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Abstract:  
 
Mont Saint Michel Bay is a 30 km wide bay located on the French side of the English Channel. The 
tidal range reaches 14 m during spring tides, which leads, along with the gentle slope of the 
bathymetry, to a tidal flat up to 11 km wide. The sedimentary coverage exhibits strong longshore and 
cross-shore gradients, with purely muddy environments to the west of the domain, and pure sands to 
the east, where the natural channels of three incoming rivers induce rapid morphological changes. The 
contributions of tides and waves to sedimentary processes are analysed by means of numerical 
modelling and results of field observations. Maximum tidal bottom shear stresses are shown to 
account for the sediment distribution throughout the bay, while the longshore gradient in wave 
intensity seems to drive the amount of suspended sediment concentration. The bay has been a 
privileged ground for shellfish farming for over a century. Farming structures (oyster tables, mussel 
posts and wooden fences used as permanent fishing nets) have significantly hindered natural flow 
patterns, creating quiescent areas which significantly increase fine sediments deposits in farming 
areas. The paper focuses on introducing into a numerical model the effects of mussel farms on flow 
circulation and sediment dynamics. 
 
 
 
1. INTRODUCTION 
 
Mont Saint Michel Bay lies on the French coast of the English Channel in a macrotidal environment 
(one of the world’s largest tidal ranges, up to 14 m during spring tides). The bay is one of the largest 
farming grounds for oysters and mussels on the French side of the English Channel. Since shellfish 
production has significantly decreased in the past 10 years, assessing the trophic capacity of the bay 
(i.e. the availability of food for raised and native species) has become an ecological priority while, at 
the same time, the restructuring of shellfish farming is required to counteract the unmanageable mud 
deposits encountered in oyster beds. These ecological as well as economical concerns are related to 
turbidity levels (which affect plankton growth as well as shellfish ecophysiology) and sediment 
transfers in the bay (which affect the native benthic population and also lead to mud deposits around 
farming structures). As part of a multidisciplinary project, a major hydrodynamic and sedimentological 
study was initiated in 2001 to describe the local conditions and explain the physical processes driving 
sediment transfers. 
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432 F. Cayocca et al.

2. CONTEXT AND SETTING

Freshwater input to the Mont Saint Michel Bay arrives principally from its southwest
corner where three small rivers of fairly limited discharge (average discharge on the
order of 25 m3/s) compared to the volume of the bay (tidal prism of 2300 Mm3 for a
mean tide and 2000 Mm3 for low tide, see Fig. 1) feed the bay. The bay is characterized
by a 4 km wide tidal flat in its central area (up to 11 km in the east) with a 1/550 slope.
Maximum tidal current velocities vary from 0.4 m/s on the tidal flats to 1 m/s at the
northern limit of the bay, with local maxima encountered in the channels and by the cape
to the north-west of the domain. The largest waves come from propagation in the
Atlantic Ocean; offshore wave heights are greater than 0.8 m and smaller than 2 m for
50% of the time. 

The bay has undergone continuous infill in the past centuries, as illustrated by the sea-
ward progression of lowlands now used for agriculture. This feature results from the flood
dominance of the tide and illustrates what Le Hir et al. (2005) called intrinsic asymmetry
(i.e. deposition on the upper flat during high water slack, followed by partial consolida-
tion which does not allow erosion to occur during the ebb) and large-scale asymmetry
(non-linear distortion of the tide during propagation). The present rate of infill has been
estimated to be 0.2 cm/year on average (Migniot, 1998).

Several man-made structures were introduced into the environment, above the level
of lowest low tide (Bahé, 2003), namely fish traps, oyster tables and mussel farms, all of

AQ1

Figure 1. General setting of Mont Saint Michel Bay. Water depths are relative to the level of the lowest low tide.
Isolines every 2.5 m.

