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Cold Seep Ecosystems

A gyre in the brine pool that occupies the crater of Cheops mud 
volcano, Nile Deep Sea Fan, at 3-km water depth. The gyre is 
about 2-m across, and shows sulfur-rich white “foam” accumula-
tions, thought to be produced by bacterial activity. This image was 
taken by RoV Victor during Ifremer’s MEDECo cruise in 2007.
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ABSTR ACT. Submarine hydrocarbon seeps are geologically driven “hotspots” of increased biological activity on the seabed. 

As part of the HERMES project, several sites of natural hydrocarbon seepage in the European seas were investigated in detail, 

including mud volcanoes and pockmarks, in study areas extending from the Nordic margin, to the Gulf of Cádiz, to the 

Mediterranean and Black seas. High-resolution seabed maps and the main properties of key seep sites are presented here. 

Individual seeps show ecosystem zonation related to the strength of the methane flux and distinct biogeochemical processes in 

surface sediments. A feature common to many seeps is the formation of authigenic carbonate constructions. These constructions 

exhibit various morphologies ranging from large pavements and fragmented slabs to chimneys and mushroom-shaped mounds, 

and they form hard substrates colonized by fixed fauna. Gas hydrate dissociation could contribute to sustain seep chemosynthetic 

communities over several thousand years following large gas-release events.

INTRoDUCTIoN
Since the first discovery of a hydro-
carbon-associated cold seep community 
off Louisiana (Kennicut et al., 1985), 
hydrocarbon seepage and its close 
association with “hotspots” of increased 
biological activity have been documented 
at a number of seafloor sites worldwide 
(Judd and Hovland, 2007). Geological 
structures associated with the expulsion 
of hydrocarbon-rich fluids, such as mud 
volcanoes and pockmarks, have been 
recognized on the margins of the Atlantic 
Ocean, the Mediterranean Sea, and the 
Black Sea, and new seepage sites continue 
to be discovered. HERMES project sci-
entists mapped, observed, and sampled 
key seep sites along the Nordic margin, 
in the Gulf of Cádiz, and in the eastern 
Mediterranean and Black seas (Figure 1). 
Considerable progress has been made 
in the description and understanding of 
the biological activity and the processes 

that drive fluid seepage at these sites. 
This paper presents information on the 
structure and driving processes of major 
seeps investigated in detail during the 
HERMES project. A companion paper 
(Vanreusel et al., this issue) describes bio-
logical communities at these sites.

MAJoR SEEPS IN  
EURoPE AN SE AS
The Nordic Margin (Figure 1a)
The Håkon Mosby Mud Volcano
The Håkon Mosby mud volcano 
(HMMV; Figure 2) is located on the 
Southwest Barents Sea slope in a water 
depth of 1270 m. Since its discovery in 
1989 (Crane et al., 1995) as a circular, 
1-km diameter feature in side-scan 
sonar images, the HMMV has been the 
target of numerous research expeditions. 
The mud and fluid expelled from the 
volcano may arise from a source depth 
of 2–3 km below the seabed within over-

pressurized oozes lying below glacial 
deposits. Milkov et al. (1999) compiled 
the first map of the HMMV landscape 
from video and photo surveys. Further 
fieldwork revealed concentric zones of 
seafloor morphology, litho-types, and 
geochemical and biological processes 
(Milkov et al., 2004; De Beer et al., 2006; 
Jerosch et al., 2007), and demonstrated 
exceptionally high activity of mud, fluid, 
and gas ejections through the surface of 
the volcano (Sauter et al., 2006).

Geothermal modeling indicates 
current aqueous flow rates of up to 
4–10 m y-1 at the center of the volcano 
(Feseker et al., 2008), rapidly decreasing 
to less than 1 m y-1 on its perimeter. The 
expelled fluid is saturated with meth-
ane, mainly of biogenic origin, and gas 
hydrate is abundant in the subsurface 
(Ginsburg et al., 1999). Detailed observa-
tions of the various habitats and the bio-
geochemical processes involved in each 
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of them were made during the HERMES 
cruises using R/V Pourquoi pas? in 
2006 and R/V Polarstern in 2007. High 
flow rates are restricted to the narrow 
central area of the feeder channel (about 
100-m wide), which shows a gray mud 
breccia at its surface. In this area, the 
flow of methane-laden but sulfate-free 
subsurface fluids is so high that methane 
oxidation can only occur in the top 
few millimeters of sediment populated 
by aerobic methanotrophs (Niemann 

et al., 2006b). This central area is sur-
rounded by a zone of lower fluid flow 
and relatively high rates of anaerobic 
methane oxidation of 4–10 mmol m-2 d-1 
in the top few centimeters, where sul-
fate can penetrate from the overlying 
bottom water. This zone is covered by 
white mats of giant sulfide-oxidizing 
filamentous bacteria that profit from 
the high sulfide flux (De Beer, 2006). 
Low fluid flow in the outer part of the 
mud volcano is associated with dense 

fields of siboglinid tubeworms feeding 
on sulfide produced by anaerobic oxida-
tion of methane at over 50-cm depth 
(Lösekann et al., 2007). In other words, 
the very high flow rates of methane-
laden anoxic fluids in the center of the 
mud volcano can suffocate organisms, 
which increase in biomass and activity 
towards the outer rim where both meth-
ane and electron acceptors are available 
for respiration. The escape of free and 
dissolved methane has been estimated 
to contribute to an annual methane 
release of 13–40 x 106 mol yr-1 of which 
~ 40% is converted microbially to CO2 
(Niemann et al., 2006b). A comparison 
of the HERMES Vicking cruise high-
resolution bathymetric map produced 
in 2006 with a similar map produced 
three years before (Edy et al., 2004) 
reveals major changes in the flow lines 
of mud in the central and southern parts 
of the volcano, showing that the extru-
sion of mud is an active process that 
modifies the ecosystem on a time scale of 
only a few years.

