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Abstract:  
 
Multibeam echosounders and sonars are increasingly used in fisheries acoustics for abundance 
estimation. Because of reduced side-lobe levels in the beam-array pattern, the new Simrad ME70 
multibeam echosounder installed on board Ifremer’s RV "Thalassa" has been designed to allow 
improved detection of fish close to the seabed. To achieve this objective, precise and unambiguous 
detection of the water-bottom interface is required, which raises the issue of bottom detection, 
especially in the outer beams. The bottom-detection method implemented in the ME70 is based on the 
amplitude of the reverberated echo. Such an approach is efficient for vertical beams, but less accurate 
for beams with higher incidence angles, typically 30°–40° for the beam configurations used on RV 
"Thalassa", where the incidence angle, the beam opening, and the nature of the seabed contribute to 
weakening the backscattered signal. Therefore, the aim of this study was twofold. First, we proposed 
to improve the current bottom-detection method based on the amplitude of the echo. Thanks to the 
split-beam configuration being available for all beams of the ME70, we also proposed to use the phase 
information in the backscattered signals of the outer beams, as is more commonly done with 
multibeam systems dedicated to seabed mapping. Then, we set a Bayesian estimation framework that 
takes into account the spatial continuity between adjacent echoes, giving more robustness to the 
bottom estimation itself. Results using data collected at sea for various bottom types are presented 
here.  
  
 
Keywords: acoustics, bottom detection, fisheries, multibeam echosounder 
 
 
 
 
 
 
 

 1

http://dx.doi.org/10.1093/icesjms/fsp089
http://www.ifremer.fr/docelec/
http://icesjms.oxfordjournals.org/cgi/content/abstract/66/6/1015
mailto:sebastien.bourguignon@oca.eu


 2

 
 
 
 
Introduction 
 
 
Acoustic methods are widely used in fishery research (Simmonds and MacLennan, 2005). In 
particular, echo-integration has become a standard technique for estimating fish abundance. 
Underwater acoustics is also a key tool for studying fish behaviour (Misund, 1997). In such 
applications, correct location of the water-bottom interface is crucial, because it sets the 
lower limit of the water column that can be used for fish detection and possibly biomass 
estimation. 
 
A new, multibeam echosounder (ME70) was recently developed by Simrad in collaboration 
with Ifremer, opening new perspectives for fishery research (Trenkel et al., 2008). Traditional 
single-beam echosounders can sample the water column, with no interference from the 
bottom reverberation, inside a spherical volume whose radius is the bottom depth. Because 
of its higher side-lobe attenuation compared with conventional echosounders (up to –70 dB), 
the ME70 can collect data from outside this spherical volume in the outer beams, with the 
aim of detecting and studying demersal or semi-demersal fish: at 100-m depth and with a 
beam incidence of 35°, an 18-m high zone is defined above the seabed where fish detection 
is possible, despite contamination by the side lobes. Correct bottom detection is then a 
necessary preliminary step in defining precisely the beginning of the dead zone in the outer 
beams. The dead zone is the portion of the echo that is obscured by the bottom 
reverberation in the main lobe of the beam. See Ona and Mitson (1996) for a detailed 
description of the acoustic dead zone near the seabed. 
 
The bottom-detection algorithms implemented in most fishery echosounders are amplitude 
detectors. Because the highest reverberation level is usually that caused by the seabed, the 
bottom is detected at the depth where the amplitude of the reverberated echo exceeds some 
given threshold. The user can then define the useful part of the water-column echo for 
biomass integration, which may include a backstep distance to ensure that no contribution 
from the bottom is included within the echo integral. If such a method performs well with 
vertical echosounders and reasonably flat seabeds, it may lead to unsatisfactory detection 
when the incidence angle increases, because the leading edge of the echo amplitude is not 
steep enough to provide a precise detection of the seabed. Such a problem arises for bottom 
detection in the outer beams of the ME70 (Trenkel et al., 2008). Bottom detection based on 
amplitude thresholding suffers from a similar problem when a beam with normal incidence 
hits a sloping seabed. The sharpness of the leading edge can also be affected by the seabed 
type and reflection properties (Pouliquen and Lurton, 1994; MacLennan et al., 2004). The 
presence of dense fish schools close to the seabed may also cause false detections, 
because the 



bottom may be erroneously detected as being above the school.
This effect requires supervision by the user to manually perform
some post-processing to draw a new bottom line that includes
the corresponding biomass (Foote et al., 1991; Ona and Mitson,

