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Abstract:  
 
The present study investigates the chemical composition of wet atmospheric precipitation samples on 
a daily and an intra-event timescales in Opme, an experimental meteorological station located near 
Clermont-Ferrand, France. The samples have been collected from November 2005 to October 2007. A 
total of 217 rainwater samples, integrated for 24 h, were collected and analyzed for pH, conductivity, 
Na+, K+, Mg2+, NH4

+, Ca2+, Cl−, NO3
− , SO4

2− , PO4
3− and HCO3

−. The composition of the rainwater 
collected appeared to be controlled by the following potential sources: neutralisation process 
(association among calcium, ammonium with nitrate and sulphate), marine and terrestrial sources. In 
order to determine the role of long-range transport, the integrated events were classified according to 
four origins of air-masses: (1) West, (2) North and East, (3) South including Iberian and Italian 
Peninsulae and (4) local. This analysis allows identifying the source areas of the different association 
of elements defined. Although calcium is always dominant, total content of rainfall is variable and 
neutralisation process can be more or less efficient and specific. Rainout (long-range transport) and 
washout (below-cloud scavenging) were investigated through intra-event measurements of chemical 
species. Four rain-events have been selected according to the four classes of origins of air-masses. It 
appears that the first fractions are responsible for an important part of the chemical content of the 
whole event. Terrestrial species, locally emitted, induce the neutralisation process of acid species. 
Local meteorological conditions, such as wind’s speed and direction, play an important role as they 
could provoke recharges of the below cloud air column during the event.  
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1. Introduction 35 
 

The chemical composition of precipitation is strongly linked with aerosols (both particles and 

gases) carried by rainwater (Junge, 1963). They are removed from the atmosphere by two 

scavenging processes (Meszaros, 1981; Huang et al., 2008): 1) the rainout corresponds to 

condensation processes within the clouds during their formation and travel, 2) the washout is 40 

characterized by the impaction with falling raindrops. In this way, the rainfall signature 

integrates both the long-range transport of chemical species by clouds and the local 

scavenging of atmospheric aerosols during the rain event. These figures vary strongly both 

from event to event and within a single event because rainout and washout proportions 

strongly depend on the environment of the sampling site (urbanized, rural or remote). It is a 45 

function of the aerosol loading and its vertical distribution in the lower atmosphere (Lim et 

al., 1991). Therefore the composition of rainwater depends both on the meteorological 

context, which influences clouds and rains characteristics and on local/long-range transport of 

aerosols and their spatial distribution (Durana et al., 1992). The sources of dissolved 

components in rainwater has often been classified in different categories based on air mass 50 

origin (Celle, 2000): 1) marine source which essentially provides Na+ and Cl-, 2) terrestrial 

source e.g. soil dust (Ca2+, Mg2+, HCO3
-), 3) anthropogenic sources e.g. traffic, industry, 

agriculture and burning of vegetation mainly associated with NO3
-, K+, SO4

2-, NH4
+. 

Moreover the atmosphere constitutes a reactive medium. Some aerosols can interact to form 

new species in dry air before their dissolution in the meteoric water. This latter can also 55 

induces further reactions due to the presence of ionic species. These interactions result in a 

wide range of chemical composition, as well as in variations of pH (Berner and Berner, 1987; 

Cyrys et al., 1995). 

Sources and chemical interactions are difficult to discriminate analytically but their relative 

contributions could be estimated by a coupling of chemical composition and meteorological 60 
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data (Beverland et al., 1998; Avila et Alarcon, 1999; Celle, 2000; Huang et al., 2008; Celle-

Jeanton et al., 2009). In this purpose, 217 precipitation events and 204 infra-event samples 

have been collected during the November 2005-October 2007 period at Opme meteorological 

station (Massif Central, France) and were characterised as a function of their air mass back-

trajectories. 65 

The objectives of such an approach are: 1) to evaluate the role of the long-range transport and 

characterize the distant sources of aerosols and 2) to determine how local meteorological 

variables and environmental features could influence the chemical signature of rainwater at a 

small temporal scale. 

 70 

2. Methodology 

 

Sampling site 

 

The sampling device has been settled at Opme meteorological station (45°43’N, 3°5’30’’E, z 75 

= 650 m) belonging to Observatoire de Physique du Globe de Clermont-Ferrand. The meteo-

station is located 8 km south of Clermont-Ferrand urban district, characterised by a population 

of 260 000 inhabitants (INSEE, 1999), and which constitutes the main regional activity centre 

(industries, tertiary sector). Surrounding this area, land occupation mainly consists on cereal-

growing in the eastern part (Limagne basin) and on rearing or forest on the western part 80 

(Chaîne des Puys). The lithology mainly consists of sedimentary deposits on the Limagne 

basin and crystalline basement (volcanic and granitic) on the west (Fig.1). 

In addition to the collection of rainwater, the recorded parameters are: rainfall intensity 

(mm/h), temperature (°C), wind speed and direction. Daily rainfalls have been collected 

through an automatic precipitation collector (Eigenbrodt NSA 181/KHS) with a 500 cm2 85 
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aperture. A precipitation sensor causes the cover device to open up the collection funnel at the 

start of precipitation and then avoids dry depositions in wet samples. Precipitation flows from 

the funnel down a bottle tray built in with 9 collecting bottles of 1 litre each (one bottle for 

each day of the week, the additional 9th bottle is thought as an overflow for extremely high 

precipitation). When precipitation has ceased and after evaporation of the sensor surface, the 90 

funnel lids closed automatically. The system is refrigerated at 5°C and allows a good 

conservation of samples that are collected once a week. After the sampling, the bucket is 

systematically cleaned with distilled water. It has to be noted that some events were not 

analysed for they are too small in volume (analyses require a minimum rainfall volume of 15 

ml). Moreover, due to the defection from the cover device, some events were not sampled. In 95 

spite of this, the sampling of 89% of the total rainy days of the period has been performed. 

