DIRECTION DE L'ENVIRONNEMENT ET DE L'AMENAGEMENT LITTORAL DIRECTION DES RESSOURCES VIVANTES

Découvrez plus de documents accessibles gratuitement dans Archimer

SURVEILLANCE ECOLOGIQUE ET HALIEUTIQUE DU SITE DE FLAMANVILLE ANNEE 1993

RAPPORT SCIENTIFIQUE ANNUEL

Luc DREVES Evelyne ERARD LE DENN Michel LUNVEN
Jocelyne Martin Dominique MIOSSEC
Jean Yves PIRIOU Jean Yves QUINTIN

Convention de marché EDF 95.F.0014 JUIN 1994

IFREMER Centre de Brest S.D.P. B.P. 70

29 263 Plouzané Tel : 98.22.40.40 Fax : 98.22.45.45

Telex: 940 627

DIRECTION DE L'ENVIRONNEMENT ET DE L'AMENAGEMENT LITTORAL

DIRECTION DES RESSOURCES VIVANTES

AUTEURS : Luc DREVES - Evelyne E Michel LUNVEN - Jocelyr Dominique MIOSSEC - Je Jean Yves QUINTIN	ie Martin	CODE : DEL/BREST - 94.09
HALIEUT DU SITE DE 1	E ECOLOGIQUE ET FIQUE FLAMANVILLE EE 1993	Date: juin 1994 Tirage: 40 Nb pages: 105
Commande EDF 95.F.0014	Rapport final	Diffusion libre : x restreinte : confidentielle :

RESUME:


L'étude de surveillance n°11 du site électronucléaire de FLAMANVILLE (département de la Manche) concerne l'année 1993. Sont étudiés les domaines pélagique, benthique et halieutique. Cette année 1993 est la 8ème année de fonctionnement de la Centrale.

ABSTRACT:

Surveillance n°10 of FLAMANVILLE power plant takes in account studies between march 1993 and september 1993. Hydrology, microbiology, phytoplankton, zooplankton, intertidal phytobenthos et zoobenthos, and fishing are studied. The year 1993 is the eighth year of working for this power plant.

Mots - clés : Benthos, Centrale nucléaire, Halieutique, Pelagos, Surveillance

Key words: Benthos, Fishing, Pelagos, Power plant, Surveillance.

SURVEILLANCE ECOLOGIQUE ET HALIEUTIQUE SITE DE FLAMANVILLE

ANNEE 1993

RAPPORTISCIENTUR (QUE ANNUEL

IFREMER Centre de BREST

B.P. 70 29 280 PLOUZANE TEL: 98.22.40.40

IFREMER Centre de NANTES

B.P. 1049 44 037 NANTES CEDEX TEL: 40,37,40.00

IFREMER Station de PORT EN BESSIN

Av. du Général DE GAULLE 14520 PORT-EN-BESSIN TEL: 31.51.13.00

Laboratoire départemental et régional de biologie et d'hygiène de Caen

34, rue Fred Scamaroni B.P. 303 14014 CAEN CEDEX

JUIN 1994

Commande EDF 95.F.0014

PREAMBULE

Dans le cadre de l'implantation d'une Centrale électronucléaire sur le littoral de la commune de Flamanville (département de la Manche) et du contexte législatif en vigueur, Electricité de France a confié à l'IFREMER¹ la réalisation des études écologique et halieutique du milieu marin bordant ce site.

Une étude essentiellement bibliographique, dite d'Avant-Projet, fut réalisée en 1975 par le CNEXO², pour la partie écologique, et l'ISTPM³, pour la partie halieutique.

L'étude de Projet, menée par ces deux organismes de juillet 1976 à août 1978 (étude écologique) ou d'avril 1977 à septembre 1979 (étude halieutique), eut pour but d'établir un état de référence avant l'implantation de la centrale électronucléaire. Seule une fraction de l'étude halieutique, traitant de la pêche des adultes, a été maintenue entre les deux phases de Projet et de Surveillance (de 1980 à 1982).

L'étude de Surveillance a commencé en 1983, soit deux années avant la date théorique de mise en fonctionnement de la première tranche de la Centrale (janvier 1985). La mise en route s'étant effectuée progressivement à partir de 1986, le contenu de cette étude est resté inchangé au cours des sept premières années de fonctionnement réel de la Centrale. Cette étude de Surveillance devait permettre dans un premier temps d'apprécier les fluctuations naturelles pluriannuelles des principaux paramètres retenus à partir de l'étude de Projet. Dans un deuxième temps, elle doit permettre d'analyser l'incidence éventuelle de la Centrale sur le milieu marin et ses ressources.

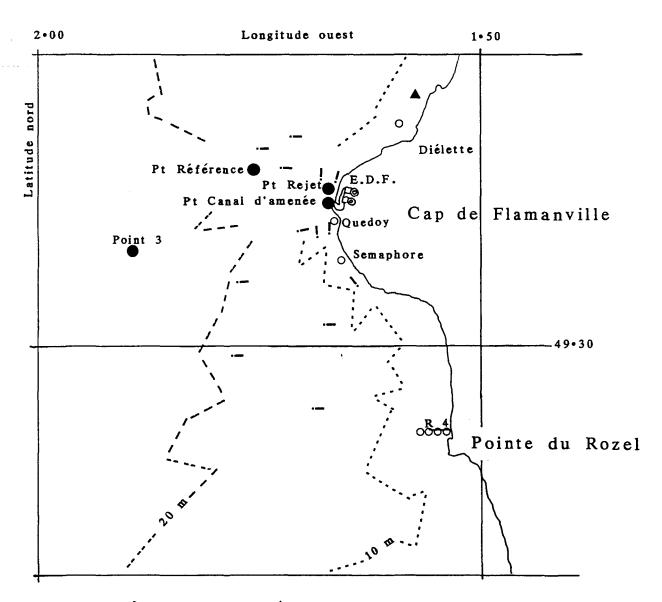
¹ Organisme issus de la fusion du CNEXO et de l'ISTPM en 1984

² Centre National pour l'Exploitation des Océans

³ Institut Scientifique et Technique des Pêches Maritimes

A compter de l'année 1993, le programme de Surveillance est allégé conformément à la stratégie déjà adoptée sur les autres sites de Gravelines, Paluel et Le Blayais.

Les résultats présentés dans le présent rapport concernent 1993, 8ème année de fonctionnement de la Centrale, et concernent l'étude :


- de l'hydrologie, du phytoplancton, du zooplancton, du phytobenthos, du zoobenthos, études réalisées au Centre IFREMER de Brest par le Laboratoire Ecologie et le Service Qualité du Milieu de la Direction de l'Environnement et de l'Aménagement Littoral (DEL/EC et DEL/QM);
- de la microbiologie confiée au Laboratoire départemental et régional de biologie et d'hygiène de Caen pour les prélèvements et leur dépouillement, l'interprétation des résultats se faisant à Brest (DEL/EC);
- halieutique réalisée au Centre IFREMER de Nantes et à la Station IFREMER de Porten-Bessin par le département Ressources Halieutiques de la Direction des Ressources Vivantes (DRV/RH).

La coordination de l'étude est assurée au Centre IFREMER de Brest (DEL/EC).

SOMMAIRE

		PAGE
Part	tie 1. Les caractéristiques de l'année 1993	
1.1.	Climatologie	3
1.2.	Fonctionnement de la Centrale	3
1.3	Température de l'eau de mer	5
1.4.	Présentation des travaux réalisés en 1993	5
ANN	EXES	10
Part	tie 2. Le domaine pélagique	
2.1.	Méthodologie	15
2.2.	Hydrobiologie	15
2.3.	Phytoplancton	19
2.4.	Zooplancton	23
2.5.	Microbiologie	41
2.6	Conclusion	47
ANN	EXE	48
Part	ie 3. Le domaine benthique	
3.1.	Phytobenthos intertidal	51
3.2.	Zoobenthos intertidal - substrats durs	61
3.3.	Conclusion	71
ANN	EXES	72
Part	ie 4. Le domaine halieutique	
4.1.	Larves de crustacés	77
4.2.	Surveillance de la pêche côtière des crustacés	87
4.3.	Conclusion	93
Biblio	graphie	94
ANNI	EXES	95
Conc	clusion générale	105

Carte des abords de Flamanville indiquant l'emplacement des points de prélèvements visités en 1993

- ._ Filières casiers crustacés
- ▲ Secteur d'étude de Fucus serratus
- O Secteurs d'étude des cirripèdes
- Points pélagiques

1. LES CARACTERISTIQUES DE L'ANNEE 1993

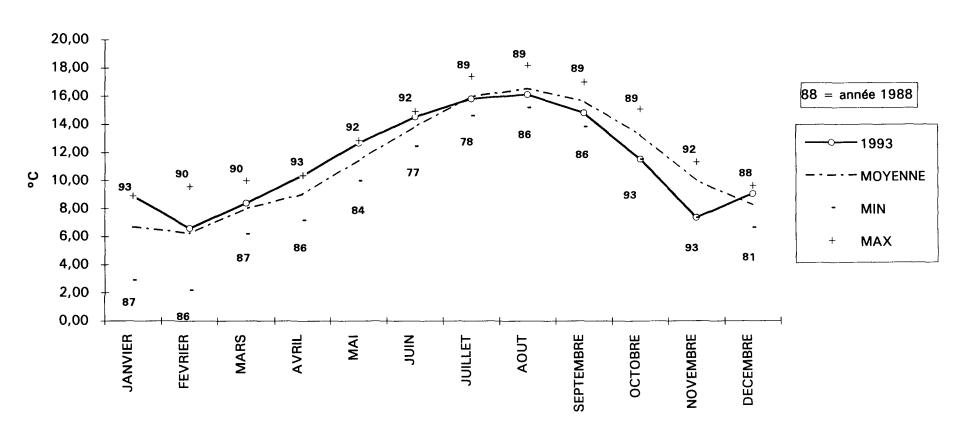
par Luc DREVES (DEL-ECOLOGIE)

1.1.LA CLIMATOLOGIE.