Figure 1. Major hydrocarbon 
seep sites around Europe. 
(a) Two sites investigated 
along the Nordic margin 
and discussed in this article 
are the Håkon Mosby mud 
volcano and the Nyegga 
pockmarks. (b) Sites inves-
tigated in the Gulf of Cádiz 
and the Mediterranean and 
Black seas. All sites marked 
by rectangles have been 
investigated at some level by 
the HERMES project. White 
triangles are mud volcanoes.

J. Troll 

Nyegga 

Snovhit 

Hakon-Mosby 
Mud Volcano 

Vestnesa 

N60° 

N65° 

N70° 

N75° 

E00° W10° E20° E10° E30° 

a 



Oceanography March 2009 95

Pockmark Fields on the  
Norwegian Margin Seabed
The Norwegian continental margin, 
including the Barents Sea and Northwest 
Svalbard, contains large pockmark fields 
on the seafloor connected to subsurface 
chimney structures. Pockmark fields exist 

Figure 2. (a) High-resolution bathymetric map of the Håkon Mosby mud volcano show-
ing three main morphological units: (1) a flat central and southern part interpreted as 
an area of recent mud flows, (2) a hummocky seabed area interpreted as composed of 
deformed old mud flows, and (3) a pronounced moat at the periphery of the volcano. 
(b) Colored areas, superimposed on the shaded bathymetry, indicate main areas 
colonized by pogonophorans and Beggiatoa. After Jerosch et al., 2007. (c) String of free 
hydrate-coated methane bubbles rising from a seabed fissure that crosses a field of 
pogonophorans (partially covered by fresh mud) at the surface of the mud volcano. 
(d) Densely distributed Beggiatoa mats.
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in water depths of 50–500 m on the sea-
bed of the Barents Sea in the north, and 
in the Norwegian trench and the North 
Sea in the south (Figure 1a) (e.g., Judd 
and Hovland, 2007). More than a hun-
dred thousand of them, ranging in size 

from meters to several hundreds of 
meters wide and a few meters deep, have 
developed in areas covered by an ice 
sheet and/or ice streams during the last 
ice age. During the Pleistocene, the gla-
ciers repeatedly eroded and compacted 
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the shelf sediments, creating prograding 
wedges on the upper continental slope 
in front of ice streams. A reasonable 
assumption is, therefore, that the age 
for generating the pockmark fields we 
observe today is some time between the 
last glacial to recent. Smaller pockmark 
fields lie on the continental slope in 
water depths between 500 and 1500 m. 
They are occupied by more than several 
hundreds of seabed depressions up to 
20-m deep and several hundred meters 
wide. The pockmarks were formed by flu-
ids and gases seeping through the seabed, 
but their formation has not been dated 
accurately, and the details of the rates of 
fluid flow and related biological processes 
within and adjacent to them are still not 
well understood (Hustoft et al., 2007).

HERMES researchers concentrated 
their geophysical, geochemical, and 
biological studies on a smaller pockmark 
field that lies on the mid-Norwegian 
margin at Nyegga in 600–800-m water 
depth (Figures 1a and 3a). Seismic inves-
tigations provided evidence at several 
pockmarks for underlying gas chimneys 

(Figure 3b), and detailed examinations 
of individual pockmarks using remotely 
operated vehicles (ROVs) provided 
information on active or recent seeps 
and biological activity. Initial conclu-
sions were that the chimneys under 
investigation diffused methane slowly 
through vast areas of the seafloor where 
pogonophoran fields were mapped. The 
most active seeps were found at a few 
spots, tens of centimeters across, in the 
central areas. These spots showed a con-
centric colonization, often characterized 
by an innermost part composed of black 
sediments sometimes covered by whitish 
filaments of giant sulfide-oxidizing 

bacteria, and an outer, surrounding part 
colonized by gastropods. Rates of anaer-
obic methane oxidation in the blackened, 
sulfidic sediments of the innermost part 
reach up to 100 mmol m-2 d-1, which is 
among the highest rates ever measured 
at seeps. However, the zones where 
such high rates occur are limited to a 
few decimeters, probably representing 
the central pathways for gas escape. 
Blocks of methane-derived authigenic 
carbonates, as previously reported by 
Mazzini et al. (2006) for the same area 
and also documented from Norwegian 
Trench pockmarks (Forsberg et al., 
2005), occupy most of the pockmarks 

a

Figure 3. (a) Variety of seafloor expressions (top), 
comprising pockmarks and domes, of focused 
fluid flow through the seabed of the Nyegga slope, 
off mid Norway, and connected deeper expres-
sions (bottom) at the Intra Naust A Formation 
depth. (b) Hydratech 28 chirp sediment profile 
across two adjacent pockmarks underlain by gas 
chimneys on the Nyegga slope.
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investigated (Figure 9a), where they 
form a hard substratum for the develop-
ment of benthic colonies (Vanreusel 
et al., this issue). Previous carbon isotope 
analyses from carbonates retrieved from 
pockmarks in this area indicate mixed 
sources of biogenic and thermogenic 
gases (δ13C values between -29.4‰ and 
-58‰ V-PDB, from HERMES results 
and previously published values from 
Hovland et al., 2005, and Mazzini et al., 
2006). Thermogenic gases are suspected 
to leak from deep hydrocarbon traps.