 

The sequential sampling of rainwater was carried out using a modified version of Bourrié’s 

device (1978; Celle-Jeanton et al., 2004) which is located near the total rain collector. This 

collector of 1134 cm2 area is feeding a set of 10 vials of 100 ml which are successively filled 100 

by the way of a three-way pipe. It enables the collection of rains up to 17.6 mm. Laboratory 

tests assessed that mixing between successive vials is about 3% (Rangognio, 2006). 

 

Analytical methods 

 105 

Upon sampling, the rainwater was taken to the laboratory where electrical conductivity (EC) 

and pH are measured with WTW Multi 340i. HCO3
- concentrations are determined by 

titration with a 5.10-4 M solution of sulphuric acid. Samples were subsequently poured into 

standard 100 ml polyethylene flask for further analysis and stored at 4°C for further chemical 

analysis of anions (SO4
2-, Cl-, NO3

- and PO4
3-) and cations (Ca2+, Na+, NH4

+, K+, Mg2+). 110 

Concentrations of ionic species were determined by ion chromatography, using a DIONEX 
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DX320 chromatograph with a AS11 column for anions. This system uses an eluent generator 

to convert pure water into potassium hydroxide eluent through electrolysis for anions 

separations. A DIONEX ICS500 chromatograph with a CS16 column was used for cations 

determination.  A methanesulfonic acid eluent was used for cation separations. The analysis 115 

method is similar than the one described by Jaffrezo et al. (1998) and Ricard et al. (2002). The 

flow rates of eluents were 1 ml/min. The detection limits are 0.05 µeq/l for Cl-, 0.1 µeq/l for 

NO3
-, 0.6 µeq/l for SO4

2-and PO4
3-, 0.06 µeq/l for Na+, 0.04 µeq/l for NH4

+, 0.3 µeq/l for K+, 

0.1 µeq/l for Mg2+ and Ca2+. The uncertainty of these chromatograh systems is 5%. In order to 

assess the validity of the sampling device, blanks were determined for the analysed elements. 120 

The highest value were 1.0 µeq/l for sodium and 0.7 µeq/l for calcium, the other elements 

were not detected. The charge balance between anions and cations was assessed through 

linear regression analyses of the data. The results yield value of 0.93 for the regression 

coefficient indicating the completeness of measured parameters. 

 125 

3. Results and discussion 
 

Rainfall main characteristics 

 

Table 1 shows the statistics calculated for the chemical parameters measured in the rain 130 

samples collected at Opme from Nov-2005 to Nov-2007. Minimum and the maximum values 

of each chemical parameter emphasize the high variability of the chemical composition and 

mineralization of rainwater. This variability can be due to the rain amount (Al-Momani et al., 

1995; Khwaja and Husain, 1990; Hicks and Shannon, 1979) as can be seen on Fig. 2 or to the 

influence of various chemical sources. In this context, one way to keep out the influence of 135 

rain quantity is to use the volume-weighed mean of concentrations to characterize the general 

features of the precipitation chemistry. 
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At Opme meteo-station, the volume-weighed mean pH is of 5.1, showing a tendency of slight 

acidity of rainwater. Generally, unpolluted precipitations are known to be weakly acid due to 

their equilibrium with atmospheric CO2. Then, the pH of chemically undisturbed rainwater is 140 

about 5.7 (Berner and Berner, 1987). The acidic feature is common in industrialised countries 

(Tost et al., 2007) and is due to anthropogenic emissions such as SOx and NOx. The volume 

weighted mean (VWM) concentrations of the major ionic species are in the following order: 

Ca2+ >HCO3
- >NO3

- >SO4
2- >NH4

+ >Na+ >Cl- >H3O+ >Mg2+ >K+ >PO4
3-. Rainfalls chemistry 

appears then to be mainly influenced by elements coming from terrestrial and anthropogenic 145 

sources. Except for SO4
2-, Negrel and Roy (1998) found similar concentrations at Sainte-

Marguerite site (12 km to the east from Opme). However concentrations of SO4
2- analysed 

during the period Nov-2005 to Nov-2007 are two times lower than the ones of Sainte-

Marguerite measured in the period Mar-1994 to Apr-1995. This difference could be explained 

by the general decrease in sulphur emissions between 1986 and 2001 observed in Europe 150 

(Fowler et al., 2005); in Great Britain, the sulphate concentrations in rain drops decrease of 

47% during the 1986-2001 period; in continental Europe reductions in SO2 emissions of 

decrease by 72% during the same period. 

 

Source and processes affecting the rainwater mineralization 155 
 

To evaluate the main geochemical sources of dissolved compounds in the rainwater, inter-

species relationships could be investigated through a multivariate statistical analysis. A 

factorial analysis coupled with varimax rotation permits to determine the preferential 

association between the chemical species in rain (Plaisance et al., 1996; Simeonov et al., 160 

2003; Zunckel et al., 2003). Principle factor analysis was applied to the 217 chemical 

analyses. Consecutive factors are uncorrelated or orthogonal to each other. Factor loadings 

correspond to the correlations of each variable with the factor. Therefore, the more the 



 8 

absolute value approaches one, the more the variable is correlated with the factor. A negative 

variable loading indicates that it varies in opposite direction to the variables with positive 165 

signs. Three factors have been used in this analysis, giving each variable a loading within 

each factor. Loadings greater than 0.5 are considered to be significant components of the 

factor. 