AQ2
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which have considerably modified the sediment distribution in the bay. We will focus here
on the mussel farms, which were installed in the central part of the bay in the 1960s. They
consist of rows of 2.4-m-tall posts around which lines of mussel spawn are rolled spirally.
The posts eventually grow to 70 cm in diameter. They lie in the centre of the bay in a fine
sand environment and experience very local temporary mud deposits at their bases.

Increased sedimentation around farming structures is detrimental to shellfish growth.
Moving the farms is often found as the only short-term solution when shellfish production
decreases to an unacceptable level. However, up to now, no numerical tool was capable of
predicting long-term morphodynamic evolutions of such environments, where the sedi-
ment behaviour is further modified by the presence of bio-deposits.

This work is a first step towards understanding processes responsible for the natural and
man-made infill of the bay by means of numerical modelling. The main simplifications
applied here are that wave action is not included in the model and only a single mud frac-
tion is represented. 

3. OVERVIEW OF THE MAIN HYDRODYNAMIC AND SEDIMENTARY
PROCESSES FROM A NUMERICAL MODEL AND DATA

A 2D finite difference model, SiAM2D, was used to solve the shallow-water equations on
an irregular Cartesian grid. This 2D approach was justified by the small freshwater inputs
as well as the intense vertical mixing due to strong tidal currents.

Computed water levels and current velocities were validated against three sets of tidal
gages as well as results from a SAMPLE monitoring station (Jestin et al., 1994) deployed
on the tidal flat in 2003 and 2004. Currents were measured 0.3 m above the sea floor with
an electromagnetic current meter, turbidity was recorded with two OBS sensors at 0.1
and 0.3 m above the sea floor, and water height was measured with a pressure sensor. In
order to compare vertically integrated computed velocities with local measurements, a
logarithmic velocity profile was assumed. An equivalent vertically integrated ‘measured’
velocity was therefore used for comparisons with model outputs. The roughness length
was computed from the ripple characteristics (z0 � 0.002 m). Fig. 2 shows the measured
and computed velocity components and water heights for a mean tide in the central part
of the bay. The variation in water level is reasonably well reproduced for neap tides, and
very well reproduced for spring tides. A systematic phase shift of 20 min had to be
applied to the boundary conditions in order to obtain this result (tidal harmonics com-
puted from the French Naval Research, Le Roy and Simon, 2003). Recorded velocities
are only valid when the current meter is immerged, i.e. when the water height exceeds
0.3 m. Eastward velocities are sometimes slightly over-predicted; however, judging by
the small magnitude of this component, model results are considered very reasonable.
The maximum magnitude of the northward component is very well reproduced. The
modelled velocity rapidly reaches a maximum during the flood and remains constant at
its maximum value for over 2 h. This could be due to an underestimation of the friction
for larger water heights (the friction was computed with a uniform Strickler coefficient
of 45 m1/3/s, except in the westernmost part of the bay where the friction was enhanced in
order to account for the presence of oyster tables). When maximum velocities exceed an
erosion threshold, we can expect to overestimate the time during which erosion occurs.

1b
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

AQ3

Else_SE-Kusuda_Ch029.qxd  9/12/2007  10:47  Page 433



1b
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

434 F. Cayocca et al.

Figure 2. Comparison between model results (dashed line) and measurement (solid line) on the tidal flat
(a) during neap tide and (b) during spring tide; on each graph, from top to bottom: east–west velocity (positive
eastwards), north–south velocity (positive northwards) and water height.
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Sedimentary processes in a shellfish farming environment 435

The transport of cohesive sediments is computed by solving an advection–diffusion
equation in the water column, where deposition and erosion fluxes constitute the sediment
source and sink terms (Le Hir et al., 2005). Hindered settling is taken into account by
prescribing a relationship between the settling velocity and the suspended concentration
(see Section 5).