The Gulf of Cádiz (Figure 1b)
Active mud volcanism in the Gulf of 
Cádiz is a widespread phenomenon, 
extending from the Iberian-Moroccan 
shelf to the deeper regions in the center 
of the Gulf of Cádiz. During HERMES 
cruise MSM 1/3 in early 2006, the 
Captain Arutyunov mud volcano 
(CAMV) at about 1320-m water depth 
in the central Gulf of Cádiz (Figure 4) 
was investigated in great detail by means 
of in situ biogeochemical and fluid-flux 
observatories (Sommer et al., 2008, in 
press). Seafloor observations revealed dis-
tinct habitats on top of CAMV that were 
closely associated with methane seepage 
and high methane pore water concentra-
tions close to the sediment surface. These 
habitats comprise seafloor areas densely 
populated by siboglinid tubeworms 
(siboglinid habitat) and sediments where 
siboglinids occurred only sporadi-
cally, but numerous unsorted clasts of 
mainly mudstones were present (clast 
habitat). On the flanks of the CAMV, 
seabed morphology changed and no 
further indications of fluid or gas seepage 
were found. Seabed methane emission 
was lowest from the siboglinid habitat 
(0.001 mmol m-2 d-1) compared to the 

clast habitat (0.27 ± 0.25 mmol m-2 d-1, 
mean ± SD) (cf. Sommer et al., in press). 
In the clast habitats, the sulfate-methane 
reaction zone was located very deep, 
below the maximum penetration depth 
for siboglinids, which may cause a partial 
oxygenation of the upper sediment layers 

by bioirrigation. The spatial distribution 
of these habitats, in combination with the 
in situ seabed methane emission rates, 
which were assumed to be typical for the 
respective habitats, was used to calculate 
a total emission of dissolved methane 
from CAMV of 0.006 x 106 mol yr-1. This 
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Figure 4. (A) overview map of the Captain Arutyunov mud volcano in the Gulf of Cádiz. 
(B) Bathymetric map of the Captain Arutyunov mud volcano displaying distribution patterns 
of major faunal groups and lithological features. (C) Methane concentration measured ~ 5 m 
above the seafloor indicated by color graded dots overlying the bathymetric map (Sommer 
et al., in press).
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estimate does not include eruptive events 
and gas bubbling of methane into the 
water column. The total seabed methane 
emission from CAMV is small compared 
to the overall methane release from other 
known mud volcanoes (i.e., HMMV). 
Such low methane emission appears to 
be related to slow fluid flow, which pro-
vides time for anaerobic methanotrophic 
bacteria (microbial filter) to consume a 
large proportion of the ascending meth-
ane, and for a well-established habitat 
dominated by siboglinids to settle, which 
directly and indirectly affects methane 
turnover. A hydro-acoustic survey of the 
water column conducted for several days 
during the MSM 1/3 cruise revealed only 
weak gaseous methane emissions from 
CAMV, which correlates with low meth-
ane concentrations in the lower water 
column (Figure 4, cf. Sommer et al., in 
press). However, strongly elevated meth-
ane concentrations in the bottom water 
of up to 20 µM (up to 1 m above the 
seafloor) imply that there were localized 
sites with enhanced, probably periodic, 
methane release.

The Eastern Mediterranean Sea 
(Figure1b)
The eastern Mediterranean Sea contains 
one of the world’s highest abundances of 
mud volcanoes (Kopf, 2002), both along 
the passive (rifted) margins of northern 
Africa and the active (subducting) mar-
gins of southern Europe. Mud volcanoes 
were first discovered on the western 
Mediterranean Ridge accretionary prism 
(Cita et al., 1981) and in its central area 
within the well-known Olimpi mud vol-
cano field (Cita and Camerlenghi, 1990; 
Ivanov et al., 1996; Huguen et al., 2004). 
Analysis of materials from the latter, 
retrieved during Ocean Drilling Program 

Leg 160, showed that they have been 
extruding mud, fluids, and gas for at least 
the last million years, during dewatering 
of the accretionary prism from depths 
of up to 7 km (Robertson et al., 1996). 
Many more fluid seep-related seabed 
structures have been identified subse-
quently, in the Anaximander Mountains 
(Woodside et al., 1998; Lykousis 
et al., in press), along the Florence Rise 
(Woodside et al., 2002; Zitter, 2004), 
in the Levantine Basin (Coleman and 
Ballard, 2001), and on the Nile Deep Sea 
Fan (Bellaiche et al., 2001; Mascle et al., 
2001; Loncke et al., 2004). Bathymetry 
maps and acoustic images of the seafloor 
obtained using ship-mounted multibeam 
echosounders (Loubrieu et al., 2001; 
MediMap Group et al., 2005, 2008) 
have played key roles in the discovery 
of fluid-escape structures in the eastern 
Mediterranean Sea. They have triggered 
several further investigations at a higher 
spatial resolution, including those using 
manned submersibles and ROVs, during 
which active processes of fluid seepage 
were investigated (Huguen et al., 2005; 
Zitter et al., 2005; Dupré et al., 2007).