 

The three factors explain 99.7% of the total variance of all the data (Table 2). The first factor 170 

(41.7% of the total variance) suggests the association of anthropogenic species (NO3
-, SO4

2-, 

NH4
+) with Ca2+ mainly of a terrestrial origin. The relatively high loading in Mg2+ (0.480) 

allows associating this element to factor 1, that then represents neutralisation process. In fact, 

these well-correlations between ions result from atmospheric chemical reactions, probably 

from the reaction of the H2SO4 and HNO3 acids with alkaline compounds rich in Ca2+ and 175 

Mg2+ carried into the atmosphere. Neutralisation of HNO3, and H2SO4 by soil-derived 

particles and by ammonia emissions can form aerosols such as NH4HSO4, (NH4)2SO4, 

NH4NO3, Ca(NO3)2 and CaSO4 (Sisterson, 1989; Hov and Hjollo, 1994). The second factor 

(35.6% of the total variance) highlights the association of Na+, Cl- and Mg2+ and then 

corresponds to the marine origin. The third factor associates calcium and bicarbonates (22.4% 180 

of the total variance). This factor 3 expresses the control of the terrestrial source that could 

influence the alkalinity of the atmospheric water due to carbonate dissolution. 

Many studies pointed out the role of meteorological factors in determining the chemical 

features of precipitations (Beverland et al., 1998; Avila and Alarcon, 1999; Celle-Jeanton et 

al., 2009). To investigate the origin of components, the chemical content of the 217 185 

precipitation events sampled during our study have been coupled with the corresponding air 

mass back trajectories. 

 

South 
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Influence of long-range transport: rain-out 

 190 

Air mass back trajectories were calculated for each sample by using the NOAA HYbrid 

Single-Particle Lagrangian Integrated Trajectory Version 4 (HYSPLIT4) model (Draxler and 

Rolph, 2003; Rolph, 2003). The back trajectories were calculated for a three days period and 

for three altitudes: 900 m, 1500 m and 3000 m. Dataset of winds’ speed and direction (1981-

2000, MétéoFrance) allows calculating the main air masses origin and thus permits to 195 

approach the weather patterns of Clermont-Ferrand. Four main transport patterns have been 

segregated: sector 1 that consists of air masses coming mainly from Atlantic Ocean (22.5% of 

air-masses origin), sector 2 that corresponds to Northern and Central Europe (28.3%), sector 3 

towards the South including Iberian Peninsula and Northern Africa (25.8%), a regional sector 

4, with a corresponding wind’s speed lower than 2 m/s, corresponds to 22.4% (Fig. 3). 200 

Chemical contents for each sector were determined taking into account the role of the 

different sources of mineralization highlighted by the factor analysis previously depicted. In 

particular, some ions result from the contribution of both sea-salts (ss) aerosols and non-sea-

salt (nss) species. The sea-salt input is determined by assuming that all Na+ (Brewer, 1975) is 

provided by the marine source and that the proportionate amount of ions as Cl-, SO4
2- , Mg2+, 205 

K+, Ca2+, are derived from sea salts.  

Statistical results and distribution of pH are presented on Table 3 and Fig. 4, respectively. In 

order to determine the preferential neutralisation process, the linear regression between 

nssCa2+ (provided by terrestrial dusts such as CaCO3 or CaMg(CO3)2) or NH4
+ with acidic 

species (NO3
- and nssSO4

2-) are reported on Fig. 5. 210 

 
The chemical content of rainfalls coming from sector 1 is dominated by non sea-salt calcium 

(nssCa2+ = 23.9 µeq/l) and bicarbonates (24.1 µeq/l), but is also influenced by anthropogenic 

species ([NH4
+] = 20 µeq/l, [nssSO4

2-] = 16.8 µeq/l, [NO3
-] = 16.0 µeq/l). Sodium and 
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chloride concentrations show the influence air masses coming from the Atlantic Ocean. 215 

Whereas a major marine source could be expected featuring atlantic events, it comes out that 

terrestrial and anthropogenic sources mark their chemical feature. This observation is in good 

agreement with the study of Rahn et al. (1982), who show that aged maritime air masses often 

contain a high proportion of submicron crustal and anthropogenic particles due to their long 

atmospheric residence times. The high content of calcium in rainfall was also shown, for rain 220 

events on the Atlantic coast, by Beysens et al. (2006) who indicated that the source of high 

concentration in calcium could be due to the removal of soils particles but also originate from 

agriculture activities. It would be consistent with VWM ammonium concentrations (20.0 

µeq/l). Although 4 samples are acidic (pH< 4.5) and 9 have pH > 6.5, 31 events have a nearly 

neutral pH. Fig. 5 shows the good relationships between nssCa2+ and (NO3
- + nssSO4

2-), NH4
+ 225 

and (NO3
- + nssSO4

2-), R = 0.77 and 0.74, respectively, and attests consequently that 

neutralisation can frequently occur in air-masses coming from the sector 1. 

 

Rainwater coming from the sector 2 presents high concentrations of NO3
-, nssSO4

2- and NH4
+ 

(respectively 52.3 µeq/l, 35.6 µeq/l, 33.3 µeq/l, Table 3) and the highest total mineralization 230 

of the four sectors. This group also exhibits the highest VWM in non sea-salt calcium (53.2 

µeq/l) due probably to the removal of Ca-rich dusts. Such influence was highlighted by 

Sanusi et al. (1996) in northern France; they particularly pointed out the role of loess that can 

be easily removed from the Alsatian basin. High mineralization correlated to high content in 

anthropogenic components let appear that condensation nuclei are numerous and mainly 235 

constituted of polluted aerosols. An increase in cloud condensation nuclei concentration 

causes an increase in the number of cloud droplets (Reade et al., 2006).  

Low mean pH of 4.8, (Table 3, Fig. 4) indicates potential acid influences of air-masses 

coming from this sector. This feature is consistent with the low value of correlation 
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coefficient (R = 0.46, Fig. 5) between nssCa2+ and [NO3
-+ nssSO4

2-]. Concerning the 240 

interaction between NH4
+ and [NO3

-+ nssSO4
2-], the correlation is better (R = 0.73), showing a 

preferential neutralisation with this element. However, the low slope of this relation (a = 0.15) 

and the acid pH distribution (Fig. 4) may indicate that it is poorly effective. These 

observations are reliable with the results of Plaisance et al. (1997) who show the existence of 

important sources of NO2 and SO2 in the industrial and urban regions of northern and central 245 

Europe, showing the importance of anthropogenic emissions to the high acid events that occur 

in France.  