Les données communiquées par la Direction de METEO FRANCE proviennent d'enregistrements réalisés au sémaphore de la Hague (température et pluviométrie) et à la station de Valognes (insolation).

L'année 1993 se caractérise par des températures moyennes mensuelles de l'air tout d'abord supérieures aux moyennes saisonnières de janvier à juin, puis inférieures de juillet à novembre (figure 1.1 et annexe 1.1). Cette clémence générale des températures mensuelles se traduit par une amplitude thermique annuelle de l'air faible (9,6 °C), avec une température mensuelle minimale hivernale de 6,6 °C en février et maximale estivale de 16,2 °C en août. Cette amplitude annuelle est très inférieure à la moyenne calculée sur la période 1977-1993 (11,1 °C), et contraste avec celle notée en 1986 et 1987 (~ 14 °C). A noter la température mensuelle moyenne record de douceur en janvier (8,9 °C de moyenne mensuelle) et en avril (10,4 °C), et de froid en octobre (11,6 °C) et novembre (7,4 °C).

Pour la deuxième année consécutive, la pluviométrie annuelle (854 mm) est très forte, la moyenne calculée sur les 17 années d'observations étant de 709 mm (figure 1.2 et annexe 1.2). Le premier semestre accuse cependant un déficit pluviométrique conséquent (287 mm pour 325 mm de moyenne), analogue à celui noté en 1989. A noter une valeur record de sécheresse pour février (11,1 mm). Le second semestre est par contre très humide avec des valeurs records de précipitations pour septembre et décembre.


Les données concernant l'insolation sont incomplètes, ce paramètre ayant été estimé en mars. Les mois les plus ensoleillés sont juin et août avec respectivement 202 et 211 heures d'insolation. L'ensoleillement total annuel se situerait entre 1230 et 1300 heures en 1993, valeur faible comparée à celles notées en 1989 (2027 h.) et 1990 (2034 h.).

1.2. LE FONCTIONNEMENT DE LA CENTRALE.

1993 est la 8^{ème} année de fonctionnement de la Centrale de Flamanville, la 11^{ème} année consécutive pour les études de Surveillance.

Hormis quelques arrêts de courte durée (1 à 3 jours) en mars et avril, puis d'une quinzaine de jours en mai et d'une dizaine en octobre, la tranche 1 a fonctionné toute l'année.

FIG. 1.1 : Températures mensuelles moyennes de l'air au sémaphore de La Hague de 1977 à 1993

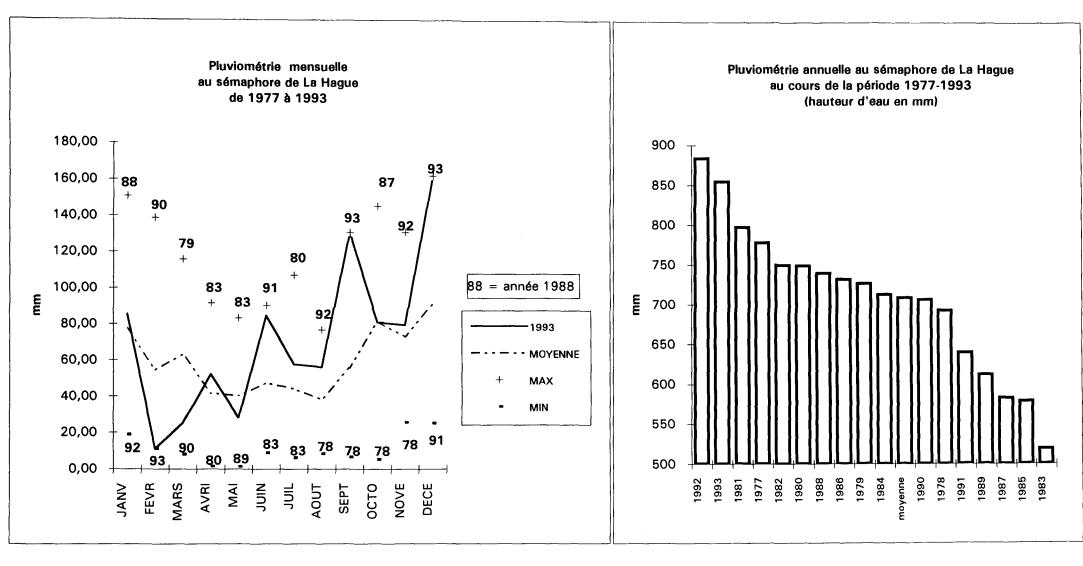
La tranche 2 a fonctionné à 100% sur l'ensemble de l'année, à l'exception d'un arrêt total du 22 mai au 3 août, et du 10 décembre au 31 décembre.

Le processus antisalissure par électrochloration n'a fonctionné que de juin à novembre sur la tranche 1, et de septembre à novembre sur la tranche 2 (annexe 1.3). 209 tonnes de chlore ont ainsi été injectées dans le circuit d'eau de refroidissement en 1993, la majeure partie par la tranche 1. Cette valeur est similaire à celle notée en 1992. Un récapitultif de la quantité annuelle de chlore injecté dans le circuit d'eau de mer de refroidissement est présenté dans le tableau 1.1.

Année	1987	1988	1989	1990	1991	1992	1993
Chlore en T	424	580	570	805	365	191	209

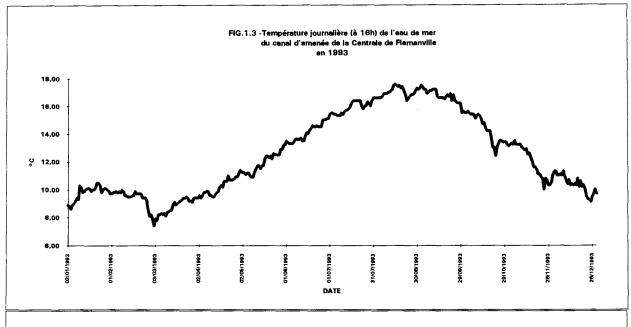
Tableau 1.1 : récapitulatif du tonnage annuel de chlore injecté dans le circuit d'eau de refroidissement du CNPE de Flamanville.

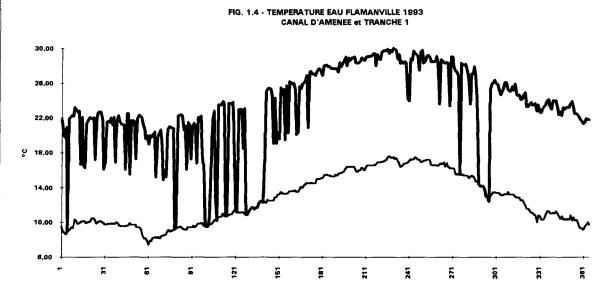
<u>1.3. TEMPERATURE DE L'EAU DE MER</u>

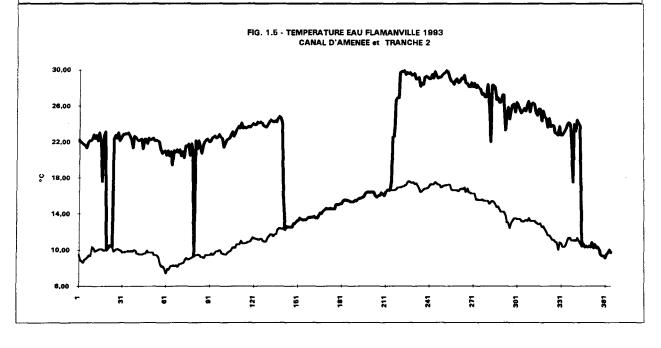

Le relevé quotidien, effectué par EDF, de la température de l'eau de mer dans le canal d'amenée (figure 1.3) et à la sortie de chacun des deux condenseurs (figures 1.4 et 1.5) permet de constater :

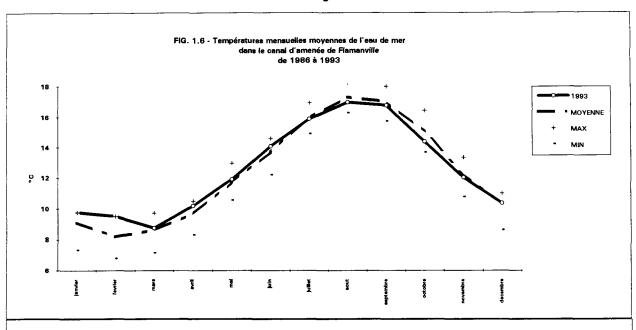
- une température de l'eau dans le canal d'amenée supérieure à la moyenne saisonnière au cours du premier semestre, inférieure au cours du second (figure 1.6), observations analogues à celles faites sur la température de l'air ;
- les écarts journaliers maxima de la température mesurée à la sortie des condenseurs par rapport au canal d'amenée (figure 1.7).

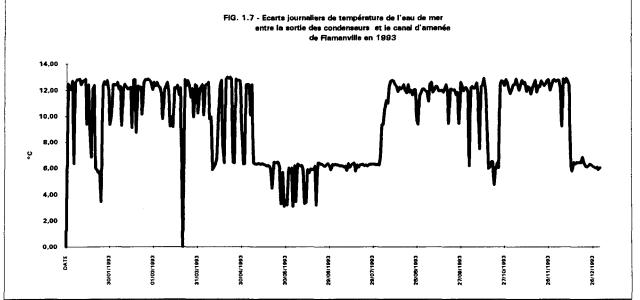
1.4. TRAVAUX REALISES

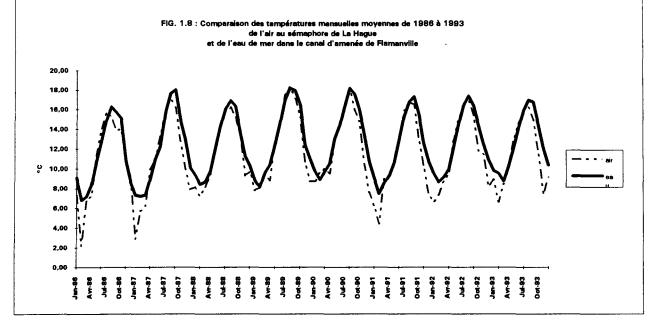

Les travaux réalisés en 1993 sont présentés dans le tableau 1.2, les points de prélèvements sur la carte figurant en préambule.