A feature of the Mediterranean Sea 
is the widespread occurrence of thick 
salt-rich strata deposited during the 
desiccation event that occurred in the 
area in Messinian times, during the 
latest Miocene between 5.3 and 6 Ma 
(Hsu et al., 1973; Ryan, 1978; Sage and 
Le Touzey, 1990). This environmental 
crisis led to the deposition of evaporitic 
sequences of carbonates, laminated and 
selenetic gypsum, halite, and potash 
salts in different morphostructural set-
tings (e.g., shallow basins, deep basins) 
(Hsu et al., 1973). The total thickness 
of Messinian strata may reach 2 km in 
some of the deep basins, particularly 

in the eastern Mediterranean Sea, and 
locally up to 3 km as a consequence 
of post-depositional, gravity-driven 
tectonic deformation along basin mar-
gins. The Messinian evaporitic strata 
were deposited over thick sediments 
with high organic matter contents that 
accumulated in relatively confined 
domains. Progressive “cooking” of this 
organic matter in response to rapid 
burial by Messinian and Plio-Quaternary 
sediments resulted in the generation 
of hydrocarbon gases and fluid over-
pressures below the evaporites. Warm 
fluids dissolve parts of the salt-bearing 
sediments, thus forming brines. Brine 
seepage to the seafloor is a result of fluid 
release along faults piercing the evapo-
rites. The muddy brines are often rich in 
thermogenic and biogenic hydrocarbon 
gases produced below the evaporites.

Most HERMES investigations have 
been conducted in two main areas, the 
Nile Deep Sea Fan and the Calabrian 
Arc, in addition to complementary stud-
ies on the Mediterranean Ridge and the 
Anaximander Mountain areas.

The Nile Deep Sea Fan (NDSF)
Along the Mesozoic rifted continental 
margin of northern Egypt, sedimentary 
basins were subject to rapid subsidence 
and abundant sedimentation, leading 
to the burial of thick accumulations of 
organic-rich sediments and the forma-
tion of hydrocarbons (Dolson et al., 
2001). Deposition of evaporites during 
the Messinian (Hsu et al., 1973; Ryan, 
1978; Sage and Letouzey, 1990) sealed 
the petroleum system. Hydrocarbons 
combined with water and mud were 
later released through faults piercing 
the Messinian evaporites and form-
ing preferential conduits to the seabed 
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(Loncke et al., 2004). Additionally, 
during the Messinian, the margin was 
incised by large-scale canyons that were 
infilled later by Pliocene sediments and 
have subsequently formed hydrocarbon 
reservoirs (Aal et al., 2001; Dolson et al., 
2002). At present, the Nile Deep Sea 
Fan is a sedimentary edifice more than 
10-km thick (Aal et al., 2001; Mascle 
et al., 2003; Camera, in press).

The NDSF hosts numerous active 
fluid/brine escape structures (Loncke 
et al., 2004; Bayon et al., in press; 
Huguen et al., in press), including sev-
eral large gas-emitting mud volcanoes 
(Dupré et al., 2007). These latter features 

lie along the present-day continental 
platform boundary or close to the limit 
of the Messinian platform.

The Amon mud volcano (Figure 5) 
illustrates a type of mud volcano formed 
at the outer limit of the Messinian plat-
form. It is an approximately circular 
feature, 2.7 km in diameter, 90 m in 
height, with a morphology character-
ized by numerous concentric ridges and 
gullies around a central dome. The dis-
turbed summit, about 125 m in diameter, 
shows a chaotic layout of mud blocks 
that suggests a recent or ongoing active 
deformation, most likely caused by mud 
extrusion and gas expansion. The warm 

mud temperature measured up to several 
tens of degrees to depths of 10 m below 
the seabed, and the pore water chemistry 
indicates active aqueous seepage through 
the seabed at rates of several meters per 
year (Feseker et al., in press). This zone 
of quite limited lateral extent defines the 
main area of methane seepage.

The Chephren mud volcano illustrates 
a type of mud volcano formed above the 
Messinian platform. This mud volcano 
complex is approximately 1 km in diam-
eter with an average elevation of 40 m. 
HERMES investigations during the 
MEDECO expedition of R/V Pourquoi 
pas? in 2007 produced the first detailed 

Figure 5. (a) Eastern Mediterranean bathymetric map (MediMap Group et al., 2005) with locations of the Amon and Chephren mud volcanoes. 
(b) and (c) Detailed shaded three-dimensional bathymetry blocks of Amon and Chephren mud volcanoes, both with a vertical exaggeration of six. The Amon 
data were acquired by AUV during the BIoNIL expedition (2006). The Chephren data were acquired by RoV during the MEDECo Leg 2 expedition (2007). 
These data were processed using Caraibes (©Ifremer) by G. Buffet and L. Brosolo, using 2-m and 1-m pixel grids, respectively. (d) Seafloor photo of the chaotic 
center of Amon mud volcano (BIoNIL 2006). (e) Seafloor photo of the surface of the northern brine lake of Chephren mud volcano (MEDECo, 2007).
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seafloor maps of Chephren mud volcano, 
revealing a double crater, one filled with 
a fluid briny mud and the second empty. 
The temperature of the brine at the 
northern Chephren lake was measured 
as high as 57°C throughout the brine 
layer at about 200-m depth. Intense 
microbiological activity has developed at 
the surface of Chephren mud volcano.

