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Abstract: 

Bonamiosis due to the intrahaemocytic protistan parasite Bonamia ostreae is a European endemic 
disease affecting the flat oyster Ostrea edulis. The parasite has been described in various ecosystems 
from estuaries to open sea, but no clear correlation has yet been demonstrated between disease 
development and environmental parameters. In this study, the effect of temperature and salinity on the 
survival of purified parasites maintained in vitro in seawater was investigated by flow cytometry. 
Purified parasites were incubated in various seawater media (artificial seawater, natural seawater, 
seabed borewater)  at various temperatures (4, 15 and 25°C) and subjected to a range of salinities 
from 5 to 45 g l–1. Parasites were collected after 12, 24 and 48 h of incubation for flow cytometry 
analyses including estimation of parasite mortality and parasite viability through detection of non-
specific esterase activities. Artificial seawater appeared unsuitable for parasite survival, and results for 
all media showed a significantly lower survival at 25°C compared to 4°C and 15°C. Moreover, high 
salinities (≥35 g l–1) favoured parasite survival and detection of esterase activities. Flow cytometry 
appears to be a suitable technique to investigate survival and activities of unicellular parasites like B. 
ostreae under varied conditions. Although these results contribute to a better understanding of existing 
interactions between the parasite B. ostreae and its environment, validation through epidemiological 
surveys in the field is also needed.   
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INTRODUCTION 

 

Bonamia ostreae is a protistan parasite belonging to the phylum Haplosporidia (Sprague 1979). It 

is an intracellular parasite, 2-5 µm in diameter, that infects haemocytes. It can also be observed 

extracellularly between epithelial or interstitial cells in gills and stomach or in necrotic connective 

tissue areas. The parasite can be detected in spat (Lynch et al. 2005), however, mortalities mainly 

affect oysters which are more than 2 year old (Culloty & Mulcahy 1996). At a tissue level, the 

infection is usually associated with intense haemocyte infiltration of the connective tissue of the 

gills, mantle and digestive gland. The life cycle is unknown but the disease can be directly 

transmitted between oysters in a population or experimentally by cohabitation or inoculation 

(Elston et al. 1986, Hervio et al. 1995) suggesting that intermediate host is not required for parasite 

cycle accomplishment. Observation of parasites free in gill epithelia potentially associated with 

gill lesions supports the hypothesis of a parasite release through these organs (Montes et al. 1994). 

However, the infective form and ways of entry and release remain undetermined. Most of Bonamia 

ostreae might be released in the water column after oyster death through tissue lysis. 

This intrahaemocytic parasite has been described in oysters collected from different ecosystems 

from estuaries and intertidal zones to deep coastal waters or lagoon and is presently reported in 

Europe, North America and Morocco. Northern European waters (e.g. Norwegian waters) seem to 

be free of bonamiosis probably because of the lack of introduction of infected animals. Flat oysters 

from the Mediterranean Basin are infected by Bonamia ostreae, however reported prevalences are 

low. No clear correlations have been demonstrated between development of the disease and 

environmental parameters including temperature and salinity. Previous work suggested an impact 

of temperature on the parasite and / or on the defence capacity of oysters. Although the disease 

occurs and can be transmitted throughout the year (Tigé & Grizel, 1984), there is a seasonal 

variation in infection with Bonamia ostreae. Prevalence of infection presents peaks in late winter 
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and in autumn (Grizel 1985, Montes 1990, Van Banning 1991, Culloty & Mulcahy 1996, Arzul et 

al. 2006). A study of bonamiosis prevalence as well as haemocyte activities according to 

temperature showed that prevalence was higher at low temperature (10°C) compared to higher 

temperature (20°C) suggesting that low temperatures may affect defence capacities of the oyster 

and/or the ability of the parasite to infect healthy oysters (Cochennec & Auffret 2002). 

The lack of suitable tissue culture systems and mollusc cell lines for the culture of the parasite led 

to the development of a purification protocol (Miahle et al. 1988). The availability of purified 

Bonamia ostreae suspensions allowed experimental infections based on parasite injection (Hervio et 

al. 1995) and investigations on in vitro interactions between parasites and haemocytes (Chagot et al. 