FIG. 1.2 - PLUVIOMETRIE AU CAP DE LA HAGUE




1993	Paramètres étudiés	Points de	Nbre réplicats	Dates des missions
		prélèvements	à chaque point	
DOMAINE PELAGIQUE	Température		Référence 1 à -10m Rejet 1 subsurf. C.amenée 1 subsurf.	
	Salinité		1 subsurface	
Hydrobiologie	Chlore résiduel	Référence	1 subsurface	
	Sels nutritifs NH4		Référence 2 subsurf. 2 à -10m	29 avril 29 juin
Phytoplancton	Chlorophylle Phaeopigments	Rejet	Rejet 4 subsurf. C.amenée 4 subsurf.	26 septembre
7	Détermination des espèces	Canal d'amenée		
Zooplancton	Biomasse Composition chimique (carbone, azote) Détermination des espèces		6 WP2 congelés (2 triples)	
Microbiologie	Dénombrement des - germes totaux - germes viables		Référence 4 Rejet 2	
	Recherche des vibrio- halophiles		C.amenée 2	
DOMAINE	Fucus serratus	Platier de Diélette		
BENTHIQUE	- Biométrie			
	- Longueur	3 Radiales	10 pieds	8-9 mars
Phytobenthos	Nbre de dichotomiesFertilitéEpaisseur du pied	dans la zone à Fucus serratus	tous les 10 m. sur chaque radiale	[24 mars]*
	- Biomasse	Secteurs 1, 2, 3	10 quadrats par secteur	1-2 septembre
Zoobenthos	Substrats durs intertidaux - Densité des différentes espèces de cirripèdes - Faune associée	Radiale R4 (points 1, 2, 3, 4) Point SEM Point QUEDOY Point Diélette	Par point : 8 quadrats 12 comptages 4 grattages	23-24 mars [23 juin]*
	- Etude de recolonisation	Points 2, SEM, Quedoy, Diélette	Par point : quadrats (3x25)cm ²	1-2 septembre
DOMAINE HALIEUTIQUE Zooplancton et Hydrologie	Densité des larves d'araignée - température - salinité	Point 3 Référence Rejet Canal d'amenée	2 Bongo 1 Neuston surface 1 Neuston oblique	17 juin [29 juin]* 12 juillet 30 juillet 23 août
Suivi de l'exploitation	Recueil d'informations sur la pêche professionnelle	N.O. Cotentin		
et de la biologie des espèces commerciales	Pêches expérimentales - pour homard, tourteau, araignée et étrille (longueur, sexe, dureté) - autres espèces (présence)	15 points (1 filière par point)	4 levées des 15 filières d'au moins 20 casiers	14-18 juin 20-24 septembre


[]*: échantillonnage hors contrat



ō

Annexe 1.1 : Température moyenne (°C) de l'air au Cap de La Hague de 1977 à 1993

ANNEE	JANV	FEVR	MARS	AVRI	MAI	JUIN	JUIL	AOUT	SÈPT	осто	NOVE	DECE	MOYENNE annuelle	Amplitude maximale
1977	5,99	7,55	8,59	8,42	10,49	12,50	15,31	15,43	14,77	14,46	9,00	7,92	10,87	9,44
1978	6,40	5,50	8,08	7,80	11,10	13,30	14,70	15,60	15,50	14,30	11, 5	7,70	10,91	10,10
1979	4,20	4,60	7,00	8,80	10,30	13,30	15,70	16,10	15,40	14,40	10,90	9,30	10,83	11,90
1980	5,61	8,17	7,24	9,93	11,43	14,28	15,48	16,77	16,40	12,14	9,00	8,40	11,24	11,16
1981	7,84	5,71	9,25	8,91	11,59	13,52	15,52	16,70	16,39	12,27	10,72	6,72	11,26	10,99
1982	7,19	6,99	7,51	9,32	11,83	14,74	16,39	16,75	16,50	13,00	11,12	8,15	11,62	9,76
1983	8,80	5,20	8,20	8,50	11,30	14,40	17,40	17,30	16,00	13,10	10,70	8,20	11,59	12,20
1984	7,40	6,40	6,90	8,90	10,00	13,70	16,30	17,40	15,80	13,40	11,20	7,90	11,28	11,00
1985	4,10	5,00	6,80	9,50	11,00	13,50	16,10	16,20	15,90	13,40	8,60	9,40	10,79	12,10
1986	7,30	2,20	6,80	7,20	11,30	13,90	15,70	15,30	13,90	14,00	10,80	9,10	10,63	13,50
1987	2,90	5,70	6,20	10,00	10,90	13,40	16,00	17,00	16,20	12,80	9,90	7,90	10,74	14,10
1988	8,10	7,20	8,10	9,40	12,10	14,20	15,80	16,20	15,20	13,50	9,30	9,70	11,57	9,00
1989	7,80	8,10	9,50	8,80	12,70	14,80	17,50	18,30	17,10	15,20	10,60	8,70	12,43	10,50
1990	8,70	9,60	10,00	9,50	12,80	14,30	16,60	18,20	15,90	14,80	10,30	7,60	12,36	10,60
1991	6,20	4,40	9,10	9,20	10,60	13,00	15,90	16,80	16,50	12,90	10,10	7,40	11,01	12,40
1992	6,60	7,30	8,70	9,40	12,90	15,00	16,60	16,90	15,40	11,80	11,40	8,20	11,68	10,30
1993	8,90	6,60	8,40	10,40	12,70	14,60	15,90	16,20	14,90	11,60	7,40	9,10	11,39	9,60
Moyenne	6,71	6,25	8,02	9,06	11,47	13,91	16,05	16,66	15,75	13,36	10,07	8,32	11,31	11,10
Max	8,90	9,60	10,00	10,40	12,90	15,00	17,50	18,30	17,10	15,20	11,40	9,70	12,43	14,10
Min	2,90	2,20	6,20	7,20	10,00	12,50	14,70	15,30	13,90	11,60	7,40	6,72	10,63	9,00

Annexe 1.2 : Pluviométrie mensuelle au Cap de La Hague de 1977 à 1993

ANNEE	JANV	FEVR	MARS	AVRI	MAI	JUIN	JUIL	AOUT	SEPT	осто	NOVE	DECE	Pluviométrie annuelle
1977	118,10	79,80	63,30	32,40	67,90	67,10	20,70	75,70	37,00	27,10	108,40	80,40	777,90
1978	114,00	95,30	90,70	38,80	21,40	66,50	64,90	8,60	6,60	5,40	25,70	154,90	692,80
1979	100,60	64,40	115,80	42,60	62,70	35,40	11,40	40,10	17,70	69,00	56,50	110,60	726,80
1980	51,40	89,10	88,50	1,60	32,80	56,00	107,30	35,60	43,50	120,10	57,70	65,30	748,90
1981	42,40	44,90	91,00	26,40	81,90	26,20	28,70	48,60	120,40	142,50	33,60	110,90	797,50
1982	32,30	22,60	55,20	17,80	35,40	80,00	82,00	36,30	47,40	121,10	107,50	112,00	749,60
1983	44,20	41,70	49,40	91,70	83,30	8,90	6,30	13,10	54,30	37,90	32,30	56,10	519,20
1984	121,60	52,20	61,60	3,90	62,70	9,30	27,90	15,80	81,20	72,20	96,80	107,70	712,90
1985	62,10	25,70	58,80	36,90	24,50	31,80	53,40	37,90	33,30	41,90	91,70	80,80	578,80
1986	111,80	27,90	70,70	48,90	57,30	46,30	23,60	59,90	61,50	58,40	64,20	101,60	732,10
1987	29,40	30,80	42,00	47,90	27,80	60,60	25,30	34,90	38,00	145,60	69,00	31,40	582,70
1988	150,90	66,90	92,10	16,50	30,90	9,00	51,80	69,80	68,70	93,70	41,30	47,90	739,50
1989	28,90	63,80	80,80	80,30	1,40	28,20	35,20	11,10	46,60	52,40	70,80	112,80	612,30
1990	104,20	138,90	8,00	47,30	14,10	74,30	17,40	13,90	28,00	92,00	89,60	78,90	706,60
1991	98,00	32,10	54,50	40,90	12,30	90,40	54,10	16,90	37,80	88,50	89,20	25,20	639,90
1992	18,90	38,70	28,20	84,20	40,90	33,00	85,60	76,80	96,60	135,60	131,00	114,20	883,70
1993	85,40	11,10	25,20	52,20	28,00	84,70	57,80	56,20	130,90	81,10	79,50	162,30	854,40
MOYENNE	77,31	54,46	63,28	41,78	40,31	47,51	44,32	38,31	55,85	81,44	73,22	91,35	709,15
MAX	150,90	138,90	115,80	91,70	83,30	90,40	107,30	76,80	130,90	145,60	131,00	162,30	
MIN	18,90	11,10	8,00	1,60	1,40	8,90	6,30	8,60	6,60	5,40	25,70	25,20	

Annexe 1.3 : Fonctionnement de l'électrochloration à Flamanville en 1993 par rapport à 1992