The central zone of the NDSF is char-
acterized by the occurrence of numer-
ous pockmarks that form subcircular 
depressions a few meters in diameter 
and about one meter deep. They are 
detected by acoustic imagery where the 
high backscatter corresponds to car-
bonates that cover large seafloor areas. 
Reduced sediments and microbial mats 
surround these structures that host very 
rich ecosystems of tubeworms, bivalves, 
urchins, and crustaceans.

A Frontier Area: The Calabrian Arc
In contrast to other eastern Mediter-
ranean accretionary prisms, the seabed 
of the Calabrian Arc had not been 
investigated for almost 25 years prior to 
the HERMES project (Stride et al., 1977; 
Rossi and Sartori, 1981), and mud vol-
canoes had not been identified, although 
their presence were suspected (Fusi and 
Kenyon, 1996; Sartori, 2003). Mud vol-
canoes were discovered in summer 2005 
during the joint HERMES-HYDRAMED 
campaign of the Italian research vessel 
OGS Explora (Ceramicola et al., 2006), 
which obtained the first regional mul-
tibeam coverage (Figure 6a). Probable 
mud volcanoes across the central to 
inner arc were proven at three sites from 
gravity cores of mud breccia (Figure 6a) 
and two of the sites were investigated 
using two- and three-dimensional 

seismic reflection methods. These two 
sites, referred to as the Madonna dello 
Ionio and the Pythagoras mud volcanoes 
(Figure 6), were subsequently visited 
using ROVs during HERMES expedi-
tions aboard R/V Meteor in 2006 and 
R/V Pourquoi pas? in 2007. Together 
these investigations have shown that 
the Calabrian Arc mud volcanoes 
record a long history of extrusive activ-
ity that continues to support “hotspot” 
seabed ecosystems.

HERMES studies have focused on 
the Madonna dello Ionio, a complex of 
three mud volcanoes in water depths of 
1600–1800 m that together resemble a 
reclining woman (Figure 6b). The “head” 
of the Madonna is a caldera about 3-km 
across, surrounded by a halo-like ridge 
up to 50-m high, while her “breasts” 
are twin mud cones each up to 140-m 
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Figure 6. (a) Swath bathymetry of the Calabrian Arc showing locations of mud volcanoes proven by coring. (b) The Madonna dello Ionio 
mud volcanoes. Black and white lines show the tracks of the RoV dives undertaken during HERMES campaigns in 2006 and 2007.
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high and 1.5-km wide; her outline is 
completed by seabed faults northwest 
of the twin cones that extend for several 
kilometers to the southwest and are 
likely to record subsidence due to mud 
extrusion (Figure 6b). Seismic reflection 
data across the Madonna show that the 
seabed mud volcanoes are the tops of 
extrusive edifices that extend over 1 km 
into the subsurface and display inter-
fingering relationships with the flanking 
Plio-Quaternary succession indicative of 
episodic extrusive activity over the last 
several million years.

Seabed samples and ROV investiga-
tions of the Madonna dello Ionio mud 
volcanoes provide evidence of ongoing 
seepage activity. Gravity cores show grey 
mud breccias lying at or near the seabed 
at all three extrusive centers, with gas 
observed escaping from some cores. 
ROV investigations (video observations, 
sampling, and geothermal probes) show 
that the extrusion of mud breccias has 
given way to more local extrusion of 
mud. Fresh outflows of reduced grey 
mud were observed and sampled at 
two of the three extrusive centers, and 

geothermal measurements showed that 
all three centers were characterized by 
higher gradients than adjacent areas 
(> 1°C m-1 at the Madonna left breast vs. 
0.01°C m-1 background values). Evidence 
that this activity supports anoxic eco-
systems comes from a 30-cm blade 
core from the southeast cone, which 
contained chemolithotrophic tubeworms 
(polychaetes), indicating reduced condi-
tions at or near the seabed (A. Andersen, 
CNRS-Roscoff, pers. comm., November 
2008). ROV investigations of the summit 
of the Pythagoras mud volcano also 
provide evidence of a recent and violent 
extrusive episode, suggested by an area 
of chaotic seabed, with irregular relief 
developed in exposed mud breccias.

The Black Sea
In the Black Sea, unique microbial 
habitats of previously unknown biomass 
accumulations form above gas seeps 
where oxygen is absent, thus preclud-
ing the existence of any higher life 
forms. The absence of oxygen affects 
the biogeochemistry of methane and 
sulfur turnover considerably (Jørgensen 

et al., 2001), making the Black Sea 
an interesting natural laboratory for 
studying anoxic microbial processes. 
The HERMES “Microhab” expedition 
with R/V Meteor (M72/2) in early 2007 
focused on high-resolution mapping of 
microbial habitats, detailed in situ geo-
chemical measurements, and sampling 
for microbial diversity analyses at several 
seep systems. Selection of study sites 
was based on previous work by Russian 
scientists (cf. Ivanov et al., 1996).