75 1996). Thus, the design of a robust procedure to automatically
correct false bottom detections is a challenge aimed at reducing
the number of burdensome bottom corrections that have to be
made manually.

Two issues aimed at improving bottom detection were studied
80 and are presented in this paper. The first deals with the extraction

of relevant information from the backscattered signal for all beams
of the ME70. Specifically, because all beams of the ME70 can be
configured in split-beam mode, phase differences in both along-
ship and athwartship directions are available (Carlson and

85 Jackson, 1980). Using phase information instead of or together
with amplitude data may provide more accurate results for
bottom detection in the outer beams, as performed in bathymetry
(Lurton, 2002). In addition, MacLennan et al. (2004) revealed the
potential of phase-difference data to discriminate between fish and

90 seabed echoes. Second, a robust statistical framework is proposed
to take account of the spatial continuity of the seabed in both
alongship and athwartship directions for multibeam data. The
objective is to bring greater stability to the whole detection
process, specifically by correcting erroneous bottom detections.

95 In this paper, typical amplitude and phase signals are described
and preprocessing steps to obtain one or several possible locations
of the water-bottom interface from single-beam data are
detailed. Then, a simple model is described that takes account of
the spatial continuity of the detected bottom between consecutive

100 pings or between adjacent beams of the ME70. An easily

implemented filtering algorithm is proposed, which merges both
information sources, single-beam detection and bottom continu-
ity, to provide a real-time estimation of the seabed location.
Applications to experimental data are reported, displaying satisfac-

105tory results in both the vertical and the outer beams.

Backscattered-signal analysis and single-beam
bottom detection
This section focuses on the shape of the amplitude and phase shifts
of the backscattered signal. The aim is to extract likely locations for

110the water-bottom interface. For both signals, some preprocessing
steps are proposed to account for noise and signal variability.

Amplitude-based detection
Because the reflection coefficient of the seabed is usually much
higher than that of fish schools, bottom detection based on the

115echo amplitude is a natural choice, as implemented in current
fishery echosounders. The shape of the leading edge, however,
depends on many parameters, including the nature of the
seabed, the depth, the beam width, and, most importantly, the
angle between the incident beam and the seabed (Lurton, 2002).

120Amplitude thresholding: efficiency and limits
Figure 1 shows the amplitudes of typical backscattered signals
acquired by Simrad ER60 and ME70 echosounders at normal
incidence and by the ME70 echosounder at incidence 338. These
data were acquired at locations very close to each other, and

125thus are characterized by the same depth and bottom type.
Amplitude-based detection is usually performed by thresholding
the signal at some level before it peaks. Then, a backstep distance

Figure 1. Examples of backscattered signals where the echo amplitude is expressed as volume-backscattering strength (Sv in dB). ER60 normal
incidence-angle data, 38 kHz, Sv values for two pings: without fish (a) and with fish near the seabed (c). ME70 data, vertical beam (b), and
outer beam with incidence angle of 338 (d). Amplitude data (full line), bottom detection (horizontal dotted line) based on a threshold of
240 dB (vertical dotted line). The full line in (d) locates the estimated bottom by maximum-amplitude detection for non-normal incidence
angles.
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is applied to ensure that no contribution from the bottom is
included within the echo integral of the water column (Ona and

130 Mitson, 1996). To reduce interference from noise, a smoother
amplitude signal should be considered, especially for non-normal
incidence angles. Here the amplitude data are low-pass filtered by a
Hanning filter with a cut-off frequency at 0.8 m21. This gives a
smooth, but still useful signal for any echosounder and any inci-

