 (92)
Alf968 Alphaproteobacteria GGTAAGGTTCTGCGCGTT FISH 35 46/48 (57)
Gam42 Gammaproteobacteria GCCTTCCCACATCGTTT FISH 35 46/48 (48)
Beta42a Betaproteobacteria GCCTTCCCACTTCGTTT FISH 35 46/48 (48)
DSS658 Desulfosarcina/Desulfococcus TCCACTTCCCTCTCCCAT CARD 50 46/48 (48)
660 Desulfobulbus GAATTCCACTTTCCCCTCTG CARD 60 46/48 (14)
Mγ705 Type I methanotrophs CTGGTGTTCCTTCAGATC FISH 20 46/48 (16)
Arc94 Arcobacter TGCGCCACTTAGCTGACA CARD 20 46/48 (76)
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Depth     
Total cells 

1x109
Free cells 

1x109
Cells in 

Agg 1x109
Percent 

Total cells
Free cells 

1x109
Cells in 

Agg 1x109
Percent 

Dapi
Free cells 

1x109
Cells in 

Agg 1x109
Percent 

Total cells
NL18PC5 mat 1.00 0.03 < 3 < < < < < nd

0-2cm 0.90 0.14 < 16 < < < < < nd
2-4cm 2.10 0.18 0.59 37 < 0.38 18 < < nd
4-6cm 1.97 0.18 0.52 36 < 0.50 25 0.14 < 7
6-8cm 0.61 0.19 < 31 < nd < 0.17 < 27

8-10cm 1.10 0.20 < 18 < nd < 0.07 < 6
10-12cm 0.42 0.07 < 18 < nd < < < nd
12-14cm 0.20 0.02 < 12 < nd < < < nd
14-16cm 0.20 0.03 < 14 < nd < < < nd
16-18cm 0.24 nd nd nd < nd nd < < nd

NL18PC8 mat 0.80 0.02 < 3 < nd < < < nd
0-2cm 1.28 0.03 0.07 8 < 0.10 8 < < nd
2-4cm 4.75 0.95 0.84 38 < 0.96 20 < < nd
4-6cm 0.76 0.19 < 25 < nd < < < nd
6-8cm 1.15 0.25 < 22 < nd < < < nd

8-10cm 1.09 0.16 < 14 < nd < 0.08 < 7
10-12cm 0.91 0.24 < 26 < nd < 0.06 < 7
12-14cm 1.60 0.24 < 15 < nd < < < nd
14-16cm 0.97 0.15 < 16 < nd < < < nd
16-18cm 0.62 0.09 < 14 < nd < < < nd

Depth     
Total cells 

1x109
Free cells 

1x109
Cells in 

Agg 1x109
Percent 

Total cells
Free cells 

1x109
Cells in 

Agg 1x109
Percent 

Total cells
Free cells 

1x109
Cells in 

Agg 1x109
Percent 

Total cells
Free cells 

1x109
Cells in 

Agg 1x109
Percent 

Total cells
NL18PC5 mat 1.00 0.67 < 67 < < nd 0.24 < 24 0.003 < 0.31

0-2cm 0.90 0.47 < 52 0.21 < 23 0.20 < 22 < < nd
2-4cm 2.10 0.49 0.59 51 0.17 0.33 23 0.10 < 5 < < nd
4-6cm 1.97 0.29 0.52 42 0.07 0.23 24 0.01 < 1 < < nd
6-8cm 0.61 0.15 < 25 0.03 < 5 < < nd < < nd

8-10cm 1.10 0.41 < 37 < < nd < < nd < < nd
10-12cm 0.42 0.13 < 30 < < nd < < nd < < nd
12-14cm 0.20 0.12 < 60 < < nd < < nd < < nd
14-16cm 0.20 0.02 < 11 < < nd < < nd < < nd
16-18cm 0.24 nd < nd < < nd < < nd < < nd