 

The chemistry of rainfall events from sector 3 is dominated by non sea-salt calcium (28.4 

µeq/l) and bicarbonate (26.6 µeq/l), which could be attributed to dissolution of calcareous 250 

dust in rain originated from Mediterranean region (Plaisance et al., 1996; Avila et al., 1997; 

Avila et al., 1998). The weighted mean concentration of ammonium, non-sea-salt sulphates 

and nitrates are relatively low: 17.2 µeq/l, 16.0µeq/l, 16.9 µeq/l, respectively. Distribution of 

pH is similar to the one of sector 1. For these two groups, the neutralisation effect maintains 

pH close to the neutral threshold. Fig. 5 indicates that neutralisation is mainly due to NH4
+ (R 255 

= 0.86) for sector 3. Weak concentrations in anthropogenic components are not in agreement 

with the observation of Ezcurra et al. (1988) and Diaz-Caneja et al. (1989). These authors 

quoted that polluted rains for northern Spain were mostly associated to industrial sources in 

Southern France and Northern Spain. This difference could be explained by the presence of 

the Cevennes massif located between Mediterranean area and sampling site and that plays the 260 

role of an orographic barrier. Such hypothesis is consistent with the low concentration in 

marine species. Indeed, if air-masses from the South are partially stopped and precipitated, it 

would mean that most of clouds precipitating at Opme were supplied by closer sources of 
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aerosols mainly emitting calcareous material. This assumption is reliable with the proportion 

between nssCa2+ and the acidic species (a = 0.93). 265 

 

Sector 4 is represented by rainfalls events produced by local influences. This group present 

high weighted mean value in non-sea-salt calcium (36.8 µeq/l), bicarbonates (32.2 µeq/l), 

non-sea-salt sulphates (31.0 µeq/l), ammonium (31.8 µeq/l) and nitrates (29.7 µeq/l). This 

tendency underlines the influence of the local environment, as Opme is located near 270 

Clermont-Ferrand urban district and Limagne basin that could also provide anthropogenic and 

terrestrial material from cultivated lands. Sea-salt chloride and sodium present the lowest 

mean concentration (8.0 and 8.6 µeq/l, respectively) of the four sectors, due to the inland 

origin of air-masses. Correlation coefficients between [NO3
-+ nssSO4

2-] / nssCa2+ (R = 0.74) 

and [NO3
-+ nssSO4

2-] / NH4
+ (R = 0.77) show that neutralisation is non-specific for sector 4 275 

and explain that more than 50% of the events of sector 4 present a pH >5.5. 

 

Neutralisation processes during air masses travel are then very efficient, especially for sectors 

1, 3 and 4 due to intervention of nssCa2+ and NH4
+ that act together. Concerning the sector 2, 

the weak neutralisation of acidity could be due to the weak proportion of NH4
+ content 280 

according with acidic species. Moreover, the dissolution of ammonium could lead to enhance 

the solubility of SO2. This could constitute a negative feedback on the neutralisation process 

(Finlayson-Pitts et Pitts, 1986). Ca2+ appears to be the dominant ion of all the sectors. Then, 

among specific characteristics of each sectors, observation show the importance of long-range 

transport on rainfall chemistry at Opme météo-station. 285 

 

Influence of local scavenging: washout 
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Sequential sampling enables the investigation of the variability of the chemical composition, 

and thus the evaluation of scavenging processes (rainout or washout) during rain events 290 

(Meszaros, 1981; Seymour and Stout, 1983; Durana et al., 1992; Lim et al., 1991; Pelicho et 

al., 2006; Germer et al., 2007; Celle-Jeanton et al., 2009). For this purpose, 29 rain events 

were sampled during the period Dec 2005- May 2006 using a sequential rain collector. 

Our purpose is to follow the evolution of rainfall chemistry during rain event and to determine 

the local contribution during washout. Taking into account the whole data set, Fig. 6 shows 295 

that the decrease of concentration concerns all the measured species, except H3O+. An average 

of 53% of the total mineralization is removed in the first three fractions (precipitation height = 

2.6 mm), this value varies from 28% to 76%. This indicates that the below cloud scavenging 

generally dominates the removal of atmospheric components in the region. Then a further 

gradual drop to approximately constant values is observed and represents the in-cloud 300 

processes contribution to rainwater chemistry (Gonçalves et al., 2002).  

 

In order to understand associations between chemical species during events and to determine 

the role of meteorological features, four of these 29 rainfalls have been selected according to 

their similar rainwater amount (between 7.1 and 9.7 mm) and air mass back trajectory: rainfall 305 

of 23-24/03/2006 belonging to sector 1, 11/04/2006 to sector 2, 06/05/2006 to sector 3, 

07/05/2006 to local sector. Table 4 presents statistics of rainfall amount, electrical 

conductivity, pH, direction (in degree, 0° is the North; 180° the South) and speed of wind for 

each selected event. Fig. 7, 8, 9 and 10 show the evolution of rainfall height and chemical 

content during the 4 selected rain events.  310 

 

The first fraction of the 23-24/03/06 event, coming from sector 1 (Fig. 7), is characterised by 

the dominance of the NO3
-, nssSO4

2- and NH4
+ (49%) whereas nssCa2+, nssMg2+ and HCO3

- 
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account for 29% and Na+ associated with ssCl- and sea-salt fractions of Cl-, SO4
2-, Ca2+, Mg2+, 

K+ for 22%. Last fraction of sector 1 is dominated by the terrestrial source (45%). This could 315 

be due to local anthropogenic influences. The relatively low acidity measured in all the sub-

samples could be explained by neutralisation process by terrestrial species. Marine 

contribution is almost constant; a small decrease could be quoted from the beginning of the 

rain-event (22%) to the end (19%).  