135 dence angle, as illustrated in Figure 1. Figure 1a and b illustrates
situations where a threshold-based detection method works per-
fectly at normal incidence angles. In Figure 1c, however, the
bottom-detection threshold is crossed at a lower depth, because
there are fish close to the seabed. In such a case, manual correction

140 by the user is required to accurately locate the bottom and to inte-
grate the corresponding biomass. In Figure 1d (non-normal inci-
dence angle), thresholding at 240 dB locates a point in the middle
of the leading edge, which is much wider than at normal incidence
angles, and does not give a satisfactory detection.

145 Non-normal incidence angles: maximum-amplitude method
At non-normal incidence angles, locating the bottom and defining
the useful portion of the echo for fish detection are two different
issues. Once the bottom has been detected, it is necessary to use a
wider backstep zone with some “adaptive” width, because the

150 shape of the leading edge itself depends on the beam width and
incidence angle, and it shows high variability from one ping to
another. In practice, the use of multibeam data emanating from
close to the seabed first requires locating the bottom. Second,
the upper limit of the backstep to avoid any seabed contribution

155 should be determined. In this paper, only the bottom-detection
problem is considered.

Following methods used for bottom detection at small inci-
dence angles for bathymetric applications (Lurton, 2001), we com-
puted the bottom position from the filtered amplitude signal as the

160 barycentre (in terms of energy) of that portion of the signal where
the amplitude was .10 dB less than the maximum. The reason for
this approach was to gain robustness in noisy conditions.

Non-normal incidence angles: phase-difference cancellation
method

165 All the ME70 echosounder beams can be configured in the split-
beam mode. The split-beam configuration is mainly used to com-
pensate for transducer directivity in target-strength measurements
(Ehrenberg, 1983). However, phase information from split-beam
measurements can also be used to detect the water-bottom inter-

170 face, for example, for seabed mapping, where, as the incidence

angle increases, bottom detection switches from amplitude-based
to phase-based methods. The main beam is split into two parallel
and closely spaced secondary beams. Then, the phase difference
between these secondary beams is zero when the centre of the

175beam arrives at the bottom (Lurton, 2001). The goal then is to
detect zero-crossings in the phase signal.

Typical phase data for several incidence angles are displayed in
Figure 2. To gain robustness in the presence of noise, some prepro-
cessing is necessary to efficiently use the phase information. In

180practice, the phase signal is first passed through a five-element
mean filter. Then, the zero crossing closest to the amplitude
maximum is located. For negative incidence angles, the sign of
the athwartship angle should change from positive to negative,
and conversely for positive incidences. As illustrated in Figure 2,

185it is difficult to detect the phase cancellation for low incidence
angles. Conversely, at greater incidence angles, the phase reveals
an almost linear shape around the location of the bottom depth.
In such a case, a zero crossing can be detected.

Practical considerations
190Many tests were conducted to compare the maximum-amplitude

and phase-difference-cancellation methods for bottom detection
using the ME70. The methods were applied to different datasets
obtained with different configurations of the ME70, varying
depths, and seabed types, while the seabed was approximately

195flat. Figure 3a illustrates typical standard deviations of the esti-
mated bottom position as a function of the incidence angle.
Below 208, the maximum-amplitude method exhibits less variabil-
ity. Conversely, for incidences .208, the phase-cancellation
method is more robust. Typical bottom lines illustrating this

200behaviour are depicted in Figure 3b. In practice, the maximum-
amplitude and phase-cancellation methods should be used,
respectively, for incidence angles less than and greater than 208.

A state – space framework for robust bottom
detection

205Here we deal with a Bayesian estimation framework for bottom
detection. It relies on the definition of a likelihood function that
describes the confidence in amplitude- or phase-based bottom
detection. Further, a state–space, prior model is proposed to
take account of the regularity of the bottom between two consecu-

210tive pings. Using Bayesian particle filtering, both information
sources are merged and a robust estimate of the bottom location
is computed.