In the northwestern Black Sea, hun-
dreds of active gas seeps occur along 
the shelf edge west of the Crimea pen-
insula at water depths between 35 and 
800 m (Ivanov et al., 1989; Egorov 
et al., 1998). At some of the shallow 
Crimean seeps, microbial mats were 
found associated with isotopically light 
carbonates. Aspects of the microbiology, 
sedimentology, mineralogy, and selected 
biomarker properties of these deposits 
were recently described (Pimenov et al., 
1997; Michaelis et al., 2002; Treude et al., 
2005, 2007). Massive microbial mats 
cover up to 4-m-high carbonate buildups 
at methane seeps in anoxic waters of the 

a b

Figure 7. Microbial reefs associated with gas seepage on the Crimean slope. (a) Measurement of gas content of bottom waters around 
the microbial reefs. (b) Horizontal profiling of sulfide and pH gradients in the microbial reefs. Source: MARUM/MPI; M72/2
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northwestern Black Sea shelf. Strong 
13C depletions indicate incorporation 
of methane carbon into carbonates, 
bulk microbial biomass, and specific 
lipids. These buildups are formed by up 
to 10-cm-thick microbial mats that are 
internally stabilized by carbonate precip-
itates (Figure 7). Streams of gas bubbles 
emanate into the water column from 
holes in these structures. Apparently, the 
cavernous structure of these precipitates 
enables methane and sulfate to be trans-
ported and distributed throughout the 
massive mats. Smaller microbial struc-
tures and nodules from nearby areas 
were of the same morphology, with com-
pact mats enclosing calcified parts and 
cavities (Figure 7). The development and 
structure of such reef systems is not yet 
understood and requires detailed ecosys-
tem analysis based on habitat mapping 
and high-resolution sampling.

The second target of the HERMES 
“Microhab” expedition was the Sorokin 
Trough, which is characterized by dia-
piric structures formed in the context 
of compressional tectonics generated 
by the northward motion of the buried 
Tetyaev and Shatskii rises (Woodside 

et al., 1997). This tectonic activity causes 
fault movement and thus fluid migration 
to the seafloor. Abundant mud volcanoes 
and near-surface gas hydrate occurrences 
were identified in this area between 
800- and 2000-m depths (Krastel et al., 
2003), as well as active geochemical and 
microbiological processes associated 
with seepage (Stadnitskaia et al., 2005; 
Wallmann et al., 2007). The mud vol-
canoes have diameters of up to 2.5 km 
and heights of up to 120 m above the 
surrounding seafloor. Observations 
have focused on the flat-topped and 
very active Dvurechenskii mud volcano 
(DMV). Indicators for recent or present 
methane emission at DMV include the 
presence of gas hydrates in surface sedi-
ments, gas flares, highly gassy sediments, 
strong sulfidic smells from surface 
sediments, authigenic carbonate crusts, 
and the presence of microbial mats 
(Bohrmann et al., 2004).

In situ biogeochemical measurements 
along a transect from the mud volcano 
center to the outer rim (Figure 8) dem-
onstrate clear zonation, from the highest 
upflow velocity and largest methane 
export at the active center located 

slightly north of the geographic center, 
to low flow and methane emission at the 
rim of the volcano. In a similar manner 
to other mud volcanoes, fluid flow is 
the main driver of the microbiological 
activity at DVM. As observed at the 
Håkon Mosby mud volcano, a high flow 
rate at the active center prevents sulfate 
derived from the bottom seawater from 
penetrating the sediment, thus limiting 
the anaerobic methane oxidation/sulfate 
reduction consumption of methane.

CARBoNATE CoNSTRUCTIoNS 
AT CoLD SEEPS
Various examples of authigenic carbon-
ates from modern marine cold seeps 
have been described from continental 
margins worldwide (e.g., Campbell et al., 
2002). They may or may not be associ-
ated with gas hydrates. After a decade 
of microbiological and geochemical 
studies, we know that in marine cold 
seep environments, methane and other 
hydrocarbon compounds contained 
in the ascending fluids are oxidized 
to CO2 by a microbial consortium of 
sulfate-reducing bacteria and metha-
notrophic archea (Boetius et al., 2000). 

a b

Figure 8. Images of deployments of in situ instruments at the Dvurechenskii mud volcano. (a) In situ temperature measurement. 
(b) In situ microprofiler measurement of sulfide, redox, and pH. Source: MARUM/MPI. M72/2
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Anaerobic oxidation of methane is the 
main microbial process driving the 
precipitation of authigenic carbonate 
crusts and concretions within subsurface 
anoxic sediments. This process explains 
why the seafloor is often hardened by 
carbonate constructions at the sites 
of active methane seepage. The lateral 
and vertical extent of these authigenic 
carbonate constructions is controlled 
by the balance between the intensity of 
the venting fluid flux and the ability of 
microbial mats to oxidize methane and 
reduce sulfate. The microbial mat filter 
transforms the methane passing through 

the sediment and generates carbonate. 
However, the efficiency of this filter can 
be counteracted by high methane flux, so 
that methane can escape into the water 
column and may eventually reach the 
atmosphere. Numerical modeling of car-
bonate crust formation has shown that 
bioturbation and sedimentation rates 
are also important factors in controlling 
the flow of water and methane, and thus 
carbonate precipitation at cold seep sites 
(Luff et al., 2004).