Fig. 3 shows the maximum velocity field for a mean spring tide. Large values are
encountered by the north-west cape of the bay as well as by the channels found in the east-
ern part of the bay. The lowest velocities occur in the central and western areas of the
domain (apart from very local higher values where small rivers feed the system). This
longshore trend in the maximum velocity field reinforces longshore effects due to the wave
propagation pattern. In the cross-shore direction, maximum velocities decrease shoreward,
before increasing again where the bathymetry exceeds MSL of 2 m. The maximum veloc-
ity decreases again on the higher flat. Such velocity increase is not observed in the west-
ernmost part of the bay. 

These features are in good agreement with the sediment distribution as depicted in
Fig. 4: muddy sediments are encountered all around the bay on the higher part of the tidal
flat (typically above MSL of �4m), and all the way down to MSL. However, in the central
part of the bay, muddy sands are found along a strip that roughly corresponds to the area
of higher maximum tidal velocities. Pure sand is found where mean spring tide velocities
exceed 0.5 m/s. 

Waves, water levels and concentration of suspended particulate matter were monitored
at several sites over several months, 20 cm above the bottom. Fig. 5 shows results in two
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Figure 3. Magnitude of the maximum tidal current velocities in m/s for a mean spring tide. The thin white lines
show the –10, 0 and 10 m isobaths, the datum being the level of low tide for extreme spring tides.
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of these monitoring stations. The westernmost monitoring station (‘Cancale’, see Fig. 4
for location) was located at the edge of the lowest spring tide level, in purely muddy
environments. The pattern of suspended matter concentration follows very well the tidal
fortnightly cycle, with sharp peaks at the beginning of the flood and at the end of the
ebb. A given offshore wave condition necessarily induces higher waves at a given loca-
tion during spring tides than during neap tides, since the water level is higher; this
explains why higher waves are generally measured during spring tides. However, con-
centrations are not strongly correlated with waves. 

The monitoring station of the central part of the bay (‘Cherrueix’) was located in sandy
environments. The fortnightly cycle does not influence suspended matter concentrations
there, which are, on the other hand, related to incoming waves. Concentration results at an
intermediary location (‘Hirel’, sandy muds, plot not shown) exhibit intermediary features,
where the influence of both tides and waves can be seen.

The wave propagation pattern in the bay shows smaller waves in the western part,
where incoming waves (mostly from the north-west region outside the bay) have been
diffracted by the northwestern cape. This pattern, along with modelling and monitoring
results, suggest the following:

• tidal dynamics accounts for a large part of the sediment distribution in the bay, since
maximum tidal bottom shear stresses are well correlated with the sediment coverage;

• resuspension events are related to the action of both tides and waves. In the central
part of the bay, waves dominate over the tides and are responsible for the main part
of the suspended matter. This trend reverses as we move west, where the effect of
the waves is progressively dampened in favour of a mostly tidal effect. 

Figure 4. Simplified sediment distribution in the Mont Saint Michel Bay (modified from Ehrhold, 1999).
‘Cancale’, ‘Hirel’ and ‘Cherrueix’ are the names of the monitoring stations described in the text. Dotted lines
represent the mussel farms contours.

Hirel

muddy sands

Cancale

Hirel Cherrueix

sand

mud
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Cherrueix), time series of the wind (speed in bold line, direction in dots), wave height, turbidity and water level.
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4. MODEL REPRESENTATION OF MUSSEL FARMS

Very few studies have investigated the effects of mussel farms on flow. Recently, SEAMER
(2000) used a numerical model with a 10-cm mesh to compute the hydrodynamic effects
of 2.4 m tall posts 0.4 m in diameter, representing average-size mussel posts (‘empty’ posts
are 0.2 m in diameter; they can be as large as 0.7 m in diameter when covered with mature
mussels). For a single post, the current velocity was shown to increase on both sides of the
post as long as it emerged, while the velocity decreased upstream of the post as well as in
the downstream wake. The wake of an individual post where the velocity was decreased by
80% was a few metres long, depending on the ambient velocity and water height. A row of
such posts aligned with the current direction induced a 10% velocity decrease over 1–2 m
on both sides of the row. When the current direction was not aligned with the row, the width
of the wake increased significantly, and the overall velocity could decrease by up to 30%.
However, a row of posts covered by 1 m of water induced very local accelerations and
decelerations of the flow, but had no influence on the overall current velocity (which was
probably due to the fact that velocities were vertically integrated). Unfortunately, these
simulations were only carried out for fairly restrictive conditions (current velocity of 1 m/s,
one single diameter, three water heights), were not validated against data and did not allow
for a general parameterization of the effects of the posts on the flow.

