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Abstract. This numerical study deals with the stiffened composite underwater vessel design. 
The structures under investigation are laminated cylinders with rigid end-closures and inter-
nal circumferential and longitudinal unidirectional composite stiffeners. Structural buckling 
induced by the high external hydrostatic pressure is considered as the major failure risk. An 
optimization design tool has been developed to obtain the reinforcement definition which 
maximizes the limit of stability: an analytical model of cylindrical composite shell buckling 
has been coupled to a genetic algorithm procedure. The numerical optimization tests carried 
out corroborate design tendencies validated previously by experiments. 
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1 INTRODUCTION 
Numerous works have focused last decade on the design of deep submarine exploration 

housings and autonomous underwater vehicles [1-4]. For submersible devices of limited en-
ergy carrying capability, fiber reinforced composite materials enable low weight to displace-
ment ratios and consequently enhance the endurance. The previous studies have shown that 
structural buckling induced by the high external hydrostatic pressure is the major risk factor 
under service conditions for deep underwater lengthy hulls. 

In a previous work connected with IFREMER’s (the French Research Institute for the Ex-
ploitation of the Sea) developments detailed in Refs.[5,6], the search of laminations of un-
stiffened composite cylinders that maximize the buckling pressure has been performed. A 
genetic algorithm procedure coupled with an analytical model of shell buckling has been de-
veloped to determine numerically optimized stacking sequences. Typical 
[ 32211 9090 NNN //// Ψ ]ΦΨ  lamination patterns (the angles being measured with respect to 
the cylinder axis, the plies numbered from the inner to the outer surfaces of the shell, Ψ1 and 
Ψ2 denoting eventual transition zones and Φ  being the minimum angle value) have been ob-
tained both for carbon/epoxy and glass/epoxy tubes. The corresponding increases of buckling 
pressures, measured with respect to initial design solutions, have been verified by FEM calcu-
lus. Experimental buckling pressure values  of thin glass/epoxy and carbon/epoxy cylinders, 
in good agreement with numerical results, have also demonstrated the significant gains due to 
the optimized laminations.  

The present numerical study is devoted to the stiffened composite hull design. The struc-
tures studied and depicted in section §2 are lengthy laminated cylindrical shell with rigid end-
closures and circumferential and longitudinal (called rings and stringers, respectively) unidi-
rectional composite stiffeners. An optimization tool allowing the search of the reinforcement 
definition (lamination and stiffener characteristics) which maximizes the buckling pressure 
has therefore been developed by coupling an analytical stiffened shell buckling model (de-
tailed in section §3) with a genetic algorithm procedure presented in section §4. The numeri-
cal tests performed in section §5 show substantial buckling pressure increases measured with 
respect to reference design solutions. 

 2

2 STRUCTURES UNDER INVESTIGATION 

The overall geometry of the structures studied are lengthy composite cylinder having rigid 
end-closures on their ends [3,7]. As depicted in Fig.1, the geometry of the cylindrical lami-
nated shell is characterized by its length L, its mean radius R and its wall-thickness h (see also 
Fig.2) composed of N orthotropic cross-plies of equal thickness. Each composite ply number i 
is assumed to be cross-ply of angle iθ  (i.e. made up of the same amounts of fibres in the iθ+  
and iθ−  directions).  

For the present work, the numerical investigations are based on numerical values related to 
IFREMER’s investigations: the length is L = 400 mm and the internal diameter is 175 mm. 
Three geometries of composite vessels have been investigated as reported in Tab.1. Each 
composite ply is assumed to be carbon fiber reinforced epoxy resin (T700 fibers, F100 resin) 
0.625 mm thick and having the following orthotropic properties (modulus in GPa) [7]: 
E1 156= ; E2 9 65= . ; E3 6 57= . ; G12 5 47= . ; G13 2 8= . ; G23 3925= . ; ν12 0 27= . ; ν 13 0 34= . ; 
ν 23 0 492= . . At last, the cross-ply angles are limited to the following manufacturing set (val-
ues in degrees): { }          90;75;60;45;30∈kθ . 
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Figure 1: Cylindrical composite shell. 

 
Cylinder n° 1 2 3 
Number of plies N 10 16 26 
thickness h  (mm) 6.2 10.0 16.2 
mean radius R  (mm) 90.6 92.5 95.6 
Material volume  Vc  (106 mm3) 1.41 2.32 3.89 

Table 1: Geometries studied. 

Figure 2: Stiffeners. 

 

As schematized in Fig.2, the cylindrical shell is reinforced using LN  and  longitudinal 
and circumferential internal stiffeners, respectively. The corresponding cross-sections and ec-
centricities are denoted and  (subscript 

CN

αS αe α  indicating the type of stiffener: C,L=α ). 
Following the works detailed in Refs.[8,9] and manufacturing requirements, the stiffeners are 
subjected to the following assumptions: 

 

• The stiffeners are perfectly bounded to the shell.  

• They are evenly distributed through the circumference and the length of the shell (see 
Fig.2): 

 ( ) LLL NeRD −= π2  ;  CC NLD =  (1) 
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• They are composed of unidirectional composite plies (of the same material of the shell) 
of 0° angle with respect to the longitudinal direction of the stiffeners. Thus, the elastic 
modulus in this longitudinal direction of the stringers and the rings are done by:  

 1EEE CL ==  (2) 

• The stiffeners are loaded only by traction and bending (in the ( )y,x rr  plane) components, 
the torsional stiffness being neglected. The bending inertia modulus of the longitudinal 
and circumferential stiffeners are denoted  and  (in the LyyI CxxI yr  and  directions), re-
spectively. 

xr

• They are sensitive to the shear transverse effects. 

3 ANALYTICAL STIFFENED COMPOSITE SHELL BUCKLING MODEL  
As detailed thereafter, the analytical modeling of the stiffened laminated shell buckling 

problem is treated similarly to the approach detailed in Ref.[6]. As shown by FE calculus and 
experimental result validations, such an approach has appeared to exhibit a good sensitivity to 
lamination parameters. The contribution of the stiffeners is here taken into account by correct-
ing the overall laminate stiffness coefficients. 

The developed buckling shell model is based on a Third Order Shear Deformable theory 
(TOSD). Hence, the displacement field is expressed as follows: 
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with  meaning x,F xF ∂∂ . Considering the cylindrical shell linear strain-displacement rela-
tions, it could be writen: 
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Considering the hypothesis related to the stiffeners, the following tensile force and moment 
resultant components (expressed with respect to the mean-surface of the shell) are expressed 
as follows:  

 4
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where Lh  and  are the total height of the stiffeners as depicted in Fig.2. The other terms 
are not dependant of the stiffeners and are given by: 

Ch
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In that way, and considering the elastic orthotropic constitutive law of the composite cross-
plies, these resultants components are done by: 
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using the following laminate stiffness coefficients [MES02]: 
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and the additional terms due to the stiffeners: 

 

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

+

+

−−

−

=

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

LyyLLL

LyyLL

LyyLLL

LL

L

L

L

a

a

IeSe

ISe

IeSe
Se

S

D
E

D̂
D̂
B̂
B̂
Â
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the other superscript ˆ  coefficients being zero. The governing equations of equilibrium are 
done by: 
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where P is the external hydrostatic pressure.  

 5

The displacement approximation functions satisfying the kinematic boundary conditions 
are chosen to be harmonic approximation functions defined as follows [5]: 
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where m and n are the numbers of longitudinal and circumferential half-waves of the buckling 
modes. Finally, after substituting the displacement approximations in Eq.(4), the governing 
relations (10) expressed using the resultants done by Eqs.(5,6) lead to the eigen-value buck-
ling problem that can be expressed under a matrix form. As shown in Ref.[6], it can then be 
easily computed to estimate the buckling pressure . crP

4 OPTIMIZATION PROCEDURE 

The optimization problems studied in section §5 implies several type of discrete parame-
ters (standard angles of laminations, number of composite plies, numbers of rings and string-
ers). Hence it requires adequate methods dedicated to discontinuous design space analysis. 
Moreover, some previous works focusing on the optimal laminations of composite structures 
subjected to buckling have shown that these problems involve local optima, non-convexity, 
and then requires global optimization procedures [5,8].  

The numerous engineering design problems explored in recent years [10,11] have demon-
strated the usefulness and robustness of the genetic algorithms. The main principle is based on 
an analogy with natural evolution and biologically inspired operators: it manipulates a fixed 
number of potential design solutions (called individuals) and the fittest ones (leading to the 
best objective function F values) are likely to survive, to recombine their features and thus to 
form a renewed population.  

According to results taken from the literature and preliminary tests [5], the computed ge-
netic algorithm manipulates directly integer parameters. The starting population is randomly 
created. The tournament selection, the whole arithmetical crossover and the random uniform 
mutation are applied. The foremost scheme, the genetic operators (also detailed in Refs.[5,10]) 
and the corresponding probability values are reminded in Fig.3. The GA finally sends back 
the best individual found. For the numerical applications performed, the numbers of individu-
als and generations have been chosen accordingly to the cardinalities of the optimization 
problems. 

5 NUMERICAL RESULTS 

In the next paragraphs, the unstiffened cylinders with the optimized laminations [θ]Opti (ob-
tained in Ref.[6] and reminded in Tab.2) which maximize the buckling pressure have been 
used as a reference. In that way, the fitness of the calculated optimized stiffened solution has 
been evaluated using the relative gain η defined as follows: 

 
[ ]( ) [ ]( )
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where  [ ]( )R
OpticrP θ  is the limit of stability for the stiffened composite shell and [ ]( )OpticrP θ  is 

the critical pressure of the corresponding unstiffened optimized cylinder. This gain has been 
evaluated both using analytical and FE results: similarly to the study detailed in Ref.[6],  
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for 2 ≤ i ≤ N  

random uniform mutation: 
   if Rand ≤ Pmut     Xi+1

j(k) = Rand 

whole arithmetical crossover: 

   if Rand ≤ Pcross   Xi+1
Rand1(k) = Int (ρ Xi

Rand1 (k) + (1-ρ) Xi
Rand2(k)) 

                             Xi+1
Ran

 
 

Figure 3: GA flowchart. 

 

cylinder n° [θ]Opti  Pcr([θ]Opti)  (MPa) 
  analytical FEM 
1 [902/60/305/60/90] 31.5 29.1 
2 [903/75/45/308/60/902] 81.4 82.1 
3 [905/752/602/45/3010/75/905] 247.3 218.6 

Table 2: Optimized unstiffened cylinders. 

a FE model using Mindlin laminated shell and beam elements has been also computed on An-
sys software. The buckling pressures of the [θ]Opti reference cylinders are also detailed in 
Tab.2. 

5.1 Optimization of the stacking sequences  
In this first approach, the stiffeners characteristics (numbers and geometries) and the num-

ber of composite plies are fixed. They are assumed to have equal square cross-sections hL×hL  
= hC×hC (see Fig.2) with prescribed side lengths done in Tab.3. The optimal design problem 
therefore consists to find the optimal laminations [θ]R

Opti maximizing the buckling pressure. 
The results obtained show very small influence of the longitudinal stiffeners a contrary to the 
rings. Moreover, it should be noticed that the optimized stacking sequences always exhibit a 

 7

d2(k)  = Int (ρ Xi
Rand2(k) + (1-ρ) Xi

Rand1(k)) 

   else   Xi+1
Rand1(k)  = Xi

Rand1(k)   
              Xi+1

Rand2(k)  = Xi
Rand2(k) 

random creation: 
    X1

j (k) = Rand 

for 1 ≤ j ≤ M   

M : number of individuals X 
N : number of generations 
k : optimization parameters 
Rand : random number 
F : fitness 
Int : integer part  
Pcros : probability of crossover (= 75%) 
Pmut : probability of mutation (= 1%) 
ρ : random point of crossover 

tournament selection: 
   If   F(Xi

Rand1) ≥ F(Xi
Rand2)    Xi

Rand1  selected 
   else  Xi

Rand2  selected 

AG 
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[ 32211 903090 NNN //// ΨΨ ± ] pattern increasing the circumferential rigidity of the shell [5]. 
The optimized results obtained for the cylinder n°2 (and the corresponding gains calculated 
using the analytical model) are detailed in Tab.4. 

 
cylinder n° 1 2 3  
hL, hC  5 8 12  

Table 3: Stiffener cross-section dimensions (mm). 

 

NC NL [θ]R
Opti η  (%) 

1 0 [903/75/309/75/902] 10.4 
2 0 [903/60/309/903] 20.3 
3 0 [903/45/308/45/903] 29.6 
4 0 [903/60/308/75/903] 39.1 
5 0 [903/60/308/904] 48.3 
0 1 [904/45/308/60/902] 0.7 
0 2 [903/75/45/308/75/902] 0.9 
0 3 [903/75/45/308/75/902] 1.1 
0 4 [903/75/45/60/308/75/902] 1.2 

Table 4: Optimized laminations of cylinder n°2. 

For each cylinder, the best optimized solutions have been checked using the FE model as 
detailed in Tab.5. As observed previously in Ref.[6], the analytical model overestimate the 
gains. Nevertheless, the FE results have confirmed the stability limit increases due to circum-
ferential stiffeners and optimized laminations. 
 

cylinder n° NC NL [θ]R
Opti            η  (%) 

    analytical FEM 
1 3 0 [902/307/90] 16.8 16.2 
2 3 0 [903/45/308/45/903] 29.6 16.2 
3 3 0 [905/75/602/45/308/908] 47.1 15.8 

Table 5: Examples of optimized solutions. 
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5.2 Multi-parameter optimization  
In this paragraph, the optimization objective consists in the simultaneous determination of 

the best lamina stacking sequence and stiffener characteristics. The optimization constraint is 
to use fixed material volumes equal to those of the corresponding unstiffened cylinders (see 
Tab.1). The circumferential and longitudinal stiffeners have square hC×hC and hL×hL cross-
sections. The optimization problem can then be formulated as follows: 

 

find  N, [θ]R
Opti, NC, hC, NL, hL

leading to a material volume Vc
and maximizing Pcr

 

The optimized results are depicted in Tab.6. For each optimization calculus performed, the 
number of stringers NL obtained has always been zero. It could be noticed that the lamination 
pattern of the cylinder n°1 is not exactly preserved due to its low number of composite plies. 
Nevertheless, the reinforcement solutions obtained tend to maximize the circumferential stiff-
ness of the vessels as mentioned previously. 



T. Messager, P. Chauchot and B. Bigourdan 
 

cylinder n° NC hC (mm) N [θ]R
Opti            η  (%) 

     analytical FEM
1 9 5.5 9 [45/307/90] 29.8 11.7 
2 4 8.5 15 [902/75/308/75/903] 29.7 16.6 
3 2 12.6 25 [905/75/602/45/308/908] 26.0 16.7 

Table 6: Multi-parameter optimization results. 

6 CONCLUDING REMARKS  
This work devoted to the optimization of stiffened composite underwater hulls subjected to 

buckling leads to the following concluding remarks: 
 

• As observed for the unstiffened hulls previously studied, the optimized stacking se-
quences exhibit a [ ]32211 903090 NNN //// ΨΨ ±  typical pattern. 

• In the same way and as observed numerically and experimentally in Refs.[5,6], the 
circumferential reinforcement plays a major role in the increases of the stability limits for 
such lengthy hulls: on the contrary of the stringers, the rings provide substantial buckling 
gains. 

• The developed optimization tool allows to guide quickly designers for reinforcement so-
lutions: the time of optimization calculus have appeared to be always less than 10 mn on 
a standard PC. Moreover, the results obtained have also appeared to be reproducible, 
demonstrating the robustness of the computed GA procedure. 

 

This study provides a reliable tool for the design of large pressure hulls for underwater ap-
plications. This method was used for the prospective study of composite buoyancy cans which 
maintain risers tension in offshore oil production. Another field of investigation is the design 
of composite deepsea oil/gas separation tanks. The hull of such devices is mainly a large cyl-
inder (2~3 meters in diameter, 10 meter long) submitted to high internal and external pressure. 
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