 320 

First and last fractions of the 11/04/2006 event, coming from sector 2 (Fig. 8), show a 

predominance of anthropogenic components. In between, from fractions 4 to 6, contribution 

of anthropogenic source decreases whereas marine and terrestrial source supplies are 

relatively constant. At the end of the event, an increase in NO3
-, NH4

+, nssSO4
2- and H3O+ and 

the absence of decrease of the rainfall intensity may indicate a local recharge of 325 

anthropogenic and terrestrial species. The significant value of the wind speed during the event 

(5.5 m/s) coming from the North would indicate the influence of Clermont-Ferrand urban 

district. Moreover a rapid raise of the acidity is observed at the end of the event and attests 

that neutralisation of acidity can be observed preferentially at the beginning of a precipitation 

event due to carbonate dissolution.  330 

 

The first fraction of the 06/05/2006 event, coming from sector 3 (Fig. 9), is marked by high 

NO3
-, nssSO4

2-, nssCa2+ and HCO3
- content. The first sub-sample is the result of little rainfall 

episodes occurring before the beginning of the major part of precipitation. The chemical 

content decreases from fraction 1 to 5. An interruption of the rain, between 13h15 and 13h45, 335 

allows a reloading of the below-cloud atmosphere that affects more peculiarly anthropogenic 

components. This fact can be related to a possible contribution of local sources of pollutants 

or a reloading of clouds by long range transported components; although the air-mass that 
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generates the whole event of the 06/05/2006 is coming from the South, for the period 

comprised from 13h and 14h30, the wind comes from the North. 340 

 

The 07/05/2006 event due to local weather pattern (Fig. 10) shows high concentrations in 

HCO3
- and NH4

+. From the beginning to the end of the rainfall event, concentrations of all 

components decrease, except [H3O+]. This indicates an efficiency of the below cloud 

scavenging process. Increasing acidity can be due to the removal of carbonated species below 345 

cloud as it can be seen with the decrease of non sea-salt calcium, bicarbonates and 

ammonium. Indeed, the concentration of this latter is three times lower at the end of the event 

than in the first sample. 

The slight increase of the concentrations in NO3
-, NH4

+, nssSO4
2- for the 7th and the 8th 

samples corresponds to lower rainfall intensity (e.g. coming from less diluted parts of cloud) 350 

whereas concentrations in other components remain constant. This implies a great 

contribution of anthropogenic species as long-range aerosol loading i.e. condensation nuclei.  

 

Changes in solute concentrations over time within events are likely to be a function of the 

relative fraction of fine to coarse aerosols (Germer et al., 2007). The fine aerosol fraction (< 5 355 

µm) is predominant within clouds and responsible for rainout (Lim et al., 1991), while the 

coarse fraction of aerosols, which is subject to gravitational deposition, is more important in 

washout (Seinfeld and Pandis, 1998; Saha and Moorthy, 2004). Indeed, the collection 

efficiency varies mainly with the size of the aerosol particles (Chate and Kamra, 1997; Chate 

et al., 2003). Gaseous species such as NOx, SOx and NH3 are then predominantly removed 360 

during in-cloud processes, whereas coarse mode (terrestrial species) is efficiently deposited 

during washout. Wet deposition of H3O+ increases during the event, the highest part being 

deposited in the last precipitation sample fractions. This increasing acidification may be due 
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to the high neutralisation effect at the beginning of the event. This effect can happen when 

raindrops impact and dissolve atmospheric particles containing alkaline substances, especially 365 

carbonates. 

 

Neutralising species can be also associated with NO3
-, nssSO4

2- and NH4
+, forming NH4NO3, 

(NH4)2SO4 Ca(NO3)2, CaSO4, as can be seen from the important flux of anthropogenic 

species such as non sea-salt calcium in the first sample. It would be consistent with the fact 370 

that anthropogenic species remain an important source and that acidity flux is low at the 

beginning of the event. This fact is linked to the acidity evolution during the four events. The 

major H3O+ flux occurs during the last fractions of the rainfall event. The rural environment 

of Opme consists of agriculture land and calcareous Oligocene fields and is then an important 

source of neutralising species (calcium carbonate). This local characteristic may justify the 375 

dominance of calcium in the composition of rain coming from the four air-masses patterns. 

The proximity of Clermont-Ferrand agglomeration can also induce anthropogenic feature of 

the rainwater at the beginning or during the event. These facts highlight the importance of 

local meteorological conditions (speed and direction of wind, humidity of ground) to 

understand chemical signature of a single rain event. 380 

 

4. Conclusion 

 

Based on 217 rain samples, this study primarily shows that rainfall chemistry at Opme meteo-

station is dominated by terrestrial elements with a quite neutral pH. The statistical approach 385 

through a factor analysis, revealed that neutralisation is the main process affecting the 

rainwater chemistry, in agreement with pH measurements. 
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Taking into account the main air-masses pattern at Opme, this work reveals differences in 

solute concentrations according to geographical long-range origin. Indeed, whereas sector 1 

(Atlantic) and sector 3 (Mediterranean) events are the most diluted, the concentrations 390 

increase markedly in the events coming from the sector 4 (local) and the sector 2 (Northern 

and Eastern Europe). This is probably due to the high flux of aerosols in this industrial area of 

Europe. In particular it was shown that nitrate and acidity are preferentially carried by these 

rain events. The highest concentrations of marine species (Na+, ssCl-) and in nssCa2+ are also 

measured for sector 2. Concerning the neutralisation, it was demonstrated that this process is 395 

unspecific (involving both nssCa2+ and NH4
+) for sector 1, 3 and 4, but it concerns only NH4

+ 

for sector 2. This characteristic can restrain the neutralisation process and account for the acid 

pH distribution of this last sector.  

Considering the chemical variability during four single events, it appears that the major part 

of chemical content is scavenged during the three first fractions of the rainfall. This highlights 400 

the great influence of washout on the final composition of the rainwater. It especially 

contributes to the deposition of large terrestrial aerosols, which neutralise acidity of the first 

fractions of rainwater and anthropogenic species coming from Clermont-Ferrand urban 

district. Then, at an infra-event scale, local meteorological phenomena could strongly alter the 

long-range signatures and account for leading factors of chemical variability of the meteoric 405 

water. 