1992, Mourton et al. 1992). Despite possible survival of purified parasites in filtered sea water (2 

weeks) as assessed by success of experimental infection (Grizel 1985), purified parasite suspensions 

have not yet been used to study parasite physiology or its behaviour related to environmental 

conditions.  

In aquatic ecology, flow cytometry is classically used to determine abundance, viability and activity 

of microorganisms including viruses, bacteria, microalgae and planktonic protozoan parasites 

(Wong & Whiteley 1996, Lindström et al. 2002, Parrow & Burkholder 2002, Binet & Stauber 2006, 

Hammes et al. 2008). Recent developments aimed at addressing some questions in environmental 

microbiology including studying microbial physiology under environmentally relevant conditions 

(Czechowska et al. 2008). Flow cytometry was successfully used to measure cell viability of 

cultured Perkinsus marinus, a parasitic protozoan of the Eastern oyster, Crassostrea virginica 

(Soudant et al. 2005). This tool allows multi parametric analyses on a large number of cells in a 

very short time and thus presents advantages over microscopic approaches. 

The objectives of the present study were to test survival of purified Bonamia ostreae in different sea 

water media (artificial, natural and underground salty water) in order to identify the most suitable 

medium for parasite preservation and to investigate effects of temperature and salinity on the 

survival of purified parasites by flow cytometry. Purified B. ostreae were suspended and maintained 
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in vitro in the three different media at three different temperatures and then subjected to a range of 

salinities in the optimal medium previously defined. Parasite mortality was measured by flow 

cytometry using propidium iodide staining and parasite viability was estimated by measuring 

esterase activities using FDA (Fluorescein Diacetate). Esterases are enzymes belonging to the group 

of hydrolases and are classically measured to estimate global level of viable cell activities 

(Gagnaire et al. 2006b, Berney et al. 2008, Rault et al. 2008).  
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In vitro exposure of purified parasites to ranges of temperature and salinity may improve our 

knowledge of the disease epidemiology and may provide guidance for oyster farmers for stock 

management. 

 

MATERIAL AND METHODS 

 

Bonamia ostreae purification 

Purification of parasites was performed following the protocol of Miahle et al. (1988) using flat 

oysters originated from Quiberon Bay (France), an infected area regarding Bonamia ostreae. 

Oysters were maintained 30 days in raceways of 120 litres receiving a constant flow of external 

seawater at a temperature of 12-15°C and enriched in phytoplankton (Skeletonema costatum, 

Isochrysis galbana, Chaetoceros gracilis and Tetraselmis suecica). Some highly infected flat 

oysters Ostrea edulis were selected by examination of heart tissue imprints under light microscope. 

Two to three highly infected oysters were used per purification. All organs were homogenized 

except the adductor muscle. Parasites were concentrated by differential centrifugation on sucrose 

gradients and then purified by isopycnic centrifugation on a Percoll gradient. Centrifugations were 

performed at 8°C. Lastly, purified parasites were resuspended in 1 ml of 0.22 µm filtered sea water 

before being counted using a Malassez-cell haemocytometer. Parasite suspensions were then 

maintained at 4°C. Salinity of filtered sea water fluctuated between 30 and 34 g l-1. 

 5



Experiment design 127 
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Two sets of experiments were performed three times. 

In a first set of experiments, purified parasites were suspended in three different media and 10 ml of 

each parasite suspension were distributed in equivalent numbers (5.106 cells ml-1) in nine 15 ml- 

polypropylene tubes per medium. The three media were (1) 0.22 µm filtered prepared artificial sea 

water with a salinity of 23.4 g l-1 and a pH of 6.5 (ASW: 23.4 g NaCl, 1.5 g KCl, 1.2 g MgSO4 . 4 

H2O, 0.2 g CaCl2 . 2 H2O, H2O q.s. 1 L) (2) 0.22 µm filtered underground salty water showing a 

constant salinity of 32 g l-1 and a pH of 7.06 (USW, collected at – 110 meters at IFREMER facilities 

in La Tremblade, France) (3) 0.22 µm filtered natural sea water (NSW) from « La Seudre » estuary, 

Charente Maritime (France) with a salinity of 30-34 g l-1and a pH of 8.06. Parasites maintained in 

the three different media were subjected to three different temperatures 4°C, 15°C and 25°C (three 

tubes per condition). The different parasite suspensions were tested by flow cytometry after 12 h, 24 

h and 48 h of incubation. 