NL18PC8 mat 0.80 0.54 < 67 0.08 < 10 0.03 < 4 0.06 < 8
0-2cm 1.28 0.78 0.07 66 0.17 0.07 19 0.04 < nd 0.03 < 2
2-4cm 4.75 1.09 0.84 41 0.32 1.92 7 0.03 < nd < < nd
4-6cm 0.76 0.27 < 36 0.06 < 8 < < nd < < nd
6-8cm 1.15 0.30 < 26 0.14 < 12 < < nd < < nd

8-10cm 1.09 0.38 < 35 0.03 < 3 < < nd < < nd
10-12cm 0.91 0.16 < 17 0.09 < 10 < < nd < < nd
12-14cm 1.60 0.65 < 41 0.16 < 10 < < nd < < nd
14-16cm 0.97 0.39 < 40 0.11 < 12 < < nd < < nd
16-18cm 0.62 0.15 < 24 nd < nd < < nd < < nd

Mγ705

ARC915 ANME-2 ANME-3

EUBI-III DSS658 ARC94

 917 

918 
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Table. 2 Fluorescence in Situ Hybridization counts for the white and orange mats as well 918 

the underlying sediments. "Total cells" indicate cell numbers obtained with AODC. 919 

Counts for probe ANME-1 and 660 were both below 1% of the total cells in all samples. 920 

"<" indicates numbers were less than 0.1% of the total cells. "nd" indicates not 921 

determined.922 
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White Mat 
Depth (cm)

Corg     
(% w/w)

Cl        
(mM)

Na       
(mM)

Fe        
(% w/w)

S            
(% w/w)

Bottom water - 863 704 -
0-2 cm - 1487 1240 13.6 11.35
2-4 cm 0.70 1545 1209 17.14 15.54
4-6 cm 0.44 1657 1282 5.10 2.10
6-8 cm 0.77 1627 1317 13.87 12.47

8-10 cm 0.24 1602 1317 3.50 <
10-12 cm 0.23 1571 1293 5.00 <
12-14 cm 0.22 1567 1244 4.85 <
14-16 cm 0.21 1573 1332 5.23 <
16-18 cm 0.18 - 1380 2.51 <
18-20 cm 0.21 - 1301 2.17 <

Orange Mat 
Depth (cm)

Corg     
(% w/w)

Cl        
(mM)

Na       
(mM)

Fe        
(% w/w)

S            
(% w/w)

Bottom water - 657 565 -
mat - - - 11.62 3.51

0.75 cm 0.60 824 737 5.08 2.37
1-3 cm 0.53 1020 913 4.34 1.80
3-5 cm 0.44 1151 1011 4.32 1.45
5-7 cm 0.61 1239 1099 7.77 1.19
7-9 cm 0.56 1031 871 4.88 2.03

9-11 cm 0.57 1370 1187 5.06 2.46
11-13 cm 0.58 1375 1235 5.19 2.50
13 - 15 cm 0.56 1388 1242 4.84 2.04
15 - 17 cm - - 1153 - -  923 

 924 

Table 3. Pore water and solid phase geochemical profiles of the white and orange mats as 925 

well as the underlying sediments.  926 
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Phylogenetic group White mat
White mat   
(Sediment)

Organge 
mat

Orange mat   
(sediment)

Total number of bacterial clones 91 83 120 88

% Alphaproteobacteria 1 0 3 1
% Gammaproteobacteria 2 8 74 34
Type I methanotrophs 0 2 42 7
% Deltaproteobacteria 32 42 7 31
Desulfobacteraceae (Desulfosarcina variabilis ) 2(0) 30(23) 1(0) 16(10)
Desulfobulbaceae (Desulfocapsa sulfexigens ) 20(20) 8(6) 6(0) 10(1)
Desulfuromonadaceae 9 0 0 1
% Epsilonproteobacteria 36 0 12 7
"Candidatus Arcobacter Sulfidicus" 2 0 1 0
Sulfurospirillum arcachonense 2 0 0 0
Sulfurimonas autotrophica 30 0 0 0
% Other bacteria 29 42 5 22
% Unidentified bacteria 0 7 0 6