The carbonate constructions observed 
at the seafloor exhibit various mor-
phologies: massive to porous crusts 

centimeters to meters thick that form 
large pavements or fragmented slabs, 
circular chimneys, and irregular concre-
tions corresponding to cemented biotur-
bation. These hard substrates are often 
colonized by fixed organisms such as 
tubeworms and molluscs (bivalves and 
gastropods), as well as by an abundant 
vagile fauna (crustaceans, fishes).

Authigenic carbonates provide 
records of the history of seep activity. 
Their mineralogy, and geochemical and 
isotopic signatures depend on the com-
position of the fluids and thus provide 
information on the origin of these fluids. 

Figure 9. Various seafloor morphologies of cold seep authigenic carbonate constructions. (a) Fractured carbonate pavement 
colonized by megafauna on gas chimneys on the northeastern edge of the Storegga slide (Norwegian margin). (b) Porous slabs of 
carbonate crust surrounded by reduced black sediment covered with dead bivalve shells on the summit of Napoli mud volcano 
(olimpi field, eastern Mediterranean). (c) Carbonate “soufflé” emerging from sediment covered with living polychaetes on the 
border of Cheops mud volcano (Menes caldera, Nile Deep Sea Fan, eastern Mediterranean). (d) Carbonate “tower” and carbonate 
slabs at the edge of Amon mud volcano (Nile Deep Sea Fan, eastern Mediterranean).
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It is noteworthy that carbonate mineral 
associations are generally dominated 
by aragonite and Mg-calcite, although 
dolomite and ankerite may become 
the unique species as in the carbonate 
chimneys of the Gulf of Cádiz (Aloisi 
et al., 2000; Diaz-del-Rio et al., 2003; 
Gontharet et al., 2007). All cold-seep 
carbonates are characterized by very 
negative δ13C values, as low as -54.7‰, 
clearly indicating that they are methane-
derived products. The lipid biomarkers 
entrapped in the carbonate network 
provide complementary information 
on the composition of the microbial 
communities that were involved during 
diagenetic processes, anaerobic oxida-
tion of methane, sulfate reduction, and 
methanogenesis (Bouloubassi et al., 
2006; Niemann et al., 2006b).

HyDR ATE AS A LoNG-TERM 
SoURCE oF METHANE FoR 
CHEMoSyNTHETIC BIoTA AT 
CoLD SEEPS
At seeps where methane is entering the 
water column as free gas, such as at the 
Håkon Mosby mud volcano (Sauter 
et al., 2006) and many localities in the 
Black Sea (Greinert et al., 2006), it is 
evident that there is an abundant supply 
of subseabed methane for chemosyn-
thetic biota (Figure 10), but there are 
many seeps that support chemosynthetic 
biota where the methane is only in 
solution in the pore water that flows 
through the seep, such as those in the 
Nyegga region of the southeast Vøring 
plateau off Norway (Vanreusel et al., this 
issue). A question that arises is: how is 
a methane supply sufficient to support 
chemosynthetic biota at these seeps 
sustained without a supply of free meth-
ane gas from below? Methane hydrate 

beneath the seabed plays an important 
role where seeps lie within its stability 
field, generally in water depths greater 
than 400 m. Hydrate provides a source 
of methane, and it buffers the concentra-
tion of methane in solution in pore water 
to that of the solubility of methane in the 
hydrate stability field (Figure 11).

Estimates of how long hydrate could 

provide a viable source of methane to 
chemosynthetic biota at the seabed 
under different conditions were made 
using a one-dimensional advection-
diffusion model based on the Nyegga 
area, where hydrate was cored at depths 
of less than 1 m beneath the seabed in 
the Sharic and Bobic pockmarks (Ivanov 
et al., 2007). The model assumes that, 
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lined with hydrate

Formation of authigenic 
carbonate

Chemosynthetic biota at 
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Free gas beneath chimney

Pervasive hydrate in lower 
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Zone in which hydrate 
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Figure 10. Illustration of a pockmark and underlying chimney during a phase of active 
expulsion of free gas. The passage of free gas through the hydrate stability zone is aided 
by the formation of hydrate around the pathways through which the gas is passing, inhib-
iting access of the gas to pore water and preventing conversion of all the gas to hydrate. 
Progressive formation of hydrate and carbonate near the seabed seals pathways, causing 
an outward migration of the active gas vents.
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initially, hydrate lies 1 m beneath the 
seabed and the sulfate-methane transi-
tion (SMT) is at 30-cm depth. Above 
the SMT, methane is not present in the 
pore water, because it has been anaerobi-
cally oxidized with microbial mediation, 
taking the oxygen from sulfate that has 
diffused downward from the seawater to 
produce sulfide and bicarbonate (Boetius 
et al., 2000). If the SMT is much more 
than about 1-m deep, methane in pore 
water is out of reach of most of the biota 
living at or near the seabed.

Depletion of a layer containing 
12.5% hydrate by chemical diffusion 
alone will cause the top to recede down-
ward from 1-m to 3-m depth below the 
seabed after 1800 years (Figure 12). The 
SMT will deepen from 0.3 to 1 m and 
the methane flux will decrease from 
2.1–0.7 mol m-2 yr-1. Consumption rates 
of methane by in situ chemosynthetic 
biota vary greatly and are species depen-
dent (Torres et al., 2002; Boetius and 
Suess, 2004), but a rate of a few tenths of 
a mol m-2 yr-1 appears to be sufficient for 
some species (Niemann et al., 2006a). 
So, although the methane flux would 
still appear to be sufficiently high, the 
increasing depth of the SMT below 1 m 
would progressively reduce the viability 
of chemosynthetic biota.