 

Regarding parasite survival according to previously tested medium and temperature, the second set 

of experiments, aiming at testing effects of salinity on Bonamia ostreae viability, was performed in 

USW (stable composition in the time compared to natural sea water) and at 15°C (which reflects 

better natural conditions than 4°C). 

More precisely, purified parasites were diluted in 0.22 µm filtered USW and distributed in 

equivalent numbers (5.106 cells ml-1) in 15 ml-polypropylene tubes. Distilled water or natural salt 

from Guérande (Pays de la Loire, France) was added in order to obtain a range of salinities: 5 g l-1, 

15 g l-1, 20 g l-1, 25 g l-1, 30 g l-1, 35 g l-1, 40 g l-1, 45 g l-1. Parasite suspensions (3 tubes per salinity 

condition) were incubated at 15°C and samples were analysed at 12 h and 48 h by flow cytometry. 

 

Analysis of viability of Bonamia ostreae by flow cytometry  

Flow cytometry protocols used in this study were adapted from protocols previously described for 
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Crassostrea gigas haemocytes (Gagnaire et al. 2006a). Each measure was carried out three times. 

For each sample, 5000 events were counted using an EPICS XL 4 (Beckman Coulter). Results were 

depicted under biparametric representations (density plots) showing parasite cells according to the 

Forward SCatter (FSC) in abscissa and Side SCatter (SSC) in ordinate and the fluorescence channel 

corresponding to the marker used. FSC and SSC values, which correspond to diffracted light on the 

small and right angles, are proportional to cell size and cell complexity, respectively. Recorded 

fluorescence depended on the monitored parameters: non specific esterase activities were measured 

using green fluorescence (Fluorescence detector FL1) while cell mortality was measured using red 

fluorescence (Fluorescence detector FL3).  
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Parasite mortality was estimated after incubating 200 µl of parasite suspensions at 5.105 cells ml-1 in 

the dark for 30 min at 4°C with 10 µl of the nucleic acid fluorescent dye propidium iodide (PI, 1.0 

mg l-1, Interchim). Non specific esterase activities were evaluated by incubating 200 µl of parasite 

suspensions at 5.105 cells ml-1 in the dark for 30 min at ambient temperature with 1 µl of the 

liposoluble substrate fluoresceine diacetate (FDA, 400 µM in DMSO, Molecular Probes, 

Invitrogen). 

 

Dead parasites, prepared by boiling cells for 15 min, were used to control efficacy of PI for 

mortality measurement. The FL3 fluorescence histogram showed 98.1% of PI-stained cells (red 

fluorescence above 1) considered dead (Fig. 1a). Suspension of live parasites was used to control 

efficacy of FDA for esterase activities measurement (Fig. 1b). The FL1 fluorescence histogram 

showed 91% of fluorescent cells after incubation with FDA (green fluorescence above 1) 

considered alive and presenting esterase activities (Fig. 1b). 

 

Statistical analysis 

Data were analyzed statistically using the software Statgraphics® Plus version 5.1. Results were 

expressed as percentages of positive cells. Mean and standard deviation were calculated for each 
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triplicate. Effect of tested conditions was evaluated performing one-way, two-ways and three-ways 

ANOVA. Values were converted into r angular arcsinus √(% of positive cells) before analysis to 

ensure respect of a priori assumptions of normality and homogeneity. In the case of rejection of H0, 

an a posteriori Least Significant Difference Test was used to compare differences between means 

and to obtain hierarchy between studied factors. Significance was concluded at p ≤ 0.05. 

 

RESULTS 

 

Size and complexity of parasites 

Size and in a lesser concern complexity of parasites varied according to their status: dead or alive. 

Irrespective of the tested conditions, it was possible to identify two populations of parasite cells 

(Fig. 2a): a population A consisting in 53 ± 24% of live cells and a population B, smaller in size 

consisting in a majority of dead cells (mean of 74 ± 23%). Some parasite cells were not included in 

population A or B and corresponded generally to dead cells showing higher size and higher 

complexity than cells included in populations A and B. For parasites maintained in NSW at 4°C 12 

hours after purification, population A and population B included 75.8% and 15.7% of total cells, 

respectively (Fig. 2a). When only considering non PI stained parasites for the same experimental 

conditions, population A and population B included 91% and 6.5% of live cells, respectively (Fig. 

2b). For parasites after boiling, when only considering PI stained cells, population A and population 

B included 8.6% and 88% of dead cells, respectively (Fig. 2c). 

 

Population A included more live cells (77.6 ± 6.2%) when mortality rates were below 50% 

compared to mortality rates above 70% (37.3 ± 24.7%) (Table 1). On the contrary, population B 

included more dead cells when mortality rates were high (91.7 ± 7.4% for mortality rates above 

70%) (Table 1).  
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Impact of medium on cell viability 205 
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In the three experiments testing simultaneously the effect of medium, temperature and time of 

incubation on parasites (three-ways ANOVA), the medium appeared as the most important factor on 

parasite survival (p = 0) and influences more cell mortality and esterase activities than temperature 

and time of incubation (Table 2).  

Irrespective of time and temperature of incubation, parasites showed significant better survival in 

NSW and in USW than in ASW (Fig. 3 and Table 2). However, there was no significant difference 

between mortality and esterase activity percentages in NSW and USW. Parasite mortality means 

were 29.1%, 31.4% and 71.1% in NSW, USW and ASW, respectively. The percentage of positive 

parasites for esterase activities was 44.9 ± 7.8% in NSW, 48.2 ± 6.5% in USW and 30.6 ± 4.1% in 

ASW, respectively.  

 

Impact of temperature on cell viability 

Parasite viability fluctuated according to the tested temperature. Irrespective of medium and time of 

incubation, mortality appeared significantly higher at 25°C compared to 15°C and 4°C and 

percentages of cells presenting esterase activities were higher at 4°C compared to 15°C and 25°C 

(three-ways ANOVA, Table 2). 

In NSW, irrespective of incubation time, mortality percentages ranged from 11.92 to 25.59% at 4°C, 

from 16.2 to 31.83% at 15°C and from 39.26 to 75.55 at 25°C (Fig. 4). Cell mortality was thus 

higher at 25°C compared to 4°C and 15°C especially after 24h and 48h of incubation (p < 0.0001) 

(Fig. 4). 

In USW, irrespective of time of incubation, the percentage of positive parasites for esterase 

activities ranged from 52.49 to 73.67% at 4°C, from 31.27 to 43.73% at 15°C and from 21.89 to 

53.28% at 25°C (Fig. 5).  

 

Impact of incubation time on cell viability 

 9



231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

252 

Irrespective of medium and temperature, incubation time did not have significant impact on parasite 

mortality. However, a difference of percentages of cells presenting esterase activities is noted 

between 12 and 24 hours of incubation times (p = 0.003; three-ways ANOVA, Table 2).  

In NSW and in USW, parasite survival and parasites presenting esterase activities were higher at 

4°C and 15°C than at 25°C especially after 48h of incubation (Figs. 4 and 5). In NSW, after 48 

hours of incubation, parasite mortality mean was 75.55%, 31.83% and 14.73% at 25°C, 15°C and 

4°C respectively (Fig. 4). At 25°C, mortality was significantly higher after 24 h and 48 h of 

incubation compared to 12 h (p < 0.0001). 

Similarly, percentage of parasites presenting esterase activities significantly decreased at 25°C after 

48 h of incubation. In USW at 25°C the percentage of positive cells was 47.23 ± 13.31% after 24 h 

and 23.54 ± 8.65% after 48 h (p = 0.0004) (Fig. 5). 

 

Impact of salinity on cell viability 

Incubation length had no significant effect on cell mortality (two-ways ANOVA: F = 1.81, p = 

0.186). Therefore, data obtained on independent samples after 12 and 48 hours of incubation were 

pooled. A posteriori tests showed that salinities of 5, 15 and 20 g l-1 were associated with highest 

percentages of mortality whereas salinities of 35, 40 and 45 g l-1 allowed better parasite survival 

(Fig. 6). Higher percentages of positive cells for esterase activities were reported for higher 

salinities (35 to 45 g l-1) (Fig. 7). Moreover, time of incubation presented a significant impact on 

parasite esterase activities (two-ways ANOVA, F = 15.3, p = 0). There was a significant decrease of 

percentages of positive parasites between 12h and 48h irrespective of tested salinities except at 25 g 

l-1 (Fig. 7).  