 18 

 

 

3.1.1 Aknowledgments 

The authors thank the PREVOIR project financed by the Auvergne region for its material support and 

gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the 

HYSPLIT transport and dispersion model and/or READY website 

(http://www.arl.noaa.gov/ready.html) used in this publication. 

 

 



 19 

 

3 References 

 
Al-Momani, I.F., Ataman, O.Y., Anwar, M.A., Tuncel, S., Kös, C., Tuncel, G.: Chemical 

composition of precipitation near an industrial area at Izmir, Turkey. Atmospheric 

Environnent 29, 1131-1143 (1995) 

 

Avila, A., Queralt-Mitjans, I., Alarcon, M.: Mineralogical composition of African dust 

delivered by red rains over northeastern Spain. Journal of Geophysical Research 102, (D18), 

21, 977-996 (1997) 

 

Avila, A., Alarcon, M., Queralt-Mitjans, I.: The chemical composition of dust transported in 

red rains and its contribution to the biogeochemical cycle of a holm oak forest in Catalonia 

(Spain). Atmospheric Environment 32, 179-191 (1998) 

 

Avila, A., Alarcon, M.: Relationship between precipitation chemistry and meteorological 

situations at a rural site in N.E. Spain. Atmospheric Environment 33, 1663-1677 (1999) 

 

Berner, E., Berner, R.: The Global Water Cycle. Prentice Hall, New Jersey (1987) 

 

Beverland, I.J., Crowther, J.M., Srinivas, M.S.N., Heal, M.R.: The influence of meteorology 

and atmospheric transport patterns on the chemical composition of rainfall in south-east 

England. Atmospheric Environment 32, 1039-1048 (1998) 

 

Beysens, D., Ohayon, C., Muselli, M., Clus, O.: Chemical and biological characteristics of 

dew and rain water in an urban coastal area (Bordeaux, France). Atmospheric Environment 

40, 3710–3723 (2006) 

 

Bourrié, G. : Acquisition de la composition chimique des eaux en climat tempéré. Application 

aux granites des Vosges et de la Margeride. PhD Thesis, Université Louis Pasteur, Strasbourg 

(1978) 

 



 20 

Celle, H. : Caractérisation des précipitations sur le pourtour de la Méditerranée occidentale. 

Approche isotopique et chimique. PhD Thesis, Université Avignon et Pays de Vaucluse 

(2000) 

 

Celle-Jeanton, H., Gonfiantini, R., Travi, Y., Sol, B.: Oxygen-18 variations of rainwater 

during precipitation: application of the Rayleigh model to selected rainfalls in Southern 

France. Journal of Hydrology 289, 165-177 (2004) 

 

Celle-Jeanton, H., Travi, Y., Loye-Pilot, M.D., Huneau, F., Bertrand, G.: Rainwater chemistry 

at a Mediterranean inland station (Avignon, France): local contribution versus long range 

supply. Atmospheric Research 91, 118-126 (2009) 

 

Chate, D..M., Kamra, A.K.: Collection efficiencies of large water drops collecting aerosol 

particles of various densities. Atmospheric Environment 31, 1631-1635 (1997) 

 

Chate, D.M., Rao, P.S.P., Naik, M.S., Momin, G.A., Safai, P.D., Ali, K.: Scavenging of 

aerosols and their chemical species by rain. Atmospheric Environment 37, 2477-2484 (2003) 

 

Cyrys, J., Gutschmidt, K., Brauer, M., Dumyahn, T., Heinrich, J., Spengler, J.D., Wichmann, 

H.E.: Determination of acidic sulfate aerosols in urban atmospheres in Erfurt (F.R.G.) and 

Sokolov (Former C.S.S.R). Atmospheric Environment 29, 3545-3557 (1995) 

 

Diaz-Caneja, N., Bonet, A., Gutierrez, I., Martinez, A., Villar E.: The chemical composition 

of rainfall in a city of northern Spain. Water, Air, and Soil Pollution 43, 277-291 (1989) 

Durana, N., Casado, H., Ezcurra, A., Garcia, C., Lacaux, J.P., Pham Van Dinh: Experimental 

study of the scavenging process by means of a sequential precipitation collector, preliminary 

results. Atmospheric Environment 26A, 13, 2437-2443 (1992) 

Draxler, R.R., Rolph, G.D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated 

Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ 

ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD (2003) 

 



 21 

Ezcurra, A., Casado, H., Lacaux, J.P., Garcia, C.: Relationship between meteorological 

situations and acid rain in Spanish Basque country. Atmospheric Environment 22, 2779-2786 

(1988) 

 

Fowler, D., Smith, R.I., Muller, J.B.A., Hayman, G., Vincent, K.J.: Changes in the 

atmospheric deposition of acidifying compounds in the UK between 1986 and 2001. 

Environmental Pollution 137, 15-25 (2005) 

 

Finlayson-Pitts, B.J., Pitts, J.N.: Atmospheric chemistry-Fundamentals and experimental 

techniques. Wiley, New-York (1986) 

 

Germer, S., Neill, C., Krusche, A.V., Gouveia Neto, S.C., Elsenbeer, H.: Seasonal and within-

event dynamics of rainfall and throughfall chemistry in an open tropical rainforest in 

Rondonia, Brazil. Biogeochemistry 86, 155–174 (2007) 

 

Gonçalves, F.L.T, Ramos, A.M., Freitas, S., Silva Dias, M.A., Massambani, O.: In-cloud and 

below-cloud numerical simulation of scavenging processes at Serra do Mar Region, SE 

Brazil. Atmospheric Environment 36, 5245-5255 (2002) 

 

Hicks, B.B., Shannon, J.D.: A method for modelling the deposition of sulphur by precipitation 

over regional scales. Journal of Applied Meteorology 18, 1415-1420 (1979) 

 

Hov, O., Hjollo, B.A.: Transport distance of ammonia and ammonium in northern Europe. Its 

relation to emissions of SO2, and NOx. J. Geophys. Res. 99, 749-755 (1994) 

 

Huang, K., Zhuang, G., Xu, C., Wang, Y., Tang, A. : The chemistry of the severe acidic 

precipitation in Shanghai, China. Atmospheric Research 89, 149-160 (2008) 

 

INSEE : Recensement de mars 1999 de l’Institut National de la Statistique et des Etudes 

Economiques. www.recensement.insee.fr (1999). Accessed 20 June 2007 

 

Jaffrezo, J.L., Colas, N. and Bouchet, M.: Carboxylic acids measurements with ionic 

chromatography. Atmospheric Environment 32 (14-15), 2705-2708 (1998) 

 



 22 

Junge, C.E.: Air chemistry and radioactivity. Academic Press, New-York (1963) 

 

Khwaja, H.A., Husain, L.: Chemical characterization of acid precipitation in Albany, New 

York. Atmospheric Environment 24A, 1869-1882 (1990) 

 

Lim, B., Jickells, T.D., Davies, T.D.: Sequential sampling of particles, major ions and total 

trace metals in wet deposition. Atmospheric Environment 25A, 3-4, 745-762 (1991) 

 

Meszaros, E.: Atmospheric chemistry. Fundamental aspects. Studies in Environmental 

Science 11. (1981) 

 

Negrel, P., Roy, S.: Chemistry of rainwater in the Massif Central (France): a strontium isotope 

and major element study. Applied Geochemistry, 13, 8, 941-952 (1998) 

 

Pelicho, A.F., Martins, L.D., Nomi, S.N., Solci, M.C.: Integrated and sequential bulk and wet-

only samplings of atmospheric precipitation in Londrina, South Brazil (1998–2002). 

Atmospheric Environment 40, 6827–6835 (2006) 

 

Plaisance, H., Coddeville, P., Guillermo, R., Roussel, I.: Spatial variability and source 

identification of rural precipitation chemistry in France. The Science of the Total 

Environment 180, 257-270 (1996) 

 

Plaisance, H., Galloo, J.C. Guillermo, R.: Source identification and variation in the chemical 

composition of precipitation at two rural sites in France. The Science of the Total 

Environment 206, 79-93 (1997) 

 

Rahn, K.A., Brosset, C., Ottar, B., Patterson, E.M.: Black and White episodes, chemical 

evolution of Eurasian air masses and long range transport of carbon into the Arctic. In 

Particulate Carbon: Atmospheric Life Cycle, Wolff, T., Klimmish, R.L., (eds),., pp. 339-340. 

Plenum, New York (1982) 

 

Rangognio, J. : Apport des mesures chimiques infra-événementielles dans la compréhension 

des mécanismes d’acquisition de la chimie des précipitations. Master Research Report, 

Université Clermont-Ferrand (2006) 



 23 

 

Reade, L., Jennings, S.G., McSweeney, G.: Cloud condensation nuclei measurements at Mace 

Head, Ireland, over the period 1994–2002. Atmospheric Research 82, 610–621 (2006) 

 

Ricard, V., Jaffrezo, J.L., Kerminen, V.M., Hillamo, R.E., Sillanpaa, M., Ruellan, R., Liousse, 

C. and Cachier, H.: Two years of continuous aerosol measurements in northern Finland. 

Journal of Geophysical Research 107(D11) (2002). 

 

Rolph, G.D.: Real-time Environmental Applications and Display sYstem (READY) Website 

(http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver 

Spring, MD (2003) 

 

Saha, A., Moorthy, K..K.: Impact of precipitation on aerosol spectral optical depth and 

retrieved size distributions: a case study. J Appl Meteorol 43, 902–914 (2004) 

 

Sanusi, A., Wortham, H., Millet, M., Mirabel, P.: Chemical composition of rainwater in 

eastern France. Atmospheric Environment 30, 1, 59-71 (1996) 

 

Seinfeld, J.H., Pandis, S.N.: Atmospheric chemistry and physics: from air pollution to climate 

change. Wiley, New York (1998) 

 

Seymour, M.D., Stout, T.: Observations of the chemical composition of rain using a short 

sampling times during a single event. Atmospheric Environment 17, 8, 1483-1487 (1983) 

 

Simeonov, V, Kalina, M., Tsakovski, S., Puxbaum, H.: Multivariate statistical study of 

simultaneously monitored cloud water, aerosol and rainwater data from different elevation 

levels in an alpine valley (Achenkirch, Tyrol, Austria). Talanta 61, 519-528 (2003) 

 

Sisterson, D.L.: A method for evaluation of acidic sulphate and nitrate in precipitation. Water 

Air Soil Pollut. 43, 61-72 (1989) 

 

Tost, H., Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Lelieveld, J.: Global cloud and 

precipitation chemistry and wet deposition: tropospheric model simulations with 

ECHAM5/MESSy1. Atmos. Chem. Phys. 7, 2733–2757 (2007) 



 24 

 

Zunckel, M., Saizar, C., Zarauz, J.: Rainwater composition in northeast Uruguay. 

