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Abstract: Landings statistics can be lower than true catches because many fish are discarded or 
landed illegally. Since many discards do not survive, treating landings as true catches can lead to 
biased stock assessments. This paper proposes treating catch as censored by bounding it below by 
the landings, L, and above by cL (for scalar c > 1). We demonstrate the approach with a simulation 
study, using a Schaefer surplus production model. Parameters were estimated in a Bayesian 
framework with BUGS software using two sets of priors. Both the traditional true-catch method and a 
survey-and-effort method (which was landings free) performed worse on average than the censored 
approach, as measured by the Bayes risk associated with estimates of maximum sustainable yield 
(MSY) and of an index of depletion (X). Recursive partitioning (regression trees) was used to 
associate simulation parameters to best-performing methods, showing that higher commercial fish 
catchability favoured the censored method at estimating X. In conclusion, censored methods provide a 
means of dealing with discarding and misreporting that can outperform some traditional alternatives. 
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Introduction 

While most fisheries stock assessments rely on reported landings, assessment methods differ 

in their treatment of these data.  Methods derived from virtual population analysis (VPA), like 

extended survivor analysis (Shepherd, 1999), a standard ICES tool, assume that catches are 

known without error. For many stocks, however, this assumption doesn’t hold, primarily 

because of discarding and misreporting. Observer studies suggest that the number of fish 

discarded is sometimes greater than the number landed for North East Atlantic megrim, 

whiting and Norway lobster (Rochet, et al., 2002). While the importance of misreported (and 

unreported) landings is more difficult to assess, anecdotal reports suggest these can be 

substantial.  Thus, some models admit random errors in landings reports by assuming various 

error distributions centred on the observed landings (e.g. Kimura, 1990; Patterson, 1998). Still 

other models, e.g. Cook (1997), have dispensed with the landings data altogether, preferring 

to base results on survey data alone.  This paper proposes a new approach: treating catch as 

censored data. 

We don’t mean the word ‘censored’ in the more familiar sense, as applied to material 

deemed inappropriate, but in the sense in which it is used in survival analysis.  In the clinical 

trials typical of this field, a patient might still be alive at the end of the study period and thus 

his actual post-treatment survival time remains unknown (though, of course, it must be greater 

than the time from treatment to study’s end). In such a case, we say the patient’s survival time 

is censored.  Thus, in calling the catch censored, we mean that we have observed bounds for 

the catch, but not the value itself.    

In a previous comparison of catch-modelling approaches using simulated data, Patterson 

(1998) found that, in terms of mean square errors, a random catch error model provided better 
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results than ADAPT (a VPA-derived model) for a range of underreporting levels and survey 

index variances. It also outperformed a survey-only method.  This paper also uses simulation 

to compare approaches, but deals with surplus production models rather than age-structured 

ones.  

The most comprehensive study to date comparing the performance of various stock 

assessment models using simulated data was published by the National Research Council 

(NRC, 1998). One of the scenarios tested was a 30% underreporting of catches for which the 

surplus production model performed comparably well, in terms of the relative error of 

estimated exploitable biomass at the end of the study period (year 30). Curiously, the relative 

error was lower when only commercial catch data was used (6 %) compared to both 

commercial and survey data (24%). TAC estimates were completely wrong (366-179%), 

however, and other assessment methods performed much better. 

Most other studies of the performance of surplus production models allowing for errors in 

commercial catches treat those errors as normal or lognormal. A notable exception is Koonce 

and Shuter, (1987) who assumed fixed underreporting of 20% but did not compare scenarios 

with and without underreporting. 

Fisheries science has tried to deal with the discarding problem by placing observers on 

fishing vessels.  By assuming that the fishermen behave no differently when they are not 

being observed, the observed discards are then extrapolated to fishing trips taken without 

observers and even to trips taken on vessels that never had any observers at all.  The discards 

are said to be ‘raised to the fleet’ by means of such extrapolation.   It is common practice to 

add the raised discards to the landings and to treat the sum as the true catch (or more recently 

as the ‘observed’ catch) for the fishery.  Moreover, discards in years without observer data are 
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estimated using discards-to-landings ratios observed in different years (e.g., Anonymous, 

2001). 

This paper does not evaluate the merits of the above procedures. Instead, it focuses on a 

situation where the stock assessment working group has in hand a statistic, L(t), which can 

safely be considered a lower bound for the true catch in year t.  We will call L(t) ‘the 

landings’ because we tend to imagine a situation where, despite considerable discarding, there 

is a total lack of observer data, but L(t) could also be interpreted in other ways.  It might be, 

for example, that there are so many anecdotal reports of illegal (black) landings that even the 

sum of observed landings and raised discards (now L(t)) is a lower bound for true catch.  

Alternatively, the working group might suspect that observer data are not representative of the 

whole fleet, so it is not prepared to raise the discards.  In that case, L(t) might simply represent 

the sum of observed discards (unraised) and landings.  Thus, there are several possible 

scenarios for the situation we consider. 

In addition to the lower bound, L(t), we also assumed that the working group would be able 

to place a reasonable upper bound on the catches, which has important repercussions for the 

usefulness of the approach.  It is convenient if this upper bound is expressed as a multiple of 

L(t).  If the working group were prepared to accept the premise that fishermen were not 

discarding more fish than they were landing, for example, then a reasonable upper bound 

would be 2 L(t).  This is the value used throughout this paper. 