 10



DISCUSSION  253 
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Despite 25 years of research on the protozoan Bonamia ostreae, its life cycle is poorly known. 

Whatever is the date at which naïve oysters are placed in an infected area, first known stages of the 

parasite are observed 3 to 5 months after exposition to the parasite (Tigé & Grizel 1984, Montes 

1991). Moreover, the infection seems to remain present in areas that have been cleaned and which 

ceased to produce oysters for several years (Van Banning 1988). Lagtime before infection and 

persistence of the disease in cleaned areas motivated some authors to investigate potential 

involvement of macroinvertebrate and zooplankton species in Bonamia ostreae life cycle (Lynch et 

al. 2006). Nevertheless, considering the correlation between density of oysters and prevalence of 

bonamiosis (Grizel 1985, Hudson & Hill 1991), the parasite mainly depends for its survival and 

spread on flat oysters Ostrea edulis themselves and other aquatic organisms might not be involved 

as important carriers or transmitters (Van Banning 1988). Transmission of B. ostreae between 

oysters probably occurs through the water column. Water characteristics can have an impact on the 

survival of the parasites released outside the host and these characteristics can influence the 

infective capacity of B. ostreae as well as the number of oysters newly infected. 

In that context, the impact of two environmental parameters, the salinity and the temperature, on 

the parasite viability was investigated at different times of incubation: 12 h, 24 h and 48 h. Trials 

were stopped at 48 h because some preliminary results were not reproducible beyond this 

incubation time. In addition, the suitability of three different sea water media for parasite 

preservation was tested: 0.22 µm filtered natural sea water; 0.22 µm filtered underground salty 

water (with a constant composition) and 0.22 µm filtered artificial sea water (which is easy to 

acquire and with a constant composition).  

Size and complexity of Bonamia ostreae were generally homogeneous but depended on the status 

of the parasite cell i.e. if they were live or dead. Two populations were distinguished: a 

homogeneous population of small parasites corresponding mainly to dead cells and increasing 
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proportionally to recorded mortality, and another population less homogeneous, larger in size 

increasing proportionally to survival rates. These results suggest that when dying B. ostreae 

becomes smaller. Such phenomenon is described in apoptotic cells (Cotter et al. 1992, Samali & 

Cotter 1999, Nasirudeen et al. 2001). 

Results showed a better survival of purified Bonamia ostreae (60 to 80%) in natural filtered sea 

water and in underground filtered salty water than in artificial filtered sea water (less than 40%) 

whatever were temperature and time of incubation. This result could be explained by a difference 

of pH. Indeed, pH of ASW used in this study was more acid (6.5) than NSW (8.06) and USW 

(7.06). Effect of pH on parasite viability has not been investigated in the present study. Moreover, 

a difference of salinity was also noticed between tested media: between 30 and 34 g l-1 for NSW; 

32 g l-1 for USW and 23.4 g l-1 for ASW. Therefore, in addition to be more acid, ASW had a lower 

salinity than other tested media which could explain the poor conservation of parasites.  

Although no significant difference of mortality and non specific esterase activities were observed 

between parasites maintained at 4°C and 15°C in NSW or USW, 25°C did not appear suitable for 

parasite preservation. In natural conditions, the disease is reported in areas where temperature of 

sea water rarely reaches 25°C except in Mediterranean Sea where Bonamia ostreae is reported but 

with low prevalence (0.9 ± 1.4%, data from REPAMO, French network for the surveillance of 

mollusc diseases). In Quiberon bay (Morbihan, France) where prevalence of bonamiosis is 

estimated at 12.4% ± 6.5 (data from REPAMO), summer water temperatures fluctuated between 

16.9 and 19.6°C between 1989 and 2003 with a mean estimated at 18.5°C (data from REPHY, 