Atmospheric Environment 37, 1601–1611 (2003) 

 



Tables 

 

  
E.C 

(µS/cm) 
pH HC03

-
 Cl

-
 NO3

-
 SO4

2-
 PO4

3-
 Na

+
 NH4

+
 K

+
 Mg

2+
 Ca

2+
 

Arithmetic mean 17.5 5.4 32.2 23.0 39.2 28.8 0.7 23.9 28.5 5.5 7.8 39.9 
Arithmetic s.d. 14.3 0.7 38.1 29.5 47.4 27.2 3.9 32.7 19.5 6.7 8.2 60.0 
Minimum 2.0 3.4 0.0 0.8 0.0 0.0 0.0 0.6 0.0 0.1 0.3 2.0 
Maximum 96.0 7.1 200.0 211.4 324.9 134.8 37.4 250.5 92.5 41.2 54.0 413.3 
V-W mean 12.6 5.1 27.5 11.5 25.8 24.6 0.3 12.0 24.4 3.1 5.2 33.8 

V-W s.d 9.2 0.7 30.4 17.3 30.5 20.8 2.6 19.6 14.5 4.1 5.4 46.0 
 

Table 1: Major ionic constituents (eq·l
-1

) of the 217 sampled rains during the study period (from Nov-2005 to Nov-2007) 
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Table 2: Varimax rotated factor loadings, total variance and the determination of the main different sources 
 

 

  F1 F2 F3 

H3O+  0.111 0.041 -0.420 

HC03
- 0.326 0.044 0.913 

Cl- 0.081 0.997 0.005 

NO3
- 

0.894 0.207 -0.095 

SO4
2- 

0.874 0.257 0.125 

PO4
3- 0.338 -0.042 0.184 

Na+ 0.124 0.920 -0.088 

NH4
+ 

0.764 0.146 0.035 
K+ 0.341 0.260 0.300 

Mg2+ 0.480 0.711 0.305 

Ca2+ 
0.532 0.184 0.606 

% of total variance 41.7 35.6 22.4 
  Neut. Marine Terrestrial 



 
 
 

 Sector 1 Sector 2 Sector 3 Sector 4 

Nb of events 75 49 51 42 
Height 309 179 303 248 

  V-W-Mean V-W-Std dev V-W-Mean V-W-Std dev V-W-Mean V-W-Std dev V-W-Mean V-W-Std dev 

E.C. 10.2 8.0 19.5 12.7 9.6 6.4 14.3 7.0 
pH 5.1 0.7 4.8 0.7 5.1 0.7 5.3 0.6 

HC03
-
 24.1 28.9 28.3 31.5 26.6 37.2 32.2 21.3 

NO3
-
 16.0 15.2 52.3 53.8 16.9 13.6 29.7 22.4 

PO4
3-

 0.0 0.2 1.4 5.6 0.0 0.3 0.2 2.2 
ssCl

-
 14.7 23.6 13.8 30.1 8.6 11.7 8.0 6.6 

nssCl
-
 0.3 11.4 0.7 18.0 0.3 10.6 0.1 11.6 

ssSO4
2-

 1.7 23.3 1.9 20.5 1.1 10.8 1.0 6.2 
nssSO4

2-
 16.8 1.2 35.6 3.9 16.0 1.5 31.0 0.2 

Na
+
 14.9 2.7 15.6 3.6 9.7 1.4 8.6 0.8 

NH4
+
 20.0 18.5 33.3 24.1 17.2 14.0 31.8 18.3 

ssK
+
 0.3 0.5 0.3 0.6 0.2 0.2 0.2 0.1 

nssK
+
 2.2 3.0 4.7 6.6 2.2 2.8 3.1 2.9 

ssMg
2+

 3.0 4.5 2.8 3.2 2.0 2.4 1.9 1.5 
nssMg

2+
 2.0 2.8 4.7 5.4 2.1 3.2 3.2 2.7 

ssCa
2+

 0.7 1.0 0.7 1.3 0.4 0.5 0.4 0.3 
nssCa

2+
 23.9 44.6 53.2 66.0 28.4 40.4 36.8 27.8 

 

Table 3: Weighted mean value (eq·l
-1

) of major ionic rain components for the four meteorological sectors (ss = sea salt / nss = non sea-salt) 

 

 

 

 

 



Event 
Long-range 

provenance 
Duration Height (mm) 

Number of 

fractions 

Mean Wind 

speed (m/s) 

Mean Wind 

direction 

(degrees) 

Mean E.C. 

(µS/cm) 
Mean pH 

23-24/03/06 Sector 1 2 h 15 7.3 8 5.5 ± 0.7 167 ± 8 16.3 ± 8.0 5.9 ± 0.2 

11/04/2006 Sector 2 4 h 00 7.1 8 3.3 ± 1.1 269 ± 60 6.5 ± 2.9 5.5 ± 0.2 

06/05/2006 Sector 3 4 h 30 9.7 10 2.0 ± 1.6 134 ± 75 18.0 ± 10.0 5.2 ± 0.4 

07/05/2006 Sector 4 1 h 00 9.3 10 2.5 ± 1.6 117 ± 63 7.6 ± 2.9 5.4 ± 0.4 

 

Table 4: Mean characteristics of the four fractionated events 

 



Figures 

 
 

Fig. 1 Location and geological settings of the studied area 

 

 
 

Fig. 2 Relationship between precipitation height (mm) and E.C. (S/cm) of rainwater 

 

line figure
Click here to download line figure: GBERTRAND Figures 01_04_09.doc



 
Fig. 3 Main sectors for air masses trajectories arriving at Opme: (1) West, (2) North and 

East, (3) South including Iberian and Italian peninsulae and (4) Local 



 

Fig. 4 pH distribution for the four meteorological sectors 



 
 
Fig. 5 Non sea-salt Ca

2+
 versus [NO3

-
 + nssSO4

2-
] and NH4

+
 versus [NO3

-
 + nssSO4

2-
] for 

the four meteorological sectors 



 
Fig. 6 Mean chemical content evolution for the 29 fractionated sampled events 



 

 
Fig. 7 Evolution of the chemical content and rainfall height for the 23-24/03/2006 event 

coming from sector 1 



 
Fig. 8 Evolution of the chemical content and rainfall height for the 11/04/2006 event 

coming from sector 2 

 



 
Fig. 9 Evolution of the chemical content and rainfall height for the 06/05/2006 event 

coming from sector 3 

 

 

 



 
 

Fig. 10 Evolution of the chemical content and rainfall height for the 07/05/2006 event 

coming from sector 4 

 


	p1 springer.pdf
	Journal of Atmospheric Chemistry
	Rainfall chemistry: long range transport versus below cloud scavenging. A two-year study at an inland station (Opme, France)