Surplus production models are commonly used for stock assessments in situations where 

landings and effort data are available, but detailed age (or length) structure data are not 

(Hilborn and Walters, 1992).  For this class of models, at least, we expected that treating 

landings as equal to catches, when catches are actually underreported, should adversely affect 
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stock biomass estimates. Thus, we used simulated data to evaluate the performance of three 

assessment methods: survey-and-effort, true-catch and censored catch.  The survey-and-effort 

method tried to estimate catches with fishing effort data (assumed to be known without error), 

but relied primarily on surveys to estimate abundance.  The true-catch method supplemented 

the survey index by treating recorded landings as true catch, and the last method also used the 

survey index but treated catch as censored data.  All estimation methods were implemented 

using Bayesian techniques. 

Bayesian analysis has become frequent in fisheries stock assessment (Hilborn and 

Liermann, 1998; McAllister and Ianelli, 1997; Meyer and Millar, 1999b; Punt and Hilborn, 

1997; Walters and Ludwig, 1994) because of its clear, probabilistic portrayal of uncertainty 

and its natural extension to decision analysis (Punt and Hilborn, 1997). Bayesian probability, 

however, may be subjective in nature, and usually does not have the common interpretation 

that involves the frequency of an event.  Various methods for obtaining posterior parameter 

distributions exist, one of which is Markov Chain Monte Carlo (MCMC). MCMC can be 

implemented with relatively little programming effort using freely available software called 

BUGS (www.mrc-bsu.cam.ac.uk/bugs/).   (Meyer and Millar, 1999b) provide an application 

of BUGS to a surplus production model, and we used both their model and code as a template.  

The BUGS environment allowed us to change a standard Schaefer model into a censored data 

version by modifying only a few lines of code.   

While BUGS facilitates the implementation of censored data models, and the Bayesian 

approach may aid in interpreting their results, there is nothing inherently Bayesian about 

censored data.  In fact, many models in survival analysis do not follow this paradigm.  Nor are 

the possible applications of this idea in fisheries restricted to surplus production models.  A 

key point of this paper is that any statistical assessment model can be modified to treat catch 
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as censored data.  Whether a given model should be so modified, however, should depend on 

the degree to which landings underestimate the true impact of fishing.   

Methods 

Censored Data 

For a given random variable Y, with density f and distribution function F, a standard data 

set might consist of two realizations, y1 = 3 and y2 = 5, of Y.  A set of censored data, on the 

other hand, might have observations of the form y1 > 3 and y2 < 5.  Whereas the likelihood (l) 

for the standard data set would be computed using the density function (l = f(3)f(5)), in this 

simple example the censored likelihood would be computed from the distribution function (l 

= (1-F(3))F(5)).  Maximum likelihood (or Bayesian) estimation of the parameters of f (and of 

F) could proceed much as before, though the likelihood function would be less informative.  

Of course, if there were other random variables correlated with Y, then the situation becomes 

more complicated, as the censored data for Y would be informative about them.  In the 

frequentist context, special algorithms are used to handle censored data problems.  Even the 

most common of these, the Estimation Maximization (EM) algorithm (Tanner, 1996; 

McLachlan and Krishnan, 1997), is very rarely applied in fisheries.  In the Bayesian context, 

however, the same algorithms that are typically used in fisheries stock assessment, namely 

MCMC (Meyer and Milar, 1999a) or SIR (McAllister and Ianelli, 1997), can readily be 

modified to handle censored data, as demonstrated here for MCMC.  This paper uses censored 

observations of the form L(t) < C(t) < 2 L(t), where C(t) is catch in year t and L(t) represents 

reported landings (but see above).   
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Experimental Design 

The simulation experiment in this paper was designed to compare the performance of three 

different stock assessment approaches, all based on a discrete variant of the Schaefer surplus 

production model (Meyer & Millar, 1999): 

(1)  
K

tCtrBrtBtB )()(')1()(')1(' 2 −−+=+ . 

In Equation (1),  is biomass (B(t)) divided by carrying capacity (K) in year t, )'(tB r is the 

intrinsic population growth rate, and C(t) is the catch. The three approaches differed in their 

treatment of catch.  All simulated stocks followed Schaefer model population dynamics, a 

simplification that we justify by our focus on catch rather than on the effects of model process 

error.  We did, however, add a degree of hyper-depletion or hyper-compensation (c.f. Hilborn 

and Walters, 1992) to the simulated data, so that catch-per-unit-effort would not be 

proportional to biomass.  As a result, no assessment model matched the simulation model 

perfectly.  The data available to the stock assessment models were annual landings, fishing 

effort, and scientific survey catch rates.  All simulated data sets contained ten years worth of 

data. 