French network for the surveillance of phytoplankton and phycotoxins). Some analyses revealed a 

negative correlation between high summer water temperature and number of oysters detected 

infected during the following winter (I. Arzul, unpublished data) suggesting that higher 

temperatures do not favour infection of oysters. A study carried out on Crassostrea gigas 

haemocytes showed that an increase of temperature and a decrease of salinity induced an increase 

of cell mortality (Gagnaire et al. 2006b) suggesting that these environmental parameters had also 
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an effect on oyster defence capacities. Similarly, previous works demonstrated an impact of 

temperature on flat oyster Ostrea edulis defence mechanisms (Cochennec & Auffret 2002): lower 

temperatures were associated with increased bonamiosis prevalence. However in the same study, 

haemocyte activities were tested by flow cytometry and revealed that low temperature (10°C) or a 

decrease of temperature (from 20°C to 10°C) induced a decrease of enzymatic activities including 

ROS production involved in defence mechanisms. Several authors described a seasonal variation of 

infection with B. ostreae; prevalence of infection presenting peaks in late winter and in autumn 

which suggests an involvement of environmental parameters including temperature in the 

development of the disease (Grizel 1985, Montes 1990, Van Banning 1991, Culloty & Mulcahy 

1996). Studies carried out on Bonamia sp. infecting the Asian oyster Crassostrea ariakensis in 

Atlantic coastal waters of U.S.A showed a strong influence of temperature on seasonal parasite 

cycling (Carnegie et al. 2008). Interestingly, temperatures around 25°C when oysters were placed 

in infected area were associated with higher prevalence than temperatures below 20°C. 

Experimental studies support these results showing that warm temperatures (>20°C) seem to 

increase Bonamia sp. pathogenicity (Audemard et al. 2008a). Epidemiological data available for 

Bonamia (= Mikrocytos) roughleyi show that the disease expressed under winter oyster mortalities 

is associated with low temperatures (Wolf 1967). However all these studies consider the parasite 

inside its host and thus investigate effects of temperature on host-parasite relationships and not 

directly on parasite survival. 

Purified Bonamia ostreae seems to show a preference for hyper saline media compared to hypo 

saline media. Three ranges of salinities could be identified from these results: from 5 to 20 g l-1, 

survival and esterase activity measures were very low but a mean of 10% of live cells can still be 

detected suggesting that the parasite can still be transmitted in these conditions; between 25 and 30 

g l-1 survival was intermediate (estimated at 35% after 12 hours of incubation); between 35 and 45 g 

l-1 survival was higher and estimated at 50% after 12 hours of incubation.  

As previously mentioned measures of parasite survival in the three tested media (NSW, USW and 
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ASW) supported these results. Indeed, parasite mortality was higher in ASW (salinity of 23.4 g l-1) 

compared to NSW (salinity of 32-34 g l-1) and USW (salinity of 32 g l-1). 
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These results are also concordant with a previous study realised on Bonamia exiotiosa in New 

Zealand in which a salinity of 40 g l-1 was associated with highest disease prevalences (Hine 2002). 

Similarly, infection with B. roughleyi seems to be favoured by high salinities (30-35 g l-1) (Farley et 

al. 1988). Our results are also in concordance with data obtained during a recent study in which 

salinity below 30 g l-1 was associated with lower host mortality and appeared detrimental to 

Bonamia sp. in Crassostrea ariakensis (Audemard et al. 2008b). 

Time of incubation showed an impact on the parasite preservation especially by increasing effect of 

high temperatures on mortality (higher mortality) and esterase activities (lower percentages of 

positive cells). Moreover, whatever was the tested salinity, percentages of cells producing esterase 

activities were lower after 48h compared to 12h. It would be interesting to complete these results by 

testing a wider range of incubation times in order to evaluate the persistence capacity of Bonamia 

ostreae in natural sea water collected from different infected areas. However, mortality and esterase 

activity measured by flow cytometry are instantaneous and do not allow to follow cumulative 

mortality.   