Figure 2. Echo amplitudes (top) and athwartship phases (bottom) for incidence angles of 0.378 (left), 168 (centre), and 338 (right), obtained
from ME70 split-beam data. The expected depth is �90 m. The full lines plot the raw angle data and the vertical dashed lines locate the
detection of phase cancellation.
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Statistical description of bottom detection
For the sake of clarity, only single-beam data are considered here.

215 Suppose that for ping k, the true bottom location is at depth zk and
has been detected at depth yk, by amplitude-maximum, phase-
cancellation, or any other method. Then yk = zk + ek, where the
error ek is unknown. Suppose that {ek}k is a sequence of indepen-
dent random variables, according to some probability distri-

220 bution: ek�pk(ek). Then, the likelihood function (Edwards,
1972) is defined as L(ykjzk) / pk(yk2 zk). With no additional
knowledge of the error statistics, the Gaussian assumption is the

most reasonable choice

pkðekÞ ¼ gsðekÞ ;
1

s
ffiffiffiffiffiffi
2p
p exp �

e2
k

2s2

� �
: ð1Þ

225That is, the most likely value for zk is yk with some uncertainty
expressed by the variance s2 (Figure 4a).

A more robust choice is to consider a mixture model composed
of Gaussian and uniform distributions for p(ek). Then the most
probable value is yk, but errors occur elsewhere with a higher prob-

Figure 4. Gaussian, Gaussian-uniform, and multi-Gaussian-uniform likelihood functions (a, b, and c). prediction models for bottom regularity:
flat seabed (d) and linear steep seabed (e).

Figure 3. (a) Standard deviation of the bottom location as a function of the incidence angle and the method of detection:
maximum-amplitude (blue line) and phase-cancellation (black line). (b) Typical bottom lines obtained by maximum-amplitude (blue) and
phase-cancellation (black) at different incidences.
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230 ability than for the Gaussian assumption (Figure 4b). To include
the possibility of several candidates, say yk

(p)
, p= 1. . . P for bottom

location (as in Figure 1c), we finally build a multimodal likelihood
function where each mode corresponds to a possible value.
Formally, this is written as

LðykjzkÞ/ aUDðZkÞ þ ð1� aÞ
Xp

P¼1

gsðzk � y
ð pÞ
k Þ; ð2Þ

235 where UD is the uniform distribution on some reasonable bound-
ary interval D = [zmin, zmax] and a [ [0,1] sets the proportion of
the uniform distribution in the mixture (Figure 4c).

Spatial regularity
240 Using the above notations, we introduce spatial regularity in

expressing that zk, the true bottom location at ping k, should be
close to that at ping k–1. A simple model is

zk ¼ zk�1 þ gk�1; ð3Þ

where gk is random. If the seabed is flat between the vessel pos-
245 itions at pings k–1 and k, the mean of gk is zero. A slightly

more refined model takes a slope parameter into account, thus

zk ¼ zk�1 þ dk�1ak�1 þ gk�1; ð4Þ

where dk21 is the (known) linear distance covered by the ship
between the two pings and ak21 the (unknown) projection of

250 the slope of the seabed at ping k21 in the direction of ping k.
For this model, gk21 represents the error made by linearly interpo-
lating the bottom location at ping k from the bottom depth and
slope at ping k21. Here again, the errors gk can be supposed
random and distributed according to some given probability dis-

255 tribution. Both models are illustrated in Figure 4d and e.
In matrix form, we write the following linear model:

zk

ak

� �
¼

1 dk�1

0 1

� �
zk�1

ak�1

� �
þ

g
ðzÞ
k�1

g
ðaÞ
k�1

" #
, xk

¼ Fkxk�1 þ gk�1; ð5Þ

where the 2� 2 matrix Fk is known, the vector xk collects the
unknown bottom depth zk and the slope ak at ping k, respectively,

260 and gk represents the prediction errors in both zk and ak. Model (5)
is a state–space prediction model (West and Harrison, 1997) that
describes the spatial regularity of the seabed in the alongship direc-
tion. Here gk is considered Gaussian, with zero mean and covari-
ance

CovðgkÞ ;
X
g

;
vargðzÞk�1 0

0 vargðzÞk�1

" #
¼

s2
z 0

0 s2
a

� �
;

265 with given variances sz
2 and sa

2.

Under this assumption, model (5) can be presented as a prob-
abilistic prediction term.

pðxkjxk�1Þ ¼
1

2pj
P

r j
exp �

1

2
ðxk � Fkxk�1Þ

0
X�1

g

ðxk � Fkxk�1Þ

 !
:

ð6Þ

270

Note that for multibeam data, the regularity of the bottom in
the athwartship direction can be similarly described. For a given
ping, a state–space model can be derived, similar to model (5),
where the bottom depth and the athwartship slope for a given

275beam are expressed as linear functions of the same parameters
for the adjacent beam.

Particle-filtering algorithm
Until now, the statistical framework has been based on the defi-
nition of the likelihood function (2) for bottom detection in

280every beam and for every ping, and the use of the linear state–
space model (5) for bottom continuity.

Bayesian estimation theory gives a natural framework to
perform statistical inference sequentially (Doucet et al., 2001).
At a given instant k (after the kth ping), the posterior probability

285distribution p(xkjy1, . . . , yk) is that of the unknown parameters xk

(bottom depth and slope for ping k), according to models (2) and
(5), once the data y1, . . .,yk have been acquired, that is, the bottom-
detection values have been obtained for the first k pings. According
to Bayes’ rule, p(xkjy1, . . ., yk) can be written.

pðxkjy1; . . . ; ykÞ ¼ K � LðykjxkÞpðxkjy1; . . . ; yk�1Þ ð7Þ

290where K is a normalizing constant, L(ykjxk) the likelihood function
(2), and p(xkjy1, . . ., yk21) is

pðxkjy1; . . . ; yk�1Þ ¼

ð
pðxkjxk�1Þpðxk�1jy1; . . . ; yk�1Þdxk�1: ð8Þ

295The first term in the integral is the prediction term (6) and the
second term is exactly the posterior probability at ping k21.

Equations (4) and (5) demonstrate how to compute the pos-
terior distribution. At ping k, bottom-detection methods are
applied and the likelihood (2) is built. Then, the spatial regularity

300of the seabed expressed by model (5) is taken into account by the
prediction term p(xkjxk21) to formulate Equation (8), which is
used, jointly with the likelihood function, to obtain the posterior
distribution (7).

It is generally impossible to compute Equations (7) and (8)
305from an explicit analytical expression, except in very specific

cases, such as when models are linear and all probability distri-
butions are Gaussian, which is not the case here. The use of par-
ticle filters (Doucet et al., 2001) is a very common and efficient
way to approximate such distributions. Here we use the

310Sampling Importance Resampling filter, as detailed in the tutorial
paper by Arulampalam et al. (2002). In practice, using T = 250
particles ensured a good approximation at low computational
cost. Once such an approximation of Equation (7) is available,
an estimate of the bottom depth can be obtained by taking the par-

315ameters xk that maximize the distribution (the maximum a poster-
iori estimate), or by computing the mean of xk according to its
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posterior distribution (the posterior mean estimate). The latter
option is chosen here; this algorithm is from now on referred to
as the bottom-continuity particle-filtering (BCPF) algorithm.

320 The BCPF algorithm requires several parameters to be tuned. In
the likelihood function (2), s is the standard deviation of the
Gaussian part of the error around the detected bottom. It is
related to the sampling interval along the depth axis, which
depends on the ME70 configuration. In all our experiments, the

325 depth-sampling interval of the ME70 was �10 cm; therefore, s
was set to 10 cm. The proportion of uniform distribution in the
mixture model (2) was set to a = 0.2, that is, the likelihood is
20% uniform and 80% multi-Gaussian. This choice allows robust-
ness against errors while preserving the information content

330 brought by the Gaussian part. In the prediction model (5), sz is
the standard deviation of the prediction error on the bottom
location, and it was set analogously to sz = s = 0.1 m, the
sampling interval along the depth axis. In the notation of model
(5), sa is the standard deviation of the prediction error in ak =

335 tan (ak); see Figure 4. In practice, we set sa = 0.05, which corre-
sponds approximately to an error of 38 in the slope prediction.

Applications
Different datasets were used to test and validate the approach pre-
sented here. The first comprises echosounder data contaminated

340 by false bottom detections, caused by fish close to the seabed.
Then, two examples with ME70 data are presented. In the first
of these, the leading edge of the echo-amplitude in the outer
beams is less sharp because the water is rather deep (200 m). In
the second example, the dataset comprises multibeam obser-

345 vations of large and dense fish schools close to the seabed.

ER60 data, normal incidence
The echogram in Figure 5a was obtained during the PELGAS’06
fisheries survey in the Bay of Biscay, with a Simrad ER60 echo-
sounder operating at 38 kHz and a pulse duration of 1024 ms.

350 The bottom-detection method uses an amplitude threshold, set
during the survey at 240 dB. Some spikes are visible in the
bottom line, caused by the presence of fish close to the seabed.
In this example, the same threshold (240 dB) was used for the
first step of the proposed new method. The computed bottom

355 line has been added in Figure 5b, illustrating that the spikes have
been removed. Figure 5c and d illustrates by expanded echogram
views how the new method works. Several possible candidates
for bottom detection are illustrated in Figure 5c. The best location
of the interface between the bottom and the fish school is provided

360 by running the spatial-continuity algorithm. In Figure 5d, the
standard amplitude-thresholding method locates the bottom as
being above the fish, and there is no other threshold crossing
between the fish and the bottom. In this case, allowing for detec-
tion errors, and considering spatial continuity, also permits a

365 correct location of the bottom.

ME70 data
Bottom detection with multibeam data acquired by the ME70 is
performed in the following way:

(i) for incidences below 208, locate the maximum echo
370 amplitude,

(ii) for incidences above 208, locate the cancellation of the
athwartship phase-difference signal, then

(iii) apply spatial-regularity criteria to the data for each beam
using the BCPF algorithm.

375
Deep water (�200 m)
The data considered in this section were acquired during the
EXACHA’08 technological survey in March 2008 in the Bay of
Biscay. The ME70 was configured to have 21 beams incidence

380angles ranging from 2418 to 418 and 3-dB beam widths ranging
from 68 in the outer beams to 38 in the vertical beam. The pulse
duration was 1024 ms and all beams were configured in split-beam
mode. Echograms obtained at several incidence angles are dis-
played in Figure 6, where the vertical axis depicts the depth h

385and not the range d of the echo, thus h = d cos(u), where u is
the incidence angle. Bottom detection by the ME70, mainly
done with amplitude thresholding set at 240 dB, is not satisfac-
tory in the outer beams, because the bottom is detected well
above the location indicated by the echo maximum. Bottom detec-

390tion based on maximum amplitude and phase cancellation
achieves more accurate results, but there are still spikes, especially
at the highest incidences. The BCPF algorithm efficiently
removes spikes and yields a more regular bottom line.
Numerical estimates of the mean depth and the associated stan-

395dard deviations in each case are given in Figure 6 and confirm
these findings, revealing yet more improvement as the incidence
angle increases.