				19	92					19	93		
			Tranche 1		1	Tranche 2		1	Tranche 1		1	Tranche 2	
		Nbre H K	g chlore/h	total	Nbre H	Kg chlore/h	total	Nbre H	Kg chlore/h	total	Nbre H	Kg chlore/h	total
Janvier	File 1	0		0	0		0	0		0	0		(
	File 2	0		0	0		0	0	ļ	0	0		(
Février	File 1	0		0	0		0	0		0	0		(
	File 2	0		0	0		0	0		0	0		(
Mars	File 1	0		0	0		0	0		0	0		(
	File 2	0		0	0		0	0		0	0		(
Avril	File 1	0		0	0		0	0		0	0		(
	File 2	0	· · · · · · · · · · · · · · · · · · ·	0	0		0	0	i	0	0		(
Mai	File 1	0		0	0		0	0		0	0		
	File 2	180	54,00				0	0		0	0		(
Juin	File 1	346	25,00	8 650	0		0	220	11,87	2 611	0		
	File 2	412	25,00		98	9,00	882	150		2 610			
juillet	File 1	426	36,00	15 336	0		0	519	25,46	13 214	0		
	File 2	459	37,00		56			517	45,12	23 327	0		(
Août	File 1	107	43,10	4 612	44	45,00	1 980	888	18,56	16 481	0	}	(
	File 2	106	43,20	4 579	290	45,00	13 050	880		16 298	0		
Septembre	File 1	이		0	320	45,70	14 624	0	0,00	0	217	37,90	8 22
	File 2	0		0	352	30,50		509	80,10	40 771	303	43,20	13 09
Octobre	File 1	0		0	625	46,80	29 250	0	0,00	0	399	43,20	17 23
	File 2	0		0	634	28,80		304	91,10	27 694	294	40,90	12 02
Novembre	File 1	0		0	295	46,80	13 806	0	0,00	0	212	44,37	9 40
	File 2	0		0	510	28,80	14 688	65		5 616	0	0,00	
Décembre	File 1	0		0	0		0	0		0	0	1	
	File 2	0		0	73	28,80		0	0,00	0		0,00	
Total ann	uel			70 180			120 946			148 622			59 98
				191	126					208	604		

2. LE DOMAINE PELAGIQUE

Etude et rapport réalisés :

- au Centre IFREMER de BREST par :

Michel LUNVEN (Hydrologie)

Evelyne ERARD-LE DENN (Phytoplancton)

Jean-Yves QUINTIN (Zooplancton)

Luc DREVES (Microbiologie)

avec la collaboration de :

Marie-Laure COCHARD, Marie-Pierre CRASSOUS, Agnès YOUENOU, pour les analyses au laboratoire,

Philippe CANN, pour la maintenance du CHN.

- au Laboratoire départemental et régional de biologie et d'hygiène de CAEN

2.1. METHODOLOGIE

De 1987 à 1992, l'étude de Surveillance du domaine pélagique s'est déroulée selon le même processus. Une année dite "lourde" (1987, 1989, 1991) alterne avec une année dite "légère" (1988, 1990, 1992). Dans le premier cas cité, le contrat prévoit l'identification des espèces tant phytoplanctoniques que zooplanctoniques.

Les principales modifications apportées à la stratégie d'échantillonnage en 1993 sont :

- l'abandon du point "contrôle"; sont donc visités les points côtiers "entrée" (canal d'amenée) et "sortie" (rejet) de la centrale, ainsi qu'un point hors zone non impacté (référence),
 - l'abandon du paramètre production primaire,
- un renforcement de la détermination des espèces phyto- et zooplanctoniques, paramètre qui sera mesuré chaque année.

Le matériel et les méthodes d'analyses utilisés en 1993 sont les mêmes que ceux appliqués les années précédentes.

Le calendrier des missions, les paramètres étudiés et le nombre d'échantillons effectués en chaque point sont donnés dans le tableau 1.2. ; le positionnement des points est mentionné sur la carte figurant en préambule.

2.2. HYDROLOGIE

Les résultats des analyses hydrologiques sont présentés dans le tableau 2.1.

2.2.1. TEMPERATURE

Les températures moyennes relevées sur le site de Flamanville se situent dans l'intervalle des températures mesurées depuis 1978. A noter, la température du mois d'avril 1993 qui est supérieure aux moyennes des quatre années précédentes à la même période ; ceci peut s'expliquer par une relative douceur de l'hiver 1992-1993 (données météo du sémaphore de La Hague).

Tableau 2.1 : Moyennes et écarts-types des paramètres hydrologiques à Flamanville.

29 avril 1993	Salinité	Température	Ammonium	Nitrite	Nitrate	Phosphate	Silicate
	10 ⁻³	°C	µmol.dm ⁻³				
Canal	35.20	11.04	0.22	0.35	5.97	0.27	1.56
amenée		+ 0.01	+0.04	+ 0.19	+ 1.98	± 0.08	+ 0.54
Rejet	35.18	11.11 + 0.01	0.16 ± 0.01	0.26 + 0.16	7.10 + 1.31	0.30 + 0.04	1.80 + 0.38
Référence	35.26	10.44	0.21	0.30	7.36	0.43	1.57
	+ 0.05	+ 0.04	± 0.05	+ 0.12	±1.44	+0.19	± 0.17
Moyenne	35.22	10.90	0.20	0.30	6.81	0.33	1.64
1993	+ 0.05	+ 0.32	± 0.05	+ 0.15	+ 1.58	± 0.13	± 0.37
Moyenne	35.39	9.76	0.58	0.33	6.81	0.41	1.29
1992	+ 0.02	± 0.76	± 0.29	± 0.29	+ 0.72	<u>+</u> 0.04	+0.14
Moyenne	35.07	9.40	1.23	0.11	7.57	0.27	1.89
1991	+ 0.03	± 0.30	± 0.84	+ 0.02	± 0.84	± 0.12	+ 0.64
Moyenne		10.71	0.22	0.14	3.76	0.43	1.18
1990		+ 0.37	+ 0.17	+ 0.03	+ 2.23	+ 0.56	+ 0.75
Moyenne	34.74	10.66	0.18	0.16	5.78	0.32	0.86
1989	+ 0.94	± 0.66	± 0.26	+0.02	± 0.64	± 0.03	+ 0.21
Moyenne	34.88	11.43	1.38	0.55	3.46	0.36	0.51
1988	+ 0.03	± 0.66	± 0.26	± 0.14	± 0.96	+ 0.29	+ 0.24
Moyenne	34.96	10.70	0.40	0.12	2.27	0.16	1.13
1987	+ 0.10	± 0.54	<u>+</u> 0.07	± 0.05	± 1.44	± 0.04	±0.20

29 juin 1993	Salinité 10°	Température °C	Ammonium µmol.dm ^e	Nitrite µmol.dm ⁴	Nitrate µmol.dm ⁴	Phosphate µmol.dm ⁴	Silicate µmol.dnr²
Canal	35.06	15.39	0.31	0.03	0.57	0.06	1.69
amenée	ĺ	<u>+</u> 0.02	<u>+</u> 0.16	<u>+</u> 0.02	<u>+</u> 0.49	± 0.01	<u>+</u> 0.20
Rejet	35.05	16.57	0.58	0.02	0.41	0.07	1.77
	}	+ 0.00	± 0.47	}	<u>+</u> 0.24	± 0.01	± 0.26
Référence	35.08	15.27	0.67	0.16	1.93	0.13	2.21
	+ 0.03	+ 0.25	± 0.34	+ 0.07	<u>+</u> 0.29	<u>+</u> 0.01	+ 0.46
Moyenne	35.07	15.69	0.54	0.07	0.97	0.08	1.72
1993	<u>+</u> 0.02	<u>+</u> 0.61	± 0.35	± 0.08	± 0.78	± 0.04	+ 0.62
Moyenne	35.11	15.91	0.63	0.21	1.27	0.14	1.79
1992	+ 0.05	<u>+</u> 0.69	<u>+</u> 0.27	<u>+</u> 0.13	± 0.63	± 0.06	<u>+</u> 0.64
Moyenne	35.19	13.80	1.12	0.03	0.46	0.05	1.79
1991	<u>+</u> 0.01	± 0.80	<u>+</u> 0.72	<u>+</u> 0.03	± 0.30	<u>+</u> 0.10	± 1.05
Moyenne	35.28	15.54	0.34	0.05	0.72	0.15	0.94
1990	<u>+</u> 0.01	<u>+</u> 0.89	<u>+</u> 0.20	± 0.03	<u>+</u> 0.94	<u>+</u> 0.06	<u>+</u> 0.45
Moyenne	34.96	17.00	0.10	0.01	0.26	0.07	0.90
1989	<u>+</u> 0.03	<u>+</u> 0.88	<u>+</u> 0.08	<u>+</u> 0.01	<u>+</u> 0.11	<u>+</u> 0.03	<u>+</u> 0.51
Moyenne	34.90	15.58	0.65	0.18	0.79	0.06	1.11
1988	<u>+</u> 0.06	<u>+</u> 0.38	<u>+</u> 0.10	<u>+</u> 0.09	± 0.63	± 0.04	<u>+</u> 0.34
Moyenne	34.93	15.37	0.65	0.22	1.34	0.18	3.66
1987	+ 0.05	+ 0.36	+ 0.13	+ 0.08	+ 0.61	+ 0.03	+ 3.69

26 septembre	Salinité	Température	Ammonium	Nitrite	Nitrate	Phosphate	Silicate
	10 ⁻⁶	°C	µmol.dm²	µmol.dm ⁴	µmol.dm²	µmol.dm²	µmol.dm²
	34.87	16.53	0.20	0.36	5.22	0.37	3.64
Canal amenée		± 0.04	± 0.08	± 0.01	<u>+</u> 0.26	<u>+</u> 0.02	<u>+</u> 0.33
Rejet	34.86	17.98 + 0.80	0.24 + 0.05	0.34 + 0.01	5.37 + 0.34	0.36 + 0.01	3.48 + 0.11
Référence	34.89	16.66	0.19	0.36	5.65	0.38	3.94
	+ 0.02	+ 0.05	+ 0.04	± 0.00	+ 0.29	+ 0.02	+ 0.74
Moyenne	34.88	17.15	0.21	0.35	5.41	0.37	3.68
1993	+ 0.02	+ 0.86	+ 0.06	+ 0.01	+ 0.32	+ 0.02	+ 0.47
Moyenne	35.49	16.48	0.97	0.22	2.25	0.33	3.03
1992	+ 0.08	+ 0.35	+ 0.69	+ 0.01	+ 0.30	+ 0.04	+ 0.41
Moyenne	35.09	17.90	1.25	0.15	4.05	0.34	4.11
1991	+ 0.04	+ 0.50	± 0.16	+ 0.02	+ 1.09	+ 0.06	± 0.78
Moyenne	35.63	17.03	0.28	0.26	2.37	0.32	2.38
1990	+ 0.05	+ 0.32	+ 0.22	+ 0.09	± 0.67	+ 0.04	+ 0.61
Moyenne	35.04	18.04	0.70	0.32	3.25	0.39	2.99
1989	+ 0.04	± 0.71	<u>+</u> 0.29	± 0.01	± 0.89	+ 0.06	+ 0.58
Moyenne 1988							
Moyenne	34.91	17.33	1.30	0.24	0.63	0.14	2.09
1987		+ 0.49	<u>+</u> 0.18	+ 0.18	<u>+</u> 0.57	+ 0.04	+ 0.34

L'échauffement maximal mesuré au point Rejet durant l'année 1993 est de 1.96°C au mois de septembre.

