Modelling the influence of environmental factors on the physiological status of the Pacific oyster Crassostrea gigas in an estuarine embayment; The Baie des Veys (France)

Type Article
Date 2009-10
Language English
Author(s) Grangere Karine1, 2, Menesguen Alain1, Lefebvre Sébastien2, Bacher CedricORCID1, Pouvreau StephaneORCID3
Affiliation(s) 1 : IFREMER, Dept Dynam Environm Cotier, F-29280 Plouzane, France.
2 : Univ Caen Basse Normandie, Lab Biol & Biotechnol Marines, IFREMER, UMR 100, F-14032 Caen, France.
3 : IFREMER UCBN, UMR 100, Stn IFREMER Argenton, F-29840 Presquile Du Vivier, Argenton, France.
Source Journal of Sea Research (1385-1101) (Elsevier), 2009-10 , Vol. 62 , N. 2-3 , P. 147-158
DOI 10.1016/j.seares.2009.02.002
WOS© Times Cited 44
Keyword(s) Baie des Veys, Normandy, France, Physiological Status, Phytoplankton Carbon Concentration, Food Supply, Temperature, Dynamic Energy Budget model, Biogeochemical Model
Abstract It is well known that temporal changes in bivalve body mass are strongly correlated with temporal variations in water temperature and food supply. In order to study the influence of the year-to-year variability of environmental factors on oyster growth, we coupled a biogeochemical sub-model, which simulates trophic resources of oysters (i.e. phytoplankton biomass via chlorophyll a), and an ecophysiological sub-model, which simulates growth and reproduction (i.e. gametogenesis and spawning), using mechanistic bases. The biogeochemical sub-model successfully simulated phytoplankton dynamics using river nutrient inputs and meteorological factors as forcing functions. Adequate simulation of oyster growth dynamics requires a relevant food quantifier compatible with outputs of the biogeochemical sub-model (i.e. chlorophyll a concentration). We decided to use the phytoplankton carbon concentration as quantifier for food, as it is a better estimator of the energy really available to oysters. The transformation of chlorophyll a concentration into carbon concentration using a variable chlorophyll a to carbon ratio enabled us to improve the simulation of oyster growth especially during the starvation period (i.e. autumn and winter). Once validated, the coupled model was a suitable tool to study the influence of the year-to-year variability of phytoplankton dynamics and water temperature on the gonado-somatic growth of the Pacific oyster. Four years with highly contrasted meteorological conditions (river inputs, water temperature and light) 2000, 2001, 2002 and 2003, were simulated. The years were split into two groups, wet years (2000 and 2001) and dry years (2002 and 2003). Significant variability of the response of oysters to environmental conditions was highlighted between the four scenarios. In the wet years, an increase in loadings of river nutrients and suspended particulate matter led to a shift in the initiation and the magnitude of the phytoplanktonic spring bloom, and consequently to a shift in oyster growth patterns. In contrast, in the dry years, an increase in water temperature—especially during summer—resulted in early spawning. Thus, the gonado-somatic growth pattern of oysters was shown to be sensitive to variations in river loadings and water temperature. In this context, the physiological status of oysters is discussed using a relevant indicator of energy needs.
Full Text
File Pages Size Access
publication-6809.pdf 10 674 KB Open access
Top of the page

How to cite 

Grangere Karine, Menesguen Alain, Lefebvre Sébastien, Bacher Cedric, Pouvreau Stephane (2009). Modelling the influence of environmental factors on the physiological status of the Pacific oyster Crassostrea gigas in an estuarine embayment; The Baie des Veys (France). Journal of Sea Research, 62(2-3), 147-158. Publisher's official version : https://doi.org/10.1016/j.seares.2009.02.002 , Open Access version : https://archimer.ifremer.fr/doc/00000/6809/