We took a decision theoretic approach to the comparison of estimation approaches, grading 

performance in terms of a number called the Bayes risk (e.g. Casella and Berger, 1990).  In 

fact, the paper’s main objective is to determine which approach has the lowest such risk.  But 

this simple comparison is complicated by the fact that the Bayes risk can be computed for any 

model parameter.  Moreover, the computation can be made with a variety of estimation loss 

functions.  To constrain the computations, therefore, we chose just two parameters that we 

considered particularly important to stock assessment:  maximum sustainable yield (MSY = 
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rK /4) and depletion (X), the latter defined as the final-year biomass divided by the biomass 

that yields MSY (namely K/2, which implies that X = 2B′(10), year 10 being the final year).  

We also chose two loss functions: squared-error loss (λSE) and absolute-error loss (λAE).  

These decisions gave us four Bayes risk measures to consider for each estimation method.  

Loss functions are designed to score estimation performance by comparing an estimation 

result (δp(x), for a particular parameter p given data vector x) with the ‘true’ value of that 

parameter (which, for the sake of generality, we take to be a scalar valued function of the 

‘true’ parameter vector ξ- denoted p(ξ)).  In other words, loss is just a function of ξ and x that 

estimators should try to minimize.  As we consider Bayesian estimation, we take δp(x) to be 

the marginal posterior density for p given the data x- denoted here by πp(ρ| x) (for dummy 

variable ρ).  In this notation, our two estimation loss functions are defined as follows: 

(2)   ∫ −= ρρπρξξλ dp p
p
SE )|())((),( 2 xx

(3)   ∫ −= ρρπρξξλ dp p
p
AE )|())((),( xx  

Squared-error loss bears a strong resemblance to the classical mean squared error, while 

absolute-error loss is not unlike the absolute value of the estimation bias. 

The loss functions are difficult to evaluate analytically, but they are very well 

approximated by the results of MCMC.  To approximate these equations using n sample 

values p1, p2,…,pn  from the posterior distribution πp(ρ| x) given by MCMC, we used the 

following: 
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(4)  ∑
=

−≈
n

i
in

p
SE pp

1

21 ))((),( ξξλ x  or 

(5)  ∑
=

−≈
n

i
in

p
AE pp

1

1 ))((),( ξξλ x  

Now the basic idea of the Bayes risk is to obtain an average value of the estimation loss by 

integrating over Ξ (the parameter space of possible values for ξ) and over Χ  (the sample 

space for random vectors x).  For squared error loss, the formula for the Bayes risk ? (after 

Casella and Berger, 1990) is as follows: 

(6)  , ∫ ∫
Ξ

=
X

xxx   )()|(),( ξξπξξλ ddfB p
SE

p
SE

where f(x|ξ) is the likelihood function and π(ξ) is the prior.  Naturally, , the Bayes risk for 

parameter p under absolute-error loss, would be defined analogously. Notice that the Bayes 

risk places the highest weight on the most a-priori probable values of ξ and x.   

p
AEB

In practice, Equation 6 presents us with a very daunting integration problem. We certainly 

do not recommend that analytic solutions be attempted.  Instead, we propose to approximate 

by Monte Carlo integration, just as in equations (4) and (5).  If we first notice that the term 

f(x| ξ) π(ξ) in equation (6) is just the joint distribution of x and ξ, then it will come as no 

surprise that, given m vectors (x1, ξ1), (x2, ξ2), … , (xm, ξm) drawn randomly from that joint 

distribution, the Bayes risk can be approximated as follows: 

(7)  ∑
=

≈
m

i
i

p
SEm

p
SEB

1

1 ),( ξλ ix  
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Within equation (7), the  term can also be approximated by equation (4).  And, of course, 

an analogous formula would apply to .  

p
SEλ

p
AEB

Our approximation to the Bayes risk affected the design of our simulation experiment, and 

as a result it differs considerably from the usual frequentist approach.  A frequentist 

simulation study would normally select a set of Schaefer model parameters and simulate 

many data sets with them.  Such a study would consider several scenarios with different 

model parameters.   In this study, on the other hand, the two scenarios were defined by 

different prior distributions.  For each simulation within a scenario, we first drew a set of 

model parameters (ξ) from the priors and then constructed a data set (x) consisting of survey, 

landings or effort data by drawing randomly from f(x|ξ).  In other words, both parameters and 

data varied over the simulations.  This simulation scheme provides the joint vectors (x1, ξ1), 

(x2, ξ2), … , (xm, ξm) in just the form needed to approximate the Bayes risk by equation (7).  

We did m = 40 simulations for each scenario. 

It is natural to wonder at this point whether the 40 simulations we did is ‘enough’.  To 

address this issue, let us first consider what ‘enough’ should mean in this context.  We 

contend that we do not need to evaluate the Bayes risk to any particular degree of precision 

that might be chosen a-priori.  Instead, we need only determine, with a high degree of 

probability, which assessment method had the lowest risk.  This implies that the number of 

simulations (m) required is closely linked to the actual performance difference between 

methods: the more they differ in performance, the fewer the simulations required.  So, to 

determine whether the observed difference between the top two performing methods was 

‘significant’, we ran a paired, Wilcoxon rank sum test (two-sided, level α= .0001) comparing 

the 40 calculations of (with apologies to the Reverend Bayes).  We repeated the test X
AEλ
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with . If all these tests are significant at that low level, then 40 is enough. MSY
AE

X
SE

MSY
SE λλλ  and , ,

The Bayes risk is effective at evaluating the overall performance of the various methods, 

but hides the effects of different parameter values.  Therefore, we used regression trees to 

investigate the link between simulation model parameters and which method was optimal for 

them.  Regression trees are an exploratory tool suitable for modelling categorical response 

variables (here which model performed best in terms of ) using categorical or continuous 

explanatory variables (Chambers and Hastie, 1992). Individuals (here simulated data sets) are 

recursively split into two groups using the explanatory variables (here model parameters plus 

average ratio of catch to landings). At each node the split leading to the greatest difference in 

the response variable is selected, and these splits are represented as branches of a tree. The 

leaf nodes of this tree are clusters of similar individuals. By looking at the values of the 

variables characterising each branch, a description of the final cluster is obtained. It is 

possible to set a minimum group size for clusters (we used 8) in order to avoid clusters with 

only few individuals.   

p
SEλ

Simulation 

We started each simulation by generating a new ten-year time series of fishing effort, E(t).  

These time series were constructed by simulating three numbers from a Uniform distribution 

on the interval from 0.2 to 1.2.  These three numbers represented the effort in years one, six 

and ten.  The other effort values were obtained by linear interpolation.  In other words, the 

effort time series was not affected by any trends in the size of the fished population.  We 

justify this simplification by the fact that, in reality, the effect of biomass trends on effort can 

be quite weak, given the many other factors at play (fuel prices, other stocks, other jobs, 

government subsidies, etc.).   
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The next step was to draw a set of Schaefer assessment model parameters from the prior 

distributions.  We used two scenarios representing different levels of prior information about 

the stock.  These two scenarios are described in Table 1, which also gives a description of 

each model parameter.  The principal difference between the scenarios is that, in the second, 

both the survey data and the priors were considerably less informative.  These priors were 

chosen so as to simulate population trajectories that we considered realistic. 

Table 1. The prior distributions used in both evaluation scenarios. In these priors, the Gamma distribution family 
is parameterised so as to have mean equal to the first parameter divided by the second. The Lognormal 
distribution is parameterised by the mean and variance of the associated Normal distribution, and the Beta(α,β) 
distribution is parameterised to have mean equal to α/(α+β).   

Parameter Description Scenario 1 Scenario 2 BUGS Alias 

r  Intrinsic growth rate logN(-1.4,0.25),  

mean=0.28, CV=0.53 

logN(-2.8, 1/3),  

mean=0.07, CV=0.63 

r 

K Carrying capacity logN(log(700), 0.25) , 

mean= 793, CV=0.53 

logN(log(1000), 0.25), 

mean=1133, CV=0.53 

K 

σ -2 Process error 
precision 

Gamma(100, 0.05), 

mean=2000, CV=0.10 

Gamma(120, 0.05),  

mean=2400, CV=.09 

isigma2 

θ -2 Catch model 
precision 

Gamma(70, 1), 

mean=70, CV= 0.12   

Gamma(50, 1) 

mean=50, CV=0.14 

itheta2 

τ -2 Survey precision Gamma(44, 2), 

mean=22, CV= 0.15 

Gamma(25, 2), 

mean=12.5, CV=0.2  

itau2 

qc Fleet catchability Beta(5.5,44.5), 

mean=0.11, CV=0.40  

Beta(5,44) 

mean=0.10, CV=0.42 

qcomm 

qs  Survey catchability Beta(4,8), 

mean=1/3, CV=0.39 

Beta(2,4),  

mean=1/3, CV=0.53 

q 

 

The simulations created fish stocks that were already depleted below the carrying capacity, 

K, in year one.   This was done by drawing the initial proportion of K, denoted P0, from a beta 
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distribution: 

(8)    . )6,20(~0 BetaP

We assumed the biomass in the first year was normally distributed, with process error 

variance σ2: 

(9)   B′(1) ~ N(P0, σ2), 

As mentioned above, the simulation model added a bit of hyper-depletion or hyper-

compensation to the relationship between catch rates and biomass.  This was achieved using a 

uniformly distributed random variable called δ,  

(10)  δ ~ U(0.7, 1.3) 

This done, we created the catch and biomass time series: 

(11) ( )( )2,)(')(loglogN~)( θδ KtBtEqtC c  

(12)  ⎟
⎠
⎞

⎜
⎝
⎛ −−++ 22 ,)()(')(')1(N~)1(' σ

K
tCtrBtBrtB  

The lognormal distribution is parameterised in this paper by the mean and variance of the 

associated normal distribution.  In equation (6), we used the same process error variance from 

equation (3). 

We generated a mean landings rate (pL) for our simulated fishery: 

(13) pL ~ U(0.5,0.9) 

The actual landings rate in year t, namely pL(t), was taken to be uniformly distributed in the 
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interval [ pL,-0.1, pL + 0.1]  Then the landings were obtained as follows: 

(14) L(t) = pL(t) C(t)  

Equations (13) and (14) imply that the simulated catches in a given year could be up to 2.5 

times greater than the landings. 

The survey catch rates, denoted in year t, were generated next.  We assumed a 

lognormal distribution for the survey index:  

)(tI

 (15) ( )( )2,)(loglogN~)( τtBKqtI s ′ , 

where is the constant survey catchability.   sq

Estimation 

The three estimation models, survey-and-effort, true-catch and censored catch, closely 

resemble the simulation model in that they share all its equations except (10), (11), (13) and 

(14).  Equation (10), above, defines parameter δ, which was used to create a non-linear 

relationship between commercial catch rates and biomass in the simulated datasets.  This 

parameter was not used at all in estimation.  For the true-catch method, which we consider 

traditional because it is like the one in Meyer and Millar, (1999a), catches were assumed 

equal to landings, C(t) = L(t), so there was no need for equations (11), (13) and (14).   For the 

survey-and-effort and censored catch methods, catches were predicted from the product 

qcE(t)B(t), where  is the catchability coefficient for commercial fishing and  is the 

corresponding effort in year t. This is equivalent to assuming that catch rates are proportional 

to biomass.  Thus equations (13) and (14) were eliminated and (11) was replaced with the 

following (wherein the δ has simply been deleted): 

cq )(tE
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(16) ( )( )2,)(')(loglogN~)( θKtBtEqtC c . 

In the censored method, Equation (16) was interpreted in the light of the censored catch data, 

which took the form L(t) < C(t) < 2L(t), for every year t.  The survey-and-effort model made 

no use of the landings data.   

The likelihood function for the data involves a factor for the survey index: 

(17) , ),))(log( ),(dlogN( 2
10

1
s τ∏

=

′
t

KtBqtI

and another for the biomass 

(18) ∏
=

−−++′
10

2

222
0 ),)()(')(')1(),1('(dN),),1(dN(

t K
tCtrBtBrtBPB σσ , 

where dlogN( a, b, c) denotes the logN(b, c) density function evaluated at a, and dN(a, b, c) 

denotes the N(b, c) density function evaluated at a.  In the survey-and-effort and censored 

methods, the likelihood also includes a factor for the catch: 

(19) ,  )),)()(log(q ,dlogN(C(t) 2
10

1
c θ∏

=

′
t

KtBtE

but not in the true-catch method, where C(t) = L(t), 

  Fortunately, within the BUGS programming environment, the full joint likelihood need 

not be specified, as the program can deduce it from the conditional distributions and from the 

conditional independence relationships implied by their specification.  Appendix 1 provides 

the BUGS code that we used to implement the true-catch method.  This appendix also 

indicates the modifications required to adapt this code to the survey-and-effort and censored-
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catch models.  

For each simulation we ran two MCMC chains for one million iterations, sampling every 

40th iteration, after a burn-in of 500 000 iterations. These two chains were started from 

different, over-dispersed starting locations, as specified in Appendix 1.  Running two chains 

allowed us to compute the relative difference between the marginal posterior quantiles for 

each parameter.  This provides an intuitive measure of MCMC-induced error, more reliable at 

examining many chains than statistical convergence tests.   All results in this paper were 

based on the combined samples in both chains. 

Results 

In order to assess the MCMC-induced error, we took our two MCMC chains and computed 

the difference between estimates of the first, second and third quartiles of every parameter, 

and divided that difference by the mean parameter value (this last an average over both 

chains).  The maximum absolute value of this relative difference, over all parameters and over 

the three quartiles, provides an index of the relative difference between the chains.  We 

looked at the average of that index over all 40 simulations.  For the censored method (in 

scenario 1) the average was 0.89%; for the survey-and-effort method it was 1.87% and for the 

true catch it was 1.09%.  The worst case for this relative difference index (over the 

simulations) was 2.37% for censored, 4.72% for survey-and-effort and 2.93% for true catch.  

This analysis revealed that late-year catches mixed most slowly in the MCMC chains. The 

MCMC-induced error was small compared to the relative difference between results across 

estimation methods (using the same MCMC start values- where possible), which averaged 

over 50% (over the parameters and quantiles in scenario 1).  Thus, MCMC performance was 

deemed acceptable for the purpose of comparing methods on simulated data. 
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The Bayes risk for depletion (X) under squared-error loss ( ) was smallest for the 

censored catch method in scenario 1, at 0.077.  For the survey-and-effort method this statistic 

was 0.098 and for the true catch method it was 0.108.  For the results were 2279 for the 

censored method, 3098 for the survey-and-effort and 2728 for the true catch in the same 

scenario.  With absolute-error loss in scenario 1, the results were 0.162 for the censored, 

0.178 for the survey-and-effort, and 0.214 for the true catch methods for .  For the 

results were 20.25 for the censored method, 25.75 for the survey-and-effort and 23.35 for the 

true catch.    

X
SEB

MSY
SEB

X
AEB MSY

AEB

Figure 1 gives a graphical representation of these estimation results.  The first row of this 

figure provides marginal posterior results from estimating the depletion index X, while the 

second row gives results for MSY.  These marginal distributions have been shifted left by the 

true parameter value (i.e. the one generated in simulation), so the results should be clustered 

around zero, if all is going well. All methods are a bit over-optimistic about the stock, but the 

true catch method is particularly so. 

Results were much the same in scenario 2:  was 0.109 for censored, 0.140 for survey-

and-effort and 0.201 for true catch.  was 1675 for the censored, 3441 for the survey-and-

effort, and 2401 for the true catch.  In terms of absolute-error loss, the  results were 0.226 

for censored, 0.245 for survey-and-effort and 0.335 for true catch.  For , the censored 

model had 26.1, the survey-and-effort had 35.7 and the true catch had 27.0.  The overall 

decline in performance in this scenario reflects the less informative survey data.  As before, 

Figure 2 gives a graphical representation of the estimation results.  There is a more 

pronounced trend in this scenario towards overly optimistic estimates of MSY, especially in 

X
SEB

MSY
SEB

X
AEB

MSY
AEB
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the true catch method. 

Figure 1. These are box and whisker plots showing the marginal posterior for the depletion index X (top) and for 
MSY (bottom) in each simulation of scenario 1. Estimates are centred on the ‘true’ (i.e. the simulated) values. (a) 
censored model, (b) survey-and-effort model, (c) true-catch model. Each box shows the first, second and third 
quartiles, while the whiskers delimit 95% confidence intervals. 
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Figure 2. These are box and whisker plots showing the marginal posterior for the depletion index X (top) and for 
MSY (bottom) in each simulation of scenario 2. Estimates are centred on the ‘true’ (i.e. the simulated) values.  
(a) censored model, (b) survey-and-effort model, (c) true-catch model. Each box shows the first, second and 
third quartiles, while the whiskers delimit 95% confidence intervals. 
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All the Wilcoxon rank sum tests comparing values of  were 

significant at level α= .000001, showing that the m= 40 simulations used in each scenario 

were sufficient to discern that the censored method’s superior performance is unlikely to have 

occurred by chance. 
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19 



Thus, the overall performance of the censored approach was superior, but it was decidedly 

not optimal in several situations.  With recursive partitioning we attempted to characterize the 

situations in which each method performed best.  For this purpose, squared-error loss was 

chosen as the optimality criterion.  For each simulation (40 for each scenario) the dependent 

variable was coded by the method with the minimum  (censored, survey-and-effort or true 

catch). The resulting trees are shown in Figures 3 through 6, for MSY and X in scenarios 1 and 

2.  The dominating method with the smallest is marked at the end of each branch. For 

example, branch 1 in Figure 3 consists of 20 simulations for which the censored method 

generally performed best. Some misclassification can happen, hence the percentage of 

simulations classified correctly is also given in the figures.   Looking at these Figures for 

patterns that are consistent between scenarios, we find that higher fish catchability (qc) values  

and lower precision for the survey index (τ -2 in scenario 1) favoured the censored method at 

estimating the depletion index X compared to the other two methods. Higher ratios of catch to 

landings (ratio), i.e. less discarding, favoured it at estimating MSY in scenario 2, but not in 

scenario 1.  Note that the survey-and-effort method was relatively effective at estimating 

depletion, but poor at estimating MSY.  

p
SEλ

MSY
SEλ
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Figure 3. Regression tree for scenario 1 linking simulation parameters to the best performing method, as 
measured by the mean squared error in MSY . Each branch of the tree gives a particular parameter and a 
branching rule for that parameter.  The branching rule is specified by <> or by ><, which indicates which way to 
branch.  So, for ‘r >< 0.235’ you branch left when r > 0.235 and right when it isn’t.   The leaves of the tree are 
numbered, and they indicate the predicted best performing method using the following code: cen =censored 
catch, tc=true catch, s&e=survey-and-effort.  See Table 1 for a mapping of parameter aliases to the symbols used 
in the Methods section. 

 

Figure 4. Regression tree for scenario 1 linking simulation parameters to the best performing method, as 
measured by squared-error loss estimating depletion ( ). Each branch of the tree gives a particular parameter 
and a branching rule for that parameter.  The branching rule is specified by <> or by ><, which indicates which 
way to branch.  So, for ‘ratio <> 1.79’ you branch left when ratio < 1.79 and right when it isn’t.   The leaves of 
the tree are numbered, and they indicate the predicted best performing method using the following code: cen 
=censored catch, tc=true catch, s&e=survey and effort.  Parameter ‘ratio’ is the average ratio of catch to 
landings. 
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Figure 5. Regression tree for scenario 2 linking simulation parameters to the best performing method, as 
measured by , the squared-error loss for MSY.  Each branch of the tree gives a particular parameter and a 
branching rule for that parameter.  The leaves of the tree indicate the predicted best performing method using the 
following code: cen =censored catch, tc=true catch, s&e=survey and effort.  Parameter ‘ratio’ is the average ratio 
of catch to landings. 
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Figure 6. Regression tree for scenario 2 linking simulation parameters to the best performing method, as 
measured by the squared-error loss for parameter X in scenario 2. The leaves of the tree indicate the 
predicted best performing method using the following code: cen =censored catch, tc=true catch, s&e=survey and 
effort.  See Table 1 for a documentation of the parameters in this figure.   
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Discussion 

This paper introduces the idea of treating catch as censored data in stock assessment models.  

Though censored data have been used for decades in survival analysis, the concept seems to 

be new to fisheries.  In this paper it was shown that censored data models can lead to 

improved performance (on average) relative to the traditional true-catch and survey-and-effort 

methods on simulated data sets, both at estimating depletion and at estimating MSY.  This was 

true regardless of whether performance was measured by squared-error or absolute-error loss, 

and it did not appear to be sensitive to the prior distributions.  The censored method was not, 

however, always the best performer. 

Although we explored which parameter values were associated with good performance of 

the censored method, few patterns emerged that were consistent across scenarios.  The only 

such pattern that we uncovered suggested that the censored method was favoured by high 

catchability values when estimating depletion.  We had expected that the relative performance 

of the censored and true catch methods would depend of the average ratio of catch to 

landings, with higher ratios favouring the censored approach.  This turned out to be the case 

in estimating MSY in scenario 2, but not in scenario 1.  Without clear indications of 

parameter values that give the censored method special difficulty, we decided that its superior 

average performance might be expected in general. 

Fisheries science has increasingly relied on scientific surveys in stock assessment because 

of the difficulties with commercial fishery data.  Some recommend dispensing with landings 

data altogether in certain situations (e.g. Cook, 1997), preferring landings-free methods.  We 

showed here that our landings-free method, the survey-and-effort one, was relatively effective 

at estimating depletion, but not at estimating MSY.  Nonetheless, our results suggest that 
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landings-free methods throw away too much information as the survey-and-effort method was 

beaten by the censored approach even at estimating depletion. 

The censored catch idea can only prove useful, however, if real situations arise where 

catches are surely greater than landings. When catches are greater than landings, it is most 

often because fishermen discard many of the fish they catch at sea.  Fish that are thrown back 

in the ocean after being hauled on board ship by commercial fishing gear are usually injured, 

if not dead. In many fisheries worldwide, it is not unusual for more fish to be discarded than 

landed (e.g. Alverson, et al. 1994, Stratoudakis, et al. 1999, Rochet et al., 2002).  Though 

fishermen may regret the waste involved, market forces and fisheries regulations interact to 

compel them.  Indeed, the use of landings quotas in mixed fisheries creates an incentive to 

discard fish because it is difficult to avoid catching a mixture of species (Pascoe, 1997).  A 

vessel that has quota for cod and other stocks, for example, will not usually stop fishing when 

she fills her cod quota, but will keep going until she fills all quotas, discarding as many cod as 

necessary in the process.  To ignore discarding in stock assessment, therefore, is usually to 

underestimate the true impact of fishing. 

Fishing gears also kill many fish that they fail to capture.  Though fisheries science has a 

long tradition of using trawl mesh-size regulations to allow unwanted small fish to slip 

through nets, video footage of gear performance suggests that many of the fish escaping 

capture in this way are still injured or killed, e.g. (Suuronen, et al., 1996).  Many gear types 

also lose fish in the process of hauling them on board, drift nets being a prominent example.  

Ghost fishing, by which we mean lost fishing gear that continues to kill fish (Kaiser, et al., 

1996), provides yet another mechanism by which landings may underestimate fishing impact. 

In stock assessment it can be foolish to neglect the effects of lies and omissions.  Many 
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fishermen feel compelled to land fish illegally, to misreport their catch, to mislabel it, or to 

misrepresent its origins.  Poaching is a huge problem in fisheries around the world.  For the 

most part, these ‘human failings’ lead to landings statistics that underestimate fishing impact, 

and reinforce the need for censored data models.  But there are a few notable exceptions. 

Despite compelling reasons for thinking that landings underestimate fishing impact, there 

are mechanisms that can lead to the very opposite.  The herring fishery on the west coast of 

Scotland (area VIa) provides an interesting example.  According to the stock assessment 

working group reports for this area, fishermen have been reporting fish that they caught in the 

North Sea (area IVa) in area VIa (to some degree also in areas IIIa and IIa), in order to take 

advantage of the less restrictive quota in VIa (ICES, 2002).  This might mean that landings in 

VIa are greater than catches. 

Such examples being exceptional, a lower bound for the catch could likely be found in 

most fisheries; however, the censored method also calls for an upper bound.  This is a weak 

point because it is hard to imagine how such a bound could be directly observed; it would 

have to be set somewhat arbitrarily.  Nonetheless, we feel that a stock-assessment working 

group should be able to set a level beyond which the catch would be incredible.  We showed 

in this paper that, even if this upper bound is set too low (at 2 times landings rather than the 

2.5 possible in simulated data), censored model performance can still be better than that of 

traditional approaches.  Future use of censored data models may well depend on how this 

arbitrary aspect is viewed by working groups. 
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Appendix 1 

In this section, we provide the BUGS code used to estimate parameters of the true-catch 

model specified in the methods section (for scenario 1).  To map this code onto the equations 

of that section, it is important to know that ‘isigma2’ corresponds to 1/σ2, ‘itau2’ to 1/τ2, ‘P[t]’ to 

‘B′(t)’,  ‘itheta2’ to 1/θ2, ‘q’ to qs and ‘qcomm’ to qc.  Note that lines stating with ‘#’ are 

comments.  BUGS also uses an unconventional parameterisation for its normal and lognormal 

distributions: the second parameter is the reciprocal of the variance, also known as the 

precision of the distribution.   

The ‘I’ symbols following distribution declarations are used to signal the presence of 

censored data in BUGS.  For example, ‘Y~dnorm(0,1)I(2,)’ would signify that Y has a 

standard normal distribution, and that there has been a censored observation ‘Y>2’.  Just by 

way of clarification, it would not mean that Y has a truncated normal distribution, which is 

subtly different.  Changing that suffix to read ‘I(,3)’ would imply an observation of ‘Y<3’, 

while ‘I(2, 3)’ would mean an observation of ‘2<Y<3’. These I symbols are the key to 

implementing censored data models in BUGS.   
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model; 
{ 

   #priors 
   r~dlnorm(-1.4,4) 
   isigma2 ~ dgamma(100,.05) 
   K ~ dlnorm(6.551,4) 
 
    # _ A _ 
   # itheta2 ~ dgamma(70,1) 
   # _ A’ _ 
 
   itau2 ~ dgamma( 44,2) 
   qcomm~dbeta(5.5,44.5) 
   q~dbeta(4,8) 
   Pinit ~dbeta(20,6) 
    
   #Dynamics 
   Pmed[1] <-Pinit 
    
   for( t in 1 : N ) { 
      P[t] ~ dnorm(Pmed[t],isigma2)I(0.001,) 
 
      # _ B _ 
      C[t] <-Landings[t] 
       # _ B’ _ 
 
       Pmed[t + 1] <- (r + 1) * P[t] - (r * P[t]) * P[t] - C[t] / K 
       
      Imed[t] <- log((K * P[t]) * q)  
      I[t] ~ dlnorm(Imed[t],itau2) 
   } 
    
  Pcur ~dnorm(Pmed[N+1],isigma2)I(0.001,) 
 
  X<-Pcur/.5 
  MSY<- r * K /4 

} 
 

BUGS needs data and inputs to start an MCMC chain.  A typical data file would look as 

follows: 

list(N=10, Landings=c(5.94,6.36,7.65,7.47,8.86,11.95,8.17,5.52,6.35,3.96),  
I=c(51.17,61.25,55.67,60.07,58.31,70.99,53.8,47.54,39.73,49.09)) 
 
The values for ‘Landings’ were taken from a simulated data set, as were the values in the ‘I’ 

vector, which represents the survey index values.  N is the number of years of data. 

 

A typical input file might look as follows: 

list(q=0.332, qcomm=0.13, itau2=25.2, isigma2=2508, Pcur=0.5, Pinit=0.537, K=193, r=0.265, 

P=c(0.54,0.55,0.55,0.54,0.53,0.53,0.48,0.47,0.45,0.5)) 

An input file can be created by multiplying the true parameters by either 0.7 or 1.3.  In this 

paper, we made two input files for every set of simulation data by using one of these two 

multipliers on every parameter, while making sure to constrain the parameter values in the 
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feasible range. 

The true-catch model can be changed into the censored-catch model in four steps: 

1. Remove the comment symbol ‘#’ before ‘itheta2’ between points ‘_ A _’ and ‘_A’_’ 

2. Replace the code between ‘_ B _’ and ‘_B’_’ with the following: 
Cmed[t] <- log((E[t] * qcomm) * P[t] * K) 
L2[t]<= 2* Landings[t] 
C[t] ~ dlnorm(Cmed[t],itheta2)I(Landings[t],L2[t]) 

3. Add the effort data (from the same data set) to the data file: 
list(N=10, E=c(0.42,0.49,0.55,0.62,0.68,0.75,0.66,0.57,0.48,0.39),  
Landings=c(5.94,6.36,7.65,7.47,8.86,11.95,8.17,5.52,6.35,3.96),  
I=c(51.17,61.25,55.67,60.07,58.31,70.99,53.8,47.54,39.73,49.09)) 

4. Add initial values for catch vector C for the input file: 
list(q=0.332, qcomm=0.13, itau2=25.2, isigma2=2717,  
theta2=71, Pcur=0.5, Pinit=0.54, K=193.4, r=0.265, P=c(0.54,0.55,0.55,0.54,0.53,0.53,0.48,0.47,0.45,0.5),  
C=c(7.9,8.4,9.7,9.5,10.9,13.9,10.2,7.5,8.3,6)) 

 

The true-catch model can also be changed into the survey-and-effort model in four steps: 

1. Remove the comment symbol ‘#’ before ‘itheta2’ between points ‘_ A _’ and ‘_A’_’ 

2. Replace the code between ‘_ B _’ and ‘_B’_’ with the following: 
Cmed[t] <- log((E[t] * qcomm) * P[t] * K) 
C[t] ~ dlnorm(Cmed[t],itheta2) 
 

3. Add the effort data (from the same data set) to the data file and remove the landings: 
list(N=10, E=c(0.42,0.49,0.55,0.62,0.68,0.75,0.66,0.57,0.48,0.39),  
I=c(51.17,61.25,55.67,60.07,58.31,70.99,53.8,47.54,39.73,49.09)) 

5. Add initial values for catch vector C for the input file 
list(q=0.332, qcomm=0.13, itau2=25.2, isigma2=2717,  
theta2=71, Pcur=0.5, Pinit=0.54, K=193.4, r=0.265, P=c(0.54,0.55,0.55,0.54,0.53,0.53,0.48,0.47,0.45,0.5),  
C=c(7.9,8.4,9.7,9.5,10.9,13.9,10.2,7.5,8.3,6)) 
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