Shallow water, fish close to the seabed
Echograms in Figure 7 are from the IBTS’08 fisheries survey,

400carried out in the North Sea in January 2008. They display
dense herring schools located close to the seabed. The ME70 was
configured to have 15 beams in split-beam mode, with incidence
angle ranging from 2508 to 508 and 3-dB beam widths ranging
from 108 in the outer beams to 58 in the vertical beam. The

405pulse duration was 1024 ms. Because of the strong backscattering

Figure 5. Bottom detection from ER60 echosounder data. (a)
Bottom line computed by the standard firmware of the ER60. (b)
Bottom line estimated using the BCPF algorithm. (c and d) Expanded
views of two cases with false bottom detections. The magenta
diamonds represent possible candidates for bottom detection, in this
case, where the amplitude crosses a –40 dB threshold. The final
result of the BCPF method allows an accurate estimation of the
bottom (blue line) and an appropriate discrimination between fish
and bottom echoes. Numerical values give, for each case, the mean
bottom depth along the sequence and the corresponding standard
deviation.
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Figure 6. Four echograms of a scene at �200-m depth, acquired by the ME70 during the EXACHA08 technological survey, for different
incidence angles. For each angle, left: system bottom line, centre: bottom line after maximum-amplitude detection (blue) or
phase-cancellation detection (black), right: bottom line after applying BCPF to the bottom line from the centre graph. In each case, numerical
values are given for the mean estimated depth (z) and the associated standard deviation (s).

Figure 7. Four echograms of a scene at �28-m depth, acquired by the ME70 during the IBTS08 survey, for different incidence angles. For each
angle, left: system bottom line, centre: bottom line after maximum-amplitude detection (blue) or phase-cancellation detection (black), right:
bottom line after BCPF was applied to the bottom line from the centre graph.
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of the schools, amplitude-thresholding methods (left columns in
Figure 7) were unable to detect the bottom below the fish
schools, even in normal incidence.

Bottom-detection results without BCPF are illustrated in the
410 centre columns of Figure 7. The incidence-angle limit for switch-

ing between maximum-amplitude and phase-cancellation
methods was set to ulim = 158. For smaller incidence angles, the
maximum-amplitude method was more satisfactory than ampli-
tude thresholding. It was noted, however, that the echo amplitude

415 from fish was sometimes greater than that from the bottom. Thus,
errors remained in the estimated bottom line. For higher inci-
dences, the phase-difference signal was less sensitive to the pre-
sence of fish near the seabed. However, because the phase
cancellation was searched in a region close to the amplitude-

420 maximum, phase-based bottom detection was also liable to false
detections. The BCPF algorithm was applied to each bottom-line
detection independently, i.e. only the spatial continuity between
two consecutive pings in the same beam was considered. Results
are plotted in the right columns of Figure 7, proving that all

425 spikes have been removed efficiently.

Conclusions
New methods were investigated to improve bottom detection with
the ME70 echosounder. In each beam, bottom detection can be
performed by locating the maximum of the echo amplitude for

430 low incidence angles (,158), or by detecting a cancellation in
the athwartship phase-difference signal for incidence angles
.158. Applying the new methods to the processing of echograms
acquired recently with the ME70 operating in split-beam mode
yielded satisfactory results. However, such a detector still suffers

435 from high variability and at times false bottom detections,
especially at greater incidence angles and in deep water.

A state–space model for the seabed has been proposed, combined
with an efficient particle-filter method, which efficiently stabilizes the
detection; this is called the BCPF algorithm. Applications to both

440 ER60 data in normal incidence and ME70 data for incidences
between 2408 and 408 revealed that the BCPF also removes false
detections caused by the presence of fish close to the seabed.

The approach presented here should be considered as a first
attempt to improve bottom detection with the ME70 multibeam

445 echosounder. Studies that are more extensive are needed to
explore the limitations of the method and further development
might improve on the robustness of the current version.

Satisfactory results were achieved with a reasonably flat or
smoothly sloping seabed, but not for very irregular ground. In

450 the latter case, the seabed-prediction model used for spatial regu-
larity is poorly adapted to reality, while bottom prediction by the
state–space model and raw echo-based detection can lead to con-
tradictory information.

In the current version of the BCPF algorithm, no information
455about the bottom slope is extracted from the data. However, a

slope estimate can be obtained from phase-difference data
(Lurton, 2002). Such information could be usefully incorporated
to improve the performance of the present algorithm.
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