Total number of archaeal clones 71 66

% Euryarchaeota 96 98
Possible ANME 0 3
ANME-2A 18 52
ANME-2C 1 3
ANME-3 55 0
MBG-D 15 36
% Crenarchaeota 4 2
MBG-B 4 2
MBG-1 0 0  927 

Table 4. Breakdown of 16S rRNA gene sequence groupings, in percentages obtained 928 

from the white and orange mats as well as the top 4 cm of sediment beneath them. 929 
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Figure Legends 930 

 931 

Figure 1. (A) Bathymetric map of the Nile Deep Sea Fan (NDSF), kindly provided by 932 

Jean Mascle, Geosciences Azur (49)  The circle indicates the position of the Menes 933 

Caldera. (B) Bathymetric map of the Menes Caldera with its three mud volcano systems. 934 

(C) Bathymetric map of the Chefren mud volcano. “X” indicates the location close to 935 

Chefren characterized by orange and white mats, the circle indicates the location of brine 936 

samples obtained during Nautile Dive18. Both maps in B and C were obtained during 937 

METEOR expedition BIONIL M70/2 in 2006 using the EM120 multibeam.  938 

 939 

Figure 2. The microbial mat system of the brine-impacted seep at the rim of the Chefren 940 

mud volcano. (A) Photograph taken by the submersible Nautile, at the recovery site of the 941 

orange and white mats. On the right side, the sediments are populated by sessile worms 942 

(arrows) forming tubes from sediment particles. Scale bar is 3 m. (B) Close up of the mat 943 

system. Brine flowed downward (arrows) from the steep rim of the Chefren mud volcano 944 

across the white mats. Scale bar is 1 m. (C) Photographs of a core from the white mat. 945 

Left: The black to grey sediment layers below the white mat. Middle: Top of the core: 946 

The white mat was composed of cotton ball-like precipitates overlying black fluidic 947 

sediments. Scale bar is 3 cm (corresponds to middle image). Insert: small motile 948 

polychaetes associated with white mat and the black sediment layer. The red color of the 949 

polychaetes indicates elevated hemoglobin levels, a typical adaptation to reduced 950 

sediments. Scale bar is 0.5 cm. (D) Photographs of a core from the orange mat. Left: the 951 

greyish sediment layers below the orange mat. Middle: top of the core. Arrows indicates 952 
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a sessile worm (top), the orange fluffy material and flakes (bottom) overlaying grayish 953 

sediments. Scale bar is 3 cm (corresponds to middle image). (E) Orange precipitates on 954 

sediments at the border of the brine lake. Scale bar is 20 cm. (F) Dense white mats 955 

floating on top of the large brine lake filling the center of the Chefren mud volcano. Scale 956 

bar is 3 m. 957 

 958 

Figure 3. (A) Dissecting microscope image of a S aggregate from the white mat. Scale 959 

bar indicates 1 mm. (B) Phase contrast image of S filaments from the white mat. Scale 960 

bar is 10 μm (C) High resolution SEM image of filaments and associated cells from the 961 

white mat. (D) FISH image showing ARC94 targeted cells (green). (E) Image of Fe-962 

oxide flakes from the orange mat. (F) Light microscope image from an orange flake. (G) 963 

High resolution SEM image of damaged sheaths from a flake. Arrows indicate two 964 

distinct types of sheathed bacteria (bacteria are not visible, just their sheaths). (H) FISH 965 

image showing Mγ705 targeted sheaths. Arrows indicate two distinct types of sheathed 966 

bacteria similar to Clonothrix fusca (1) and Crenothrix polyspora (2). Scale bars for B-D 967 

and F-H indicate 10 µm. Cores NL18PC3(5) and NL18PC1(8) were used for microscopy. 968 

 969 

Figure 4. Cl- profiles from fluid flow models. (A) Measured Cl- profile from underneath 970 

the white mats (circles), modeled Cl- profile at a constant flow of 15 m*a-1 (straight line) 971 

and modeled Cl- profile after 10 h zero fluid flow velocity (dashed line). (B) Measured 972 

Cl-profile from underneath the orange mats (circles), modeled Cl- profile at a constant 973 

flow of 0.6 m*a-1 (straight line) and modeled Cl- profile after 10 h at zero fluid flow 974 

velocity (dashed line).  975 
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 976 

Figure 5. (A) Replicate sulfate reduction rate measurements (circles) and sulfate 977 

measurements (triangles) underneath the white mats. (B) Replicate rates of methane 978 

oxidation (circles) and methane measurements (triangles) from underneath the white 979 

mats. (C) Fe(II) (white circles) and HS- (black circles) concentrations from underneath 980 

the white mats. (D) Sedimentological description of the sediment underneath the white 981 

mats. (E) Replicate sulfate reduction rate measurements (circles) and sulfate 982 

measurements (triangles) from underneath the orange mats. (F) Replicate methane 983 

oxidation rate measurements (circles) and methane measurements (triangles) from 984 

underneath the orange mats. (G) Fe(II) (white circles) and HS- (black circles) 985 

concentrations from underneath the orange mats. (H) Sedimentological description of the 986 

sediment underneath the orange mats. 987 

 988 

Figure 6. (A) Double hybridization using FISH probes ANME2-538 (red) and DSS658 989 

(green). (B) ANME3-1249 targeted cells. (C) DSS658 targeted cells. (D) Mγ705 targeted 990 

single cells. All bars indicate 10 µm. Cores NL18PC3(5) and NL18PC1(8) were used for 991 

microscopy. 992 

 993 

Figure 7. Maximum-parsimony tree of 16S rRNA gene sequences from 994 

Deltaproteobacteria obtained in this study, as well as from the GenBank database. 995 

Names in brackets are from well-known cold seeps and hydrothermal vents. The 996 

bootstrap values on the nodes are percentages out of 500 replicates.  Sequences from this 997 

study are indicated in bold, and the numbers in brackets indicate the number of sequences 998 
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within 98% identity to the relevant sequence from the white mat, underlying sediment, 999 

the orange mat and its underlying sediment. Only selected sequences are displayed in the 1000 

tree. Sequences that are targeted by the DSS658 and the 660 probes are indicated. 1001 

 1002 

Figure 8. Maximum-parsimony tree of 16S rRNA gene sequences from Gamma-, Beta-, 1003 

and Epsilonproteobacteria, and unidentified sequences obtained in this study, as well as 1004 

from the GenBank database. The bootstrap values on the nodes are percentages out of 1005 

500 replicates. Names in brackets are from well-known cold seeps and hydrothermal 1006 

vents. Sequences from this study are indicated in bold, and the 4 numbers in brackets 1007 

indicate the number of sequences within 98% identity to the relevant sequence from the 1008 

white mat, underlying sediment, the orange mat and its underlying sediment. Only 1009 

selected sequences are displayed in the tree. Sequences that are targeted Arc94 and 1010 

Mγ705 are indicated. 1011 

 1012 

Figure 9. Maximum-parsimony tree of 16S rRNA gene sequences from Achaea obtained 1013 

in this study, as well as from the GenBank database. Names in brackets are from well-1014 

known cold seeps and hydrothermal vents. The bootstrap values on the nodes are 1015 

percentages out of 500 replicates. Sequences from this study are indicated in bold, and 1016 

the numbers in brackets indicate the number of sequences within 98% identity to the 1017 

relevant sequence from the white mat, underlying sediment, the orange mat and its 1018 

underlying sediment. Only selected sequences are displayed in the tree. The sequence 1019 

with accession number DQ369741 was excluded from bootstrap analysis and added to the 1020 
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tree using the parsimony tool in ARB. Sequences that are targeted by ANME-1-350, 1021 

ANME-2-538 and ANME-3-1249 are indicated. 1022 
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