SOGREAH (1986) carried out physical experiments in order to quantify the overall
slowing down of the flow expressed through a variable Strickler coefficient. This coeffi-
cient was shown to vary from 18 to 32 depending on the distance between posts and
between rows, the size of the posts, the incidence of the current compared to the posts and
the reference Strickler coefficient of a domain without mussel farms. The orientation of
the tidal ellipses in the Mont Saint Michel Bay follows bathymetric gradients, whereas
rows of mussel posts are oriented north-south in the whole western and central farming
areas, and oriented north-west–south-east in the eastern farming area. This disposition was
chosen to minimize impacts on the tidal propagation; however, the angle between the rows
and the tidal current varies throughout the bay. As a first approach, we considered a con-
stant and uniform Strickler coefficient of 25 m1/3/s in the farming areas, which is repre-
sentative of an average post dimension (cf. SOGREAH for more details).

Fig. 6 shows the maximum effect of the farms on current velocities during the flood
and during the ebb, for a spring tide. The maximum effect is observed within the farms
(deceleration) and on the eastern and western ends of the farms (acceleration of the flow
that goes around the areas of increased friction); these effects are felt several kilometres
away from the farm. Fig. 7 gives a quantitative estimate of the velocity changes for a
mean tide. Similar patterns are actually observed for spring tides, i.e. acceleration of up
to 30% on the edge of the farms (point A), deceleration of 5% up to 2 km north of the
farms (point E) and deceleration of 10% within the farms (point F). These differences are
likely to substantially modify deposition and erosion patterns. 

5. SEDIMENT TRANSFERS

Our ultimate goal is to assess the effect of mussel farms on long-term sedimentation. The
discussion presented in Section 3 indicates that we may consider that the tidal current
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Figure 6. Contours of velocity differences between a situation with farms and a situation with no farms during
the flood (top) and the ebb (bottom) (in metres). Isolines every 0.02 m/s. Spring tide. Lighter shades represent a
velocity increase, darker shades a velocity decrease.
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largely accounts for the sediment distribution. We therefore restrict the study to a situation
where only tides are taken into account and waves are disregarded. Considering a single
mud fraction, our strategy consists in comparing mud sedimentation patterns with or with-
out mussel farms, from an initially uniform sedimentary coverage.

Results without farms must first be compared to field observations. The model is first
run for the year 2003, considering an initial uniform fine sediment coverage of 0.3 m
throughout most of the domain (the exact contour of the covered area actually follows the
limit of zones where a significant mud content was identified on the map of sediment cov-
erage). Hydraulic roughness used for velocity computations is represented by a Strickler
friction coefficient of 45 m1/3/s. On the other hand, the bottom shear stress that drives the
sediment erosion is computed from a Nikuradse roughness (z0 � 0.0002 m). This roughness
is assumed to be uniform and constant throughout the runs. The initial bottom concentration
is taken to be 800 kg/m3, which corresponds to a typical concentration measured in the field. 

Erosion is parameterized according to Partheniades’ law: 

(1)

where � is the bottom shear stress. The erosion threshold �cr (expressed in N/m2) depends
on the sediment concentration in the sediment surface layer cs (expressed in kg/m3).

E E=
−

0  kg/m /scr

cr

2� �
�

[ ]

Figure 7. Water height (dots) and magnitude of the current velocity with (solid line) or without (dotted line)
mussel farms. Top: point A, centre: point E, bottom: point F.
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Laboratory experiments were carried out by Migniot (1998) in order to assess the relation-
ship between �cr and cs. Migniot’s results were fitted with a bilinear relationship: 

(2)

(3)

This relationship leads to critical shear stresses of about 0.5 N/m2 for the concentration
of a surface sediment of 800 kg/m3 (consolidated) and of about 0.03 N/m2 for a fresh
deposit (150 kg/m3).

Erosion tests carried out in a flume on sediment cores sampled in the field showed that
for silt and clay mixtures encountered in the western part of the bay, E0 ranged from
0.0001 to 0.0003 kg/m2/s (Le Hir et al., 2006). Results shown here were computed with
E0 � 0.00015 kg/m2/s.

The eroded sediment is advected in the water column and settles at the settling velocity
ws, which is parameterized as a function of the sediment concentration (hindered settling).
The settling velocity was not measured in the study area; we therefore use parameters in the
range found in the literature. Here, ws increases from 0.15 to 1.5 mm/s for concentrations
ranging from 1 to 100 g/L and then decreases (ws � 0.15 mm/s for a concentration of
450 g/L). Deposition fluxes are computed according to the following equations:

(4)

(5)

where cw is the sediment concentration in the water column and �crdep a critical deposition
shear stress above which the turbulence level is too high for deposition to occur. Since erosion
and deposition occur simultaneously in nature, �crdep is set to a very high value (10 N/m2),
so as to allow deposition most of the time, in which case the sediment is immediately
eroded again if the shear stress exceeds the critical erosion shear stress. Deposited sedi-
ment is otherwise prescribed a ‘fresh deposit’ concentration of 150 g/L. Depending on the
bottom concentration, fresh deposits may merge with the existing sediment (and thereafter
consolidate), or be considered as a low-concentration layer that will be allowed to consol-
idate independently from the underlying layer.

Consolidation is taken into account in the sediment compartment, where we solve

(6)

where wsed is a sedimentation velocity in the sediment, parameterized as a function of the
porosity. In this case, this function has been adjusted so as to reproduce experimental
results of settling columns described by Migniot (1998). An important feature of the
muddy sediments encountered in the bay is their high calcareous content, which induces
exceptionally high compaction rates. Fig. 8 shows the computed evolution of the height

�
�

�
�

c

t
w c

c

z
+ =sed ( ) 0

Dflux crdepif= >0 � � ,

D w cflux s w
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� �

�
� �
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and concentration of a 1 m tall settling column of a mud–water mixture with initial con-
centration of 100 g/L. These curves show, for instance, that the sediment height is one third
of its initial value after 1 day and that the concentration exceeds 800 g/L after 10 days,
which conforms to Migniot’s experimental results. 

No morphodynamic coupling is taken into account in these simulations: the sediment
compartment is treated independently of the water column. It acts as a source and sink of
sediments, and erosion or deposition does not affect the bathymetry. 

Results are shown in Fig. 9. After 1 year, the sediment is eroded from the eastern part
of the domain, where a system of very dynamic sandy channels is observed in nature: the
tidal currents do not allow muddy deposits to remain in that area, except on the highest
tidal flats, which are only reached during spring tides. In the central part of the bay, south
of the mussel farms, high tidal velocities have eroded the sediment of the tidal flat,
whereas a thicker ‘belt’ of deposits is observed on the highest part of the flat, as well as in
the western part of the bay, throughout the entire flat (around point D). This area is known
to be the muddiest in the bay (also because it is sheltered from waves). 

The main effect of the mussel farms is that they cause major erosion at their edges
(Fig. 10), where velocity increases are the largest. Depositional areas are seen, in contrast,
on the onshore side of these edges, as well as offshore the central farms. The depositional
trend of the western part of the bay is reinforced. 

Figure 8. Simulated compaction of an initially 1 m tall settling tube of a sediment–water mixture of 100 g/L.
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Time evolution of sediment thickness and concentrations of suspended sediment are
depicted at four points (Fig. 11; see Fig. 6 for the location of the points). These time series
represent results every 2 h. Results are shown 6 months after the beginning of the run
(where a uniform layer of 0.3 m of deposits was prescribed). Point A is located at the west-
ern tip of the farms, where the largest increases in tidal velocities are computed. While this
area is shown to be very stable without farms, continuous erosion is predicted when farms
are present. The high velocities computed at this location are actually not compatible with
a muddy sedimentary coverage. Offshore the farms, point B behaves in similar way with
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Figure 9. Initial uniform sediment thickness (top) and thickness after 1 year with mussel farms (bottom).
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Figure 10. Difference in sediment thickness between the situation with and without farms after 1 year of
simulation.
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444 F. Cayocca et al.

Figure 11. Evolution of the suspended concentration and the sediment level for points A, B, C and D (see Fig. 6
for location) over 6 months. Solid line: situation without farms; dashed line: situation with farms. 
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or without the farms, except during large spring tides, which are responsible for erosion
without farms, and deposition with the farms. The same trend is observed within the farms.
At point C, the farms initially induce excess erosion. However, after a few months, this
trend stabilizes, and no significant difference is seen with or without the farms. Suspended
concentrations are of the correct order of magnitude, with flood and ebb peaks of the order
of 0.2–1 g/L depending on the area. The influence of the farms on the suspended concen-
tration pattern is not significant. 

6. CONCLUSION

The analysis of the tide and waves contributions in the Mont Saint Michel Bay suggests two
main results: (1) the tidal dynamics may account to a large extent to the sediment distribu-
tion in the bay; (2) waves being the most efficient factor for resuspension, the concentration
of suspended sediments decreases from east to west, as wave effects are dampened by the
sheltering effect of the cape located at the north-west end of the bay. As a consequence, con-
centrations of suspended matter are well correlated twith the occurrence of waves in the
central part of the bay, while tidal effects become dominant in the east.

Using an initial condition based on uniform mud coverage of Mont Saint Michel Bay,
the main features of the observed mud distribution are reproduced, i.e. deposition of mud
on the upper part of the intertidal profile and in the western part of the bay and no deposits
in the eastern channels. The thinner deposits predicted in the middle part of the intertidal
profile correspond to areas actually covered by muddy sands. The presence of mussel
farms was shown to induce erosion by their edges. The amount of predicted erosion seems
to be excessive, since it did not allow muddy deposits to remain near the edges of the
farms, which is not observed in the field. The amount of overall added friction in the farms
must therefore be overestimated, which induces an overestimation of the velocity increase
as well. The farms were also shown to encourage sedimentation within the farms them-
selves, as well as onshore or offshore the farms depending on the local dynamics.

These results need to be interpreted keeping in mind the main approximations that were
made for the numerical modelling:

1. Waves were not taken into account. Wave measurements as well as preliminary
computations of wave propagation show that wave-induced bottom shear stress in
Mont Saint Michel Bay can be as high as 10 times the maximum tide-induced shear
stress. While the overall sediment distribution is well explained by the tidal dynamics,
the proper simulation of suspended matter concentrations requires waves to be taken
into account.

2. The muddy fraction was only taken into account. As a response to a longshore and
cross-shore variability of the bottom shear stress, the sediment coverage in the bay is
very much dependent on the location. This environment typically requires the use of
a mixed grain size model, which is an option that was not included for these runs.
This is particularly true in areas where fine sands are mixed with cohesive sediments:
the single mud fraction will predict a bare bottom where mud may, in reality, be
trapped by sand. The parameterization of erosion thresholds and erosion fluxes of
natural sediments in the bay is also under investigation (Le Hir et al., 2005).
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3. Mussel farms were represented in the model through a local increase in the friction
coefficient, which was probably overestimated using values from the literature.
Measurements of tidal velocities around the farms need to be carried out in order to
validate the magnitude of the velocity changes due to these structures. 
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