Upward advection of methane in 
solution in pore water can halt the 
downward movement of the top of the 
hydrate and the SMT. For the model 
case, this is produced by a fluid flow 
rate of 35 mm yr-1 with the concentra-
tion of methane buffered by the hydrate 
at 60 mol m-3. The concentration of 
methane in solution in the pore water 
that enters the layer containing hydrate 
and the rate of flow of the water control 
how quickly the hydrate is removed. The 

layer would be diminished from beneath, 
where methane solubility is higher and 
the rising pore water first comes into 
contact with the hydrate (Figure 12). At 
one extreme, a 10-m-thick layer would 
be removed in 160 years if the concen-
tration of methane in solution was zero 
and the fluid flow rate was 1 m yr-1. In 
the case of the Nyegga pockmarks, how-
ever, where there is abundant evidence 
for the presence of free gas beneath the 
hydrate stability zone, it is probable that 
the concentration of methane in solu-
tion is near saturation, and so the rate of 

depletion of hydrate would be low. For 
a near-saturation methane concentra-
tion of 55 mol m-3 and a fluid flux of 
35 mm yr-1, it would take 5500 years to 
reduce the thickness of the hydrate by 
one meter, while providing a methane 
flux of 2.1 mol m-2 yr-1 and maintain-
ing the top of the hydrate and SMT at 
their initial depths.

In short, if hydrate had been produced 
at shallow depth by an event releasing 
a high volume of free gas in the past, 
an accumulation of methane hydrate of 
low-to-moderate concentration and a 
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Figure 11. Illustration of a pockmark and underlying chimney when only pore water is 
migrating through the system. Methane from hydrate created during the free-gas expul-
sion phase keeps the methane in solution in the migrating pore water at saturation 
concentration, supporting chemosynthetic biota in the pockmark, until all the hydrate is 
removed in solution. This process may continue for thousands of years, with only moder-
ate amounts of hydrate and concentration of methane in solution in the pore water 
entering the chimney from below.
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few meters thick near the seabed could 
sustain communities of chemosynthetic 
biota for periods of several thousands 
to a few tens of thousands of years at 
seep sites where methane concentration 
in pore water is high but not exceed-
ing saturation. Such an event may have 
lasted only a few years or less, depending 
on the efficiency with which hydrate 
was formed from the escaping free gas. 
Consequently, short-lived, catastrophic 
gas venting at the beginning of the 
Holocene or earlier could, without sub-
sequent reactivation, have provided the 
source of methane for active, present-day 
communities of chemosynthetic biota.

SUMMARy
Natural hydrocarbon seeps are numer-
ous in the European seas. A better 
knowledge of their distribution, nature, 
and drivers has been achieved through 
the HERMES project. Seepage is mainly 
related to the release of deep pressurized 
pore fluids. Overpressure is a result of 
rapid sedimentary loading or tectonic 
compression. Hydrocarbon gases dis-
solved in the pore fluid or at a concen-
tration higher than saturation may be 
expelled as free gas. Selected study sites 
have shown variable vigor and distinct 
seepage. Expulsion of free methane 
bubbles occurs at Håkon Mosby mud 

volcano on the Nordic margin and at 
several highly active mud volcanoes 
on the Nile Deep Sea Fan. Spectacular 
emissions and accumulations of warm 
and hypersaline waters characterize mud 
volcanoes of the eastern Mediterranean 
Sea, which have formed above Messinian 
evaporites. Captain Arutyunov mud vol-
cano in the Gulf of Cádiz illustrates an 
active seep characterized by slow advec-
tion of a methane-rich pore fluid.

Mud volcanoes have been important 
seep targets of the HERMES project, but 
other types of geological structures such 
as pockmarks, because of their dense 
distribution and large number in the 
European seas (e.g., the Nordic margin), 
may play an important role in the devel-
opment of deep-sea biota at continental 
margins and should receive further 
attention. It is worth noting that high-
resolution swath mapping from surface 
vessels has proven to be an efficient 
exploratory method to identify potential 
fluid escape from geological structures 
on the seabed, where seepage activity 
was later confirmed by coring, lander, 
or ROV observations. These on-site 
observations were often combined with 
and guided by the acquisition of higher-
resolution bathymetric maps and acous-
tic images of the seabed. High-resolution 
mapping and in situ observations have 
emphasized the ecosystem zonation at 
individual seeps as a function of the 
intensity of the methane flux and active 
biogeochemical processes in response 
to this flux. Innovative in situ measure-
ment tools have been used to estimate 
fluxes of water, hydrocarbons, and 
sulfide and to quantify biogeochemical 
processes (see Boetius and Wenzhöfer, 
this issue). A challenging issue that 
remains is determining the temporal 
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Figure 12. Schematic representation of the control of methane concentration 
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variability of seepage activity. In the 
absence of free gas, methane hydrate 
in sediment beneath cold seeps may 
regulate the methane flux and sustain 
communities of chemosynthetic biota 
for periods of several thousand years at 
sites where hydrate formed during past 
gas release events.
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