In the present context of global change, data allowing forecasting of disease evolution are 

requested. Oysters are submitted to environmental changing and parasites as well. Description of 

the influence of temperature and salinity on Bonamia ostreae viability should allow modelling 

parasite transmission. Moreover these results should contribute to define risky and non risky 

geographic areas regarding transmission of the disease. These data might also be of interest for 

oyster farmers. Indeed, by monitoring temperature and salinity parameters, oysters might be moved 

or sold before suitable conditions for parasites survival are reached.  
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464 

465 

466 

 

TABLE 1- Distribution of Bonamia ostreae cells in percentages (means (± standard deviation)) in 

Population A and Population B (as shown on Figures 2 for example) and composition in live and 

dead cells of these two populations according to the level of mortality rates. 

 
Mortality rates  Population A Population A 

alive 

Population B Population B 

dead 

< 50% 56,68 (± 18,11) 77,58 (± 6,21) 15,66 (± 5,16) 53,54 (± 22,03) 

≥ 50 % and < 70% 50,29 (± 20,78) 56,35 (± 9,16) 22,74 (± 10,65) 74,99 (± 13,79) 

≥ 70% 25,64 (± 17,06) 37,33 (± 24,56) 49,51 (±14,44) 91,67 (± 7,43) 

467 
468 

469 
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474 

TABLE 2- ANOVAs comparing the percentages of mortality and the percentages of positive cells 

for esterase activities according to media, temperatures (= Temp) and times of incubation (= Time). 

NSW: natural seawater; USW: underground salty water; ASW: artificial seawater. F: Fisher value, 

p: significance value. Terms significant at p < 0.05 are highlighted in bold. 

 

Ddl F p F p
Time 2 0.47 0.630 6.35 0.003
Medium 2 31.68 0.000 8.96 0.000
Temp 2 6.81 0.002 5.10 0.009
LSD tests Medium Medium

ASW > NSW = USW ASW < NSW = USW

Temp Temp
4 = 15 < 25 4 > 15 = 25

Time
12h > 24h = 48h

Cell mortality Esterase activity
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Fig. 1a. Red fluorescence histogram of parasites after boiling stained with Propidium Iodide. Gate A 

corresponds to non stained cells (= live cells) and Gate B corresponds to stained cells (= dead cells). 

 

Fig. 1b. Green fluorescence histogram of parasites just after purification, in presence of FDA. Gate 

A corresponds to non fluorescent cells (= non active cells) and Gate B corresponds to fluorescent 

cells (= active cells). 

 

Fig. 2a. Cytogram of parasites maintained in natural seawater at 4°C 12 hours after purification. 

This cytogram shows both Propidium Iodide stained and non-stained cells. Population A: 75.8% of 

total cells; Population B: 15.7% of total cells.  

 

Fig 2b. Cytogram of parasites maintained in natural seawater at 4°C 12 hours after purification. 

This cytogram only shows non Propidium Iodide stained cells. Population A and Population B 

include 91% and 6.5% of live cells respectively.  

 

Fig 2c. Cytogram of parasites after boiling. This cytogram only shows Propidium Iodide stained 

cells. Population A and Population B include 8.6% and 88% of dead cells respectively. 

 

Fig. 3 - General means and standard errors of cell mortality and esterase activities per medium (time 

and temperature data pooled); N = 27 replicates. NSW: natural seawater; USW: underground salty 

water; ASW: artificial seawater.  

 

Fig. 4 – Parasite mortality (percentages of Propidium Iodide stained cells) in natural sea water 

according to the temperature and time of incubation (values are mean of three replicates); Bars 
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represent standard errors; *** p < 0.0001 compared to data at 25°C and 12 h after incubation and 

compared to data at 15°C and 4°C 

 

Fig. 5 - Parasite esterase activities (percentages of positive cells) in underground salty water 

according to the temperature and time of incubation (Values are mean of three replicates; Bars 

represent standard errors; *** p = 0.0004 compared to data at 25°C 24 h after incubation 

 

Fig. 6 - Parasite mortality (Percentages of Propidium Iodide stained cells) according to the salinity 

of underground salty water (time of both data pooled). Values are means ± standard error. N = 6 

replicates.  

 

Fig. 7 - Parasite esterase activities (Percentages of positive cells) in underground salty water 

according to the salinity and time of incubation (Values are mean of three replicates; Bars represent 

standard errors); *** p < 0.001 compared to data 12 h after incubation 
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