On peut calculer la proportion d'eau échauffée au point Rejet en appliquant la formule issue du rapport DERO/86.07/EL (équation simplifiée adaptée à Flamanville).

$$\pi = \frac{T^{\circ}r - T^{\circ}Ca}{15}$$

avec π : proportion de l'eau échauffée

 $T^{\circ}r$: température de l'eau mesurée au point Rejet

T°Ca: température de l'eau mesurée dans le Canal d'amenée

(assimilée à la température du point Rejet avant échauffement).

En avril $\pi = 0.01$ ce qui correspond à une dilution de 99 %.

En juillet $\pi = 0.08$ ce qui correspond à une dilution de 92 %.

En septembre $\pi = 0.10$ ce qui correspond à une dilution de 90 %.

En ne tenant pas compte de l'échantillonnage réalisé en avril 1993, on peut estimer une dilution moyenne de l'eau échauffée au point Rejet de l'ordre de 91 %, ce qui est comparable aux années précédentes.

2.2.2. SALINITE

Tout comme en 1992, du fait des faibles pluviosités observées en début d'année, la salinité moyenne mesurée demeure relativement élevée en avril et juillet (supérieure à 35 ‰). Par contre, la salinité mesurée au mois de septembre (34.88 ‰) est inférieure à celles relevées à la même période lors des quatre années précédentes. Ceci peut s'expliquer par les fortes pluviosités enregistrées au cours de l'été 1993 (valeur record en septembre).

2.2.3. AMMONIUM

Les concentrations en ammonium sont toutes inférieures à celles mesurées en 1992 et 1991 mais restent comprises dans les intervalles mesurés depuis 1983. La teneur la plus forte a été observée en juillet : $0.54 \pm 0.35 \,\mu mol.dm^{-3}$.

2.2.4. NITRITES

Les nitrites sont relativement abondants en 1993 tout comme en 1992. On peut noter une concentration élevée en septembre : $0.35 \pm 0.01 \, \mu mol.dm^{-3}$. Ce maximum est probablement lié à la pluviométrie élevée de l'été et à la faible biomasse phytoplanctonique.

2.2.5. NITRATES

Les valeurs moyennes de nitrates sont conformes aux normales saisonnières avec de fortes valeurs en avril : $6.81 \pm 1.58 \, \mu \text{mol.dm}^{-3}$ (le bloom phytoplanctonique printanier n'a pas encore eu lieu) et en septembre : $5.41 \pm 0.32 \, \mu \text{mol.dm}^{-3}$. Cette forte teneur, supérieure à celles enregistrées à la même époque lors des quatre dernières années, est probablement due aux pluviosités abondantes enregistrées lors de l'été.

2.2.6. PHOSPHATES

Les concentrations observées restent dans l'intervalle des mesures effectuées lors des années précédentes ; les plus fortes valeurs se situant, comme pour les nitrates, en avril et en septembre.

2.2.7. SILICATES

Les variations saisonnières observées au cours de l'année 1993 sont identiques à celles des années précédentes avec un maximum de $3.68\pm0.47~\mu mol.dm^{-3}$ en septembre.

2.3. PHYTOPLANCTON

En 1993, tous les paramètres globaux chlorophylle, phaéopigments et microplancton ont été mesurés pour estimer "l'impact" de l'échauffement de la masse d'eau. A chaque point de prélèvement (canal d'amenée, rejet et référence) les mesures des réplicats sont moyennées et représentées sous forme de tableau (2.2) et de figure (2.1). Les valeurs observées servent à suivre aussi bien les éventuelles variations côte-large dues à la centrale durant l'année 1993, que l'évolution des variations temporelles par rapport à celles observées durant les études précédentes (1976-1978 et 1983-1993).

Dans le cas présent, les échauffements faibles et les taux de dilution élevés (de 90 à 92 % cf. 2.2.1) laissent supposer qu'il y a peu de variation de la biomasse phytoplanctonique. Les calculs de déficit aussi bien pour la biomasse chlorophyllienne que pour le microplancton sont dans ce cas simplifiés et correspondent à :

$$\frac{VA - VR}{VA}$$
 x100 avec VA = valeur observée au canal d'amenée VR = valeur observée au rejet

2.3.1. BIOMASSE CHLOROPHYLLIENNE

Au cours des trois campagnes réalisées en 1993, les moyennes des biomasses algales évoluent entre 0.16 ± 0.07 (avril) et 0.95 ± 0.11 (juin) µg de chlorophylle a par dm³.

Cette faible amplitude des valeurs est à corréler avec l'amplitude thermique annuelle très inférieure à la moyenne calculée sur la période 1983-1993. Les valeurs sont peu élevées puisque inférieures à 1 µg de chlorophylle par dm³, mais elles reflètent néanmoins la pauvreté de la population algale prélevée en 1993.

2.3.2. PHAEOPIGMENTS

Corrélées aux faibles valeurs de la chlorophylle a, les valeurs des phaéopigments apparaissent élevées, entraînant par ce fait des pourcentages en chlorophylle active assez faibles de 36.2 % en avril à 62.3 % en juin.

Tableau 2.2 : Moyennes et écart-types des paramètres phytoplanctoniques

29 avril 1993	Chlorophylle µg dm ⁻³	Phaeopigments µg dm ⁻³	Production primaire mg C/m ³ /h	Microplancton Nbre/cm ³	Nanoplancton Nbre/cm ³
Canal amenée	0.29 + 0.10	0.32 + 0.09		16.0	125.0
Canal amence	0.18	0.45		21.0	149.0
Rejet	+ 0.09	+0.10			
	0.16	0.34		24.0	115.0
Référence	+0.07	± 0.25		<u>+</u> 5.6	<u>+ 72.1</u>
	0.21	0.37		21.2	126.0
Moyenne 1993	<u>+</u> 0.10	<u>+</u> 0.16		+ 4.9	+ 44.6
	0.31	0.36	2.83		
Moyenne 1992	+ 0.19	<u>+</u> 0.27	<u>+ 0.78</u>		L
	1.60	0.32	4.43	115.6	239.6
Moyenne 1991	+ 0.26	+0.21	<u>+ 1.24</u>	<u>+ 24.3</u>	+ 66.6
	2.50	0.44	5.57		
Moyenne 1990	<u>+</u> 0.58	+0.24	<u>+</u> 1.87		
	0.68	0.34	2.35	51.6	131.1
Moyenne 1989	<u>+</u> 0.20	<u>+</u> 0.27	<u>+ 0.62</u>	<u>+</u> 16.4	+ 39.9
	1.33	0.52	3.03		
Moyenne 1988	<u>+</u> 0.57	<u>+</u> 0.30	<u>+ 0.74</u>		<u> </u>
	1.16	0.09	3.08	65.8	668.2
Moyenne 1987	<u>+</u> 0.17	+ 0.09	+ 0.97	<u>+</u> 5.5	<u>+</u> 87.1

29 juin 1993	Chlorophylle µg dm ⁻³	Phaeopigments µg dm ⁻³	Production primaire mg C/m ³ /h	Microplancton Nbre/cm ³	Nanoplancton Nbre/cm ³
	0.58	0.56		75.0	449.0
Canal amenée	+ 0.09	+ 0.24			
	0.95	0.47	J	175.0	597.0
Rejet	<u>+ 0.11</u>	<u>+</u> 0.04			L
	0.74	0.36		119.5	539.5
Référence	+0.13	<u>+</u> 0.14		<u>+</u> 9.2	<u>+</u> 198.7
	0.76	0.46		122.2	531.2
Moyenne 1993	+ 0.19	<u>+</u> 0.18		± 41.2	<u>+</u> 130.0
	0.94	0.70	6.24		
Moyenne 1992	<u>+</u> 0.45	<u>+</u> 0.93	<u>+</u> 1.32		
	0.78	0.11	2.63	22.8	475.5
Moyenne 1991	<u>+</u> 0.16	<u>+</u> 0.20	<u>+</u> 0.88	<u>+</u> 5.1	<u>+</u> 89.5
	1.47	0.56	4.74		
Moyenne 1990	+ 0.78	± 0.34	<u>+</u> 1.68		}
	0.39	0.14	2.08	69.1	191.3
Moyenne 1989	<u>+</u> 0.28	<u>+</u> 0.16	<u>+</u> 0.88	<u>+</u> 46.7	<u>+</u> 18.9
	1.38	0.28	2.99		
Moyenne 1988	<u>+</u> 0.18	<u>+</u> 0.20	+ 0.40	<u> </u>	L
	1.68	0.46	5.81	129.3	1383.3
Moyenne 1987	<u>+</u> 0.35	± 0.22	<u>+</u> 1.31	± 33.5	+ 230.5

26 septembre 1993	Chlorophylle µg dm ⁻³	Phaeopigments µg dm ⁻³	Production primaire mg C/m ³ /h	Microplancton Nbre/cm ³	Nanoplancton Nbre/cm ³
	0.78	0.66	}	68.0	451.0
Canal amenée	± 0.14	+ 0.11			
	0.63	0.79		79.0	296.0
Rejet	<u>+</u> 0.14	<u>+</u> 0.26	L		
	0.71	0.57		81.0	317.5
Référence	<u>+</u> 0.09	± 0.12		± 31.1	<u>+</u> 48.8
	0.70	0.67		77.2	370.5
Moyenne 1993	+0.13	+0.18	4	+ 19.0	+ 64.6
	0.34	0.33	3.67		
Moyenne 1992	+0.33	<u>+</u> 0.41	+0.87		
	1.21	0.07	3.07	46.5	279.6
Moyenne 1991	+0.23	± 0.14	± 0.76	+ 6.6	+ 32.4
	1.14	0.21	3.98		
Moyenne 1990	+ 0.22	± 0.18	+1.18		
	1.06	0.50	4.27	67.8	304.5
Moyenne 1989	+ 0.22	+0.38	+ 0.94	+14.6	+ 25.3
	1.19	0.43	2.39		
Moyenne 1988	+0.16	+0.08	+ 0.72		
	4.46	1.02	11.68	453.6	1980.3
Movenne 1987	+1.09	+0.36	+3.37	+217.5	+809.9

2.3.3. MICROPLANCTON

Les valeurs microplanctoniques sont comme celles de la chlorophylle peu élevées, notamment en avril où la population algale ne dépasse pas 28 000 cellules par dm³. Ces faibles valeurs corrélées aux fortes concentrations en sels nutritifs correspondent à une situation avant bloom printanier.

Les valeurs de fin juin $(122 \pm 41 \text{ cell..dm}^{-3})$ et de septembre $(77 \pm 19 \text{ cell..dm}^{-3})$ s'insèrent également dans l'intervalle des valeurs observées durant les études précédentes.

2.3.4. POPULATIONS PHYTOPLANCTONIQUES

Comme pour les surveillances antérieures, tous les taxons sont dénombrés durant cette étude de suivi, mais ne sont reportés sous forme de tableau (2.3) que les espèces ou genres dominants.

Dans l'ensemble les populations observées correspondent à une succession saisonnière classique du phytoplancton en Manche ouest.

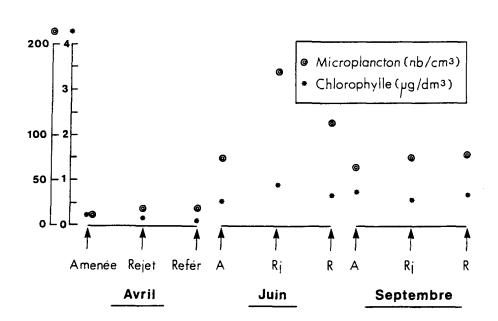

- En période avant bloom : présence du taxon printanier Rhizosolenia (R. delicatula) qui prédomine à 43 % au canal d'amenée.
- En période estivale : le genre *Rhizosolenia* est toujours dominant, représentant environ 25 % de la population complétée par le genre *Chaetoceros* (*C. gracile* et *C. perpussilum*) qui représente jusqu'à 40 % de la population au point référence.
- En période automnale : abondance de petites espèces comme *Skeletonema costatum* (environ 50 %) et *Thalassiosira spp.* (*T. decipiens*, *T. gravida* et *T. levanderi*) qui fluctuent entre 19 et 32 %.

Tableau 2.3. : Nombre et pourcentage de dominance des espèces et genres dominants.

	29 avril 1993					29 juin 1993					26 septembre 1993							
	1	anal nenée	R	ejet	Réfé	rence	,	nal ienée	Re	ejet	Réfé	rence		nal ienée	Re	jet	Réfé	rence
TAXONS	Nb	%	Nb	%	NЪ	%	Nb	%	Nb	%	Nb	%	Nb	%	Nb	%	Nb	%
Chaetoceros spp.	0.3	1.8			0.6	2.5	20.9	27.9	51.0	29.1	48.0	39.8	4.0	5.9	4.0	5.1	11.0	13.6
Navicula spp.	0.2	1.2	2.0	9.6	8.6	35.7			1.0	0.5	0.9	0.7	1.0	1.4	1.6	2.0		J
Nitzschia spp.	0.6	3.8	0.2	0.9	1.6	6.9	11.8	15.7	25.0	14.1	26.4	22.1	1.0	1.4	0.4	0.5	1.8	2.2
Paralia sulcata	1.8	11.4	1.2	5.8	<u> </u>	1						L		J	0.8	1.0	0.5	0.6
Rhizosolenia delicatula	5.1	31.7	2.6	12.5	2.8	11.6	16.0	21.4	40.0	23.0	18.0	14.8	5.0	7.7	6.0	7.4	8.0	9.6
Rhizosolenia fragilissima	0.3	1.8	0.2	0.9	0.4	1.6	1.8	2.4	1.0	0.5	0.6	0.5		L	1.6	2.0	0.3	0.3
Rhizosolenia setigera	0.8	5.0	0.3	1.4	0.9	4.0			1.4	0.8	1.6	1.3				<u> </u>		1
Rhizosolenia shrubsolei	0.5	3.1	0.5	2.4	0.3	1.4						L						
Rhizosolenia stolterfothii	0.2	1.2	1.1	5.3	0.8	3.3	0.6	0.8	0.6	0.3	1.4	1.1	0.8	1.2				
Rhizosolenia spp.	6.9	43.2	4.8	22.7	5.3	22.2	18.5	24.6	43.0	24.7	21.0	17.7	6.5	9.5	7.9	10.0	8.5	10.5
Skeletonema costatum		l					7.1	9.4	14.0	7.7	10.5	8.7	35.0	51.1	28.0	35.0	33.0	41.1
Thalassionema nitzschoides	2.1	13.3	7.0	33.4	3.3	13.9	9.1	12.2	23.0	13.1	6.8	5.7	4.5	6.5	4.3	5.4	2.1	2.6
Thalassiosira spp.	2.0	12.7	4.1	19.8	2.5	10.3	5.1	6.7	12.0	6.8	3.5	2.9	13.0	18.5	25.0	31.9	21.0	26.4

Fig. 2.1. FLAMANVILLE 1993

VARIATIONS DES PARAMETRES PHYTOPLANCTONIQUES (Moyennes) DE LA COTE VERS LE LARGE

2.4. ZOOPLANCTON

Dès 1993, le nombre de points de prélèvements passe de quatre à trois (CANAL, REJET, REFERENCE) et la détermination des principales espèces est désormais annuelle au lieu de biannuelle. Le point contrôle a été abandonné, sous réserve que l'écart thermique entre le point rejet et le milieu naturel ne dépasse pas 2 à 3 °C de façon redondante.

Le mode de prélèvement au filet triple WP2, à vide de maille de 200 µm, reste inchangé : six échantillons pour la mesure de la biomasse, du carbone total et de l'azote, un échantillon pour la détermination et la numération des principales espèces zooplanctoniques.

La méthodologie analytique est identique à celle de l'année antérieure. L'étuve MEMMERT UL40 et la balance METTER MK160 sont utilisés pour la mesure de la biomasse zooplanctonique. L'analyseur LECO-CHN 800 et sa balance LECO-350 sont utilisés pour la mesure du carbone total et de l'azote. La binoculaire WILD M5 est utilisée pour la détermination des espèces zooplanctoniques.

Le traitement statistique des données de 1993 est identique à celui déjà décrit dans le chapitre zooplancton des rapports relatifs aux années 1987 et 1988 (IFREMER 1989 et 1990):

- Le test non paramètrique de Kruskall-Wallis doit permettre de détecter une éventuelle hétérogénéité spatiale. Il est suivi d'un test de comparaisons multiples appliqué au rang, lorsque l'hypothèse (H₀) d'unicité des échantillons aux différents points, indiquant une homogénéité spatiale, est rejetée.
- Le test de comparaisons multiples de Student-Newman-Keuls (S.N.K) appliqué au rang doit permettre de déterminer les échantillons de quels points sont responsables de l'hétérogénéité, lorsque l'hypothèse (H₁) indiquant l'hétérogénéité spatiale a été retenue.

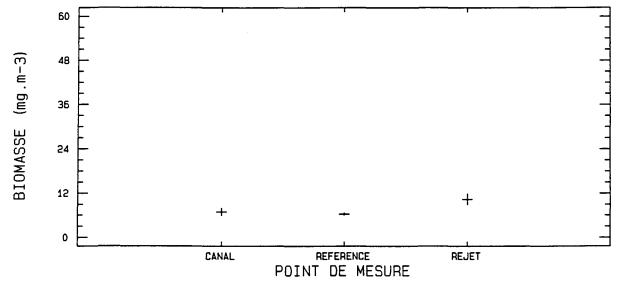
2.4.1. VARIATION SPATIO-TEMPORELLE EN AVRIL

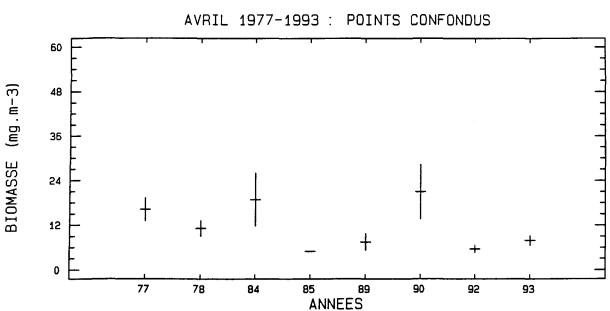
2.4.1.1. Biomasse (pl.2.1)

Les tests Kruskal-Wallis ne dépasse pas la valeur critique χ^2 $_{0,05(2)}$ = 5,99 pour la biomasse (H = 5,63). L'hypothèse (H₀) d'homogénéité spatiale n'est donc pas rejetée.

BIOMASSE ZOOPLANCTONIQUE

Tableau des statistiques et test de Kruskal-Wallis


Station	N	Moyenne	et Erreur	Rang		
		(mg.m-3)	standard	moyen		
CANAL	6	6,93	1,03	8,00		
REFERENCE	6	6,34	0,33	6,83		
REJET	6	10,41	1,42	13,67		
Tost statistique de Kruskel Wellie : H = 5.62						


Test statistique de Kruskal-Wallis: H = 5,63

Niveau de signification = 0,06

Tracés des moyennes + ou - une erreur standard

29 AVRIL 1993 : POINTS SEPARES

Les mesures de biomasse sont semblables au canal (6,93 mg.m⁻³), au point référence (6,34 mg.m⁻³) et légèrement plus forte au point rejet (10,41 mg.m⁻³). Mais la variabilité des mesures ne permet pas de différencier ces points.

Le tracé des moyennes pour le mois d'avril montre que les résultats de l'année 1993 (7,89 mg.m⁻³) se rapprochent de ceux de l'année 1989, (7,51 mg.m⁻³), et s'écartent assez peu de ceux des autres années en tenant compte de la variabilité des mesures.

2.4.1.2. Carbone total et azote (pl. 2.2 à pl. 2.3)

Le test de Kruskal-Wallis dépasse, en avril 1993, la valeur critique χ^2 $_{0,05(2)} = 5,99$ pour le carbone total (H = 8,57) et l'azote (H = 11,33), ce qui conduit au rejet de l'hypothèse H_0 d'unicité des échantillons aux différents points et à l'acceptation de l'hypothèse H_1 , indiquant une hétérogénéité spatiale, au risque $\alpha = 0,05$.

Le point rejet présente une moyenne de 3,4 mg.m⁻³ pour le carbonne total, 0,8 mg.m⁻³ pour l'azote, supérieures à celles des autres points ; le test de comparaison multiple confirme que seul le point rejet se différencie bien des autres points.

Le tracé des moyennes montre que le point rejet se distingue des autres points par des valeurs plus fortes pour le mois d'avril 1993. Lorsque nous comparons ces valeurs à celles des années antérieures à la mise en service de la centrale (points confondus, avant 1985), elles se situent dans la fourchette des fluctuations naturelles du milieu. Tous points confondus, le mois d'avril 1993 présente des valeurs moyennes en carbone total (2,5 mg.m⁻³) et en azote (0,6 mg.m⁻³) proche de celles d'avril 1977 et 1978.

2.4.2. VARIATION SPATIO-TEMPORELLE EN JUIN

2.4.2.1. Biomasse, (pl. 2.4)

La valeur critique de 5,99 n'étant pas dépassée, nous ne pouvons pas rejeter l'hypothèse H_0 d'homogénéité spatiale pour la biomasse (H = 5,3).

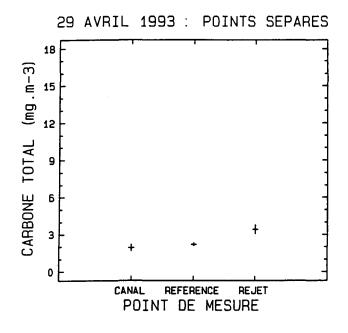
Le tracé des moyennes par point pour le mois de juin montre des valeurs assez fortes en biomasse au point référence (20,3 mg.m⁻³) par rapport aux autres points. Mais la variabilité des mesures, surtout au rejet (cf.erreur standard) ne permet pas de différencier ces points.

Planche 2.2

FLAMANVILLE 29 avril 1993

CARBONE TOTAL

Tableau des statistiques et test de Kruskal-Wallis


Station	N	Moyenne	et Erreur	Rang		
		(mg.m-3)	standard	moyen		
CANAL	6	1,92	0,27	6,33		
REFERENCE	6	2,19	0,12	7,50		
REJET 6 3,42 0,36 14,67						
Test statistique de Kruskal-Wallis: H = 8,57						
Niveau de signification = 0.01						

Test non paramétrique de comparaison multiple

Etape	Station	Qkw	p'	Q0,05 ;≠; p'	Hypothèse d'égalité
1	REJET-CANAL	3,62	3	3,314	REJETEE
2	REJET - REFERENCE	4,87	2	2,772	REJETEE
3	REFERENCE - CANAL	0.79	2	2,772	ACCEPTEE

Station	Groupes
	homogènes
CANAL	*
REFERENCE	*
REJET	*

Tracés des moyennes + ou - une erreur standard

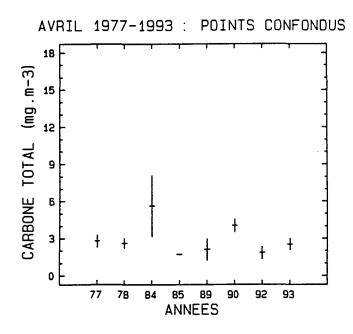
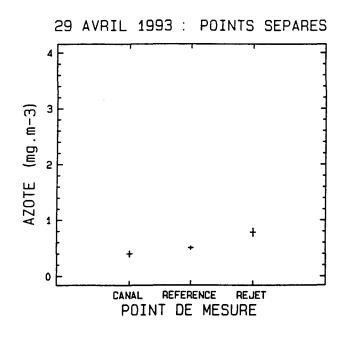


Planche 2.3

FLAMANVILLE 29 avril 1993

AZOTE

Tableau des statistiques et test de Kruskal-Wallis


Station	N	Moyenne et Erreur		Rang	
		(mg.m-3)	standard	moyen	
CANAL	6	0,40	0,05	5,00	
REFERENCE	6	0,50	0,03	8,33	
REJET	6	0,78	0,08	15,17	
Test statistique de Kruskal-Wallis: H = 11.31					

Niveau de signification = 3,5 E-3

Test non paramétrique de comparaison multiple

Etape	Station	Qkw	p'	Q0,05 ; p'	Hypothèse
					d'égalité
1	REJET-CANAL	4,66	3	3,314	REJETEE
2	REJET - REFERENCE	4,64	2	2,772	REJETEE
3	REFERENCE - CANAL	2,27	2	2,772	ACCEPTEE

Station	Groupes
	homogènes
CANAL	*
REFERENCE	*
REJET	*

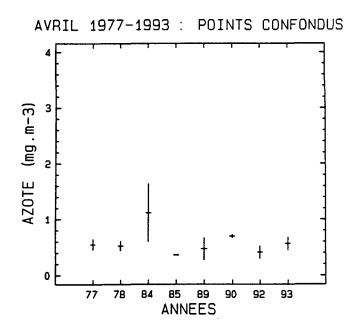


Planche 2.4

FLAMANVILLE 29 juin 1993

BIOMASSE ZOOPLANCTONIQUE

Tableau des statistiques et test de Kruskal-Wallis

9 6,33
5 13,33
1 8,83

Test statistique de Kruskal-Wallis : H = 5,30

Niveau de signification = 0.07

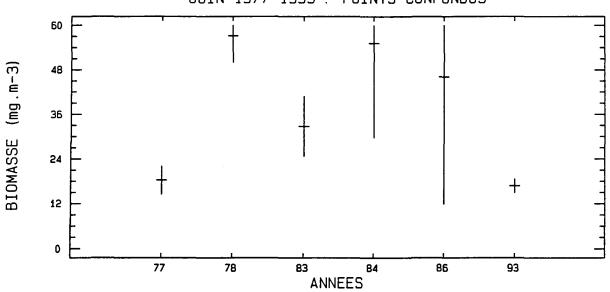


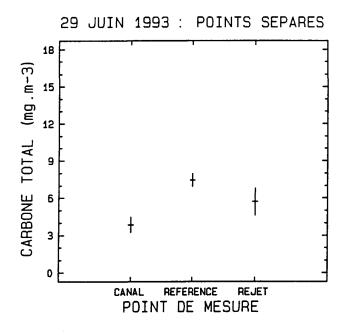
Planche 2.5

FLAMANVILLE 29 juin 1993

CARBONE TOTAL

Tableau des statistiques et test de Kruskal-Wallis

Station	N	Moyenne	Moyenne et Erreur	
		(mg.m-3)	standard	moyen
CANAL	6	3,84	0,63	5,67
REFERENCE	6	7,45	0,51	13,50
REJET	6	5,71	1,10	9,33


Test statistique de Kruskal-Wallis: H = 6,47

Niveau de signification = 0,04

Test non paramétrique de comparaison multiple

Etape	Station	Qkw	p'	Q0,05 ≠; p'	Hypothèse
					d'égalité
1	REFERENCE-CANAL	3,59	3	3,314	REJETEE
2	REFERENCE - REJET	2,83	2	2,772	REJETEE
3	REJET - CANAL	2,49	2	2,772	ACCEPTEE

Station	Groupes		
	homogènes		
CANAL	*		
REFERENCE	*		
REJET	*		

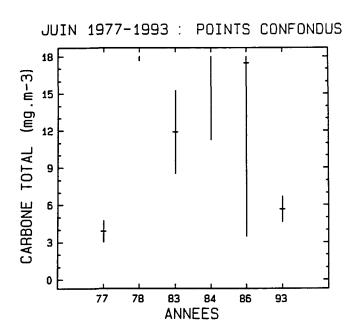


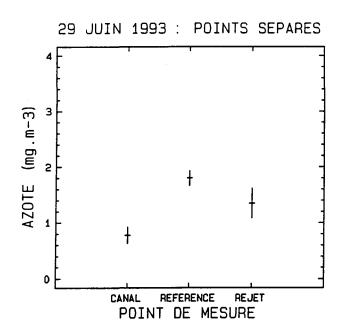
Planche 2.6

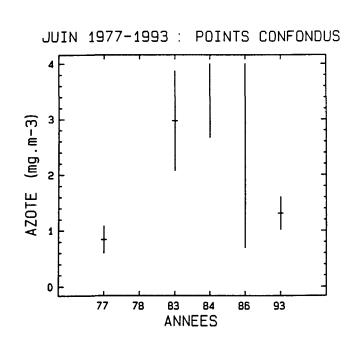
FLAMANVILLE 29 juin 1993

AZOTE

Tableau des statistiques et test de Kruskal-Wallis

Station	N	Moyenne	Moyenne et Erreur	
		(mg.m-3)	standard	moyen
CANAL	6	0,77	0,15	5,00
REFERENCE	6	1,80	0,13	13,83
REJET	6	1,35	0,27	9,67
KLJLI	U	1,33	0,27	


Test statistique de Kruskal-Wallis: H = 8,22


Niveau de signification = 0,02

Test non paramétrique de comparaison multiple

	Etape	Station	Qkw	p'	Q0,05 ; p'	Hypothèse
l						d'égalité
	1	REFERENCE - CANAL	4,05	3	3,314	REJETEE
	2	REFERENCE - REJET	2,83	2	2,772	REJETEE
l	3	REJET - CANAL	3,17	2	2,772	ACCEPTEE

Station	Groupes
	homogènes
CANAL	*
REFERENCE	*
REJET	*

Tous points confondus, la moyenne des mesures de juin 1993 est de 16,8 mg.m⁻³ en biomasse, valeur basse et proche de celle de l'année 1977 (18,3 mg.m⁻³).

2.4.2.2. Carbone total et azote (pl. 2.5 à pl. 2.6)

La valeur critique du test H (χ^2 0,05(2) = 5,99) est dépassée pour les paramètres carbone (H = 6,47) et azote (H = 8,22). L'hypothèse d'hétérogénéité spatiale est retenue.

Le point référence se distingue des autres points avec les valeurs les moins faibles. Les plus faibles correspondent au point canal. Le point rejet tient une place intermédiaire avec une plus grande variabilité dans les mesures (cf. erreur standard).

Globalement pour le mois de juin, les moyennes de 1993 en carbone (5,7 mg.m⁻³) et azote (1,3 mg.m⁻³), bien qu'assez basses sont supérieures à celles de 1977 (3,9 mg.m⁻³ en carbone et 0,8 mg.m⁻³ en azote) antérieure au fonctionnement de la centrale.

2.4.3. VARIATION SPATIO-TEMPORELLE EN SEPTEMBRE

2.4.3.1. Biomasse, carbone total et azote (pl.2.7 à 2.9)

Le dépassement de la valeur critique du test H conduit à retenir l'hypothèse d'une hétérogénéité spatiale au risque $\alpha = 0.05$ pour la biomasse (H=11,43), le carbone total (H=11,47) et l'azote (H=11,41) en septembre 1993.

Seul, le point référence se distingue des autres points par des valeurs moyennes moins faibles. Les valeurs intermédiaires du point rejet sont proches de celles du point canal.

Tous points confondus pour le mois de septembre, les moyennes annuelles sont de 7,9 mg.m-³ en biomasse, 2,8 mg.m-³ en carbone total et 0,6 mg.m-³ en azote, ce qui, comparées à celles des autres années, situe les résultats de 1993 dans la fourchette de ceux des années 1976 et 1989, 1990.

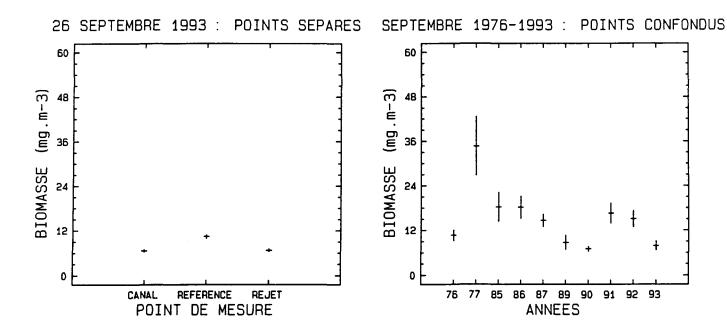
Planche 2.7

FLAMANVILLE 26 septembre 1993

BIOMASSE ZOOPLANCTONIQUE

Tableau des statistiques et test de Kruskal-Wallis

Station	N	Moyenne	et Erreur	Rang
		(mg.m-3)	standard	moyen
CANAL	6	6,61	0,37	6,17
REFERENCE	6	10,33	0,50	15,50
REJET	6	6,69	0,40	6,83
_				


Test statistique de Kruskal-Wallis: H = 11,43

Niveau de signification = 3.3 E-3

Test non paramétrique de comparaison multiple

Etape	Station	Qkw	p'	Q0,05 ;#0; p	Hypothèse
					d'égalité
1	REFERENCE - CANAL	4,28	3	3,314	REJETEE
2	REFERENCE - REJET	5,89	2	2,772	REJETEE
3	REJET - CANAL	0,45	2	2,772_	ACCEPTEE

Station	Groupes				
	homogènes				
CANAL	*				
REFERENCE	*				
REJET	*				

2.4.4. Interpretation biologique des variations spatiales en 1993. L'influence du facteur thermique (pl. 2.10 a 2.12)

Le diagramme température-salinité par colonne d'eau, codé pour les points canal (1), rejet (2), référence (4), groupés pour les mois d'avril, juin et septembre montre un rassemblement des données dans les gammes de températures respectives de 10,5-11 °C, 15-16,5 °C, 16,5-18 °C. Pour chaque période de temps considérée, le point rejet présente l'écart thermique (dT) le plus grand par rapport aux autres points (canal, référence). Ce dT moyen ne dépasse pas 0,7 °C en avril, 1 °C en juin, et 1,6 °C en septembre. En avril, les températures moyennes aux points canal et rejet sont très proches (dT<0,1 °C).

D'un point de vue paramètres pondéraux globaux nous avons constaté que :

- En avril, le point rejet se distingue des autres points par les valeurs de carbone et d'azote les plus fortes.
- En juin, le point référence se distingue des autres points par des valeurs de carbone et d'azote moins faible. Le point rejet présente une position intermédiaire.
- En septembre, le point référence se distingue des autres points par des valeurs de biomasse, carbone et azote moins faible. Le point rejet présente une position intermédiaire.

Pour émettre l'hypothèse d'un effet avéré de la centrale sur le milieu récepteur, les plus grands écarts pondéraux ou quantitatifs devraient, à priori, coïncider avec les plus grands écarts thermiques entre le point impacté (point rejet soumis à l'échauffement dû à la centrale et non uniquement au variations climatiques naturelles du milieu) et les points non impactés. Hors, les résultats des paramètres pondéraux globaux du point rejet ne diffèrent de ceux des autres points que pour le mois d'avril (dT le plus bas).

Pour ces différentes périodes, la plus grande variation d'abondance zooplanctonique total concerne les points suivants :

- En avril, le point rejet avec 4800 individus par 10 m3 et le point référence avec 3900 individus par 10 m3. Le canal présente une valeur intermédiaire de 4100 individus par 10 m3. Ces valeurs sont globalement du même ordre de grandeur.
- En juin, le point rejet avec 12100 individus par 10 m3 et le point canal avec 7500 individus par 10 m3. Le point référence présente une valeur intermédiaire de 9600 individus par 10 m3. Le point rejet présente un résultat globalement plus fort qu'aux autres points.

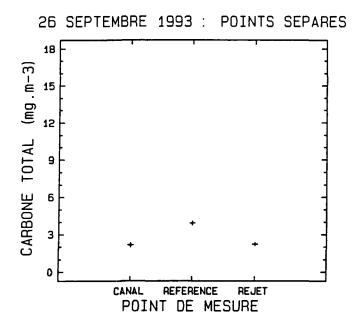
Planche 2.8

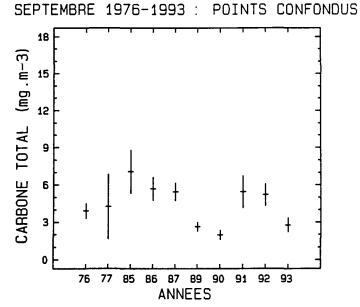
FLAMANVILLE 26 septembre 1993

CARBONE TOTAL

Tableau des statistiques et test de Kruskal-Wallis

Station	N	Moyenne (mg.m-3)	et Erreur standard	Rang moyen
CANAL	6	2,15	0,16	7,00
REFERENCE	6	3,91	0,16	15,50
REJET	6	2,21	0,13	6,00


Test statistique de Kruskal-Wallis: H = 11,47


Niveau de signification = 3,2 E-3

Test non paramétrique de comparaison multiple

E	Etape	Station	Qkw	p'	Q0,05;0; p	Hypothèse
						d'égalité
	1	REFERENCE - REJET	4,20	3	3,314	REJETEE
	2	REFERENCE - CANAL	5,78	2	2,772	REJETEE
İ	3	CANAL - REJET	0,45	2	2,772	ACCEPTEE

Station	Groupes				
	homogènes				
CANAL	*				
REFERENCE	*				
REJET	*				

- En septembre, le point rejet avec 3000 individus par 10 m3 et le point référence avec 10700 individus par 10 m3. Le point canal présente une valeur intermédiaire avec 9300 individus par 10 m3. Le point rejet présente un résultat globalement plus faible qu'aux autres points.

La quantification du zooplancton total montre que le rejet présente en général les abondances les plus grandes, sauf pour le mois de septembre. En septembre, les écarts quantitatifs globaux et thermiques sont alors les plus grands entre le rejet et les autres points. L'observation des espèces du zooplancton montre que quantitativement les trois principaux groupes sont les copépodes, les cirripèdes et les appendiculaires ; ils représentent plus de 50 %, et jusqu'à 95 % de la faune planctonique totale en 1993.

2.4.4.1. Avril 1993

En avril, les paramètres pondéraux globaux ont montré que le point rejet se distinguait des points canal et référence pour le carbone et l'azote. La composition faunistique est du même type entre les trois points, à l'exception d'une présence côtière d'annélides et d'oeufs de poissons au canal et au rejet, absents ou presque absents au point référence.

Au niveau du rejet, les groupes comportant moins d'individus par 10 m3 qu'aux points canal et référence sont les cnidaires (respectivement 20 pour 140 et 160), et l'appendiculaire *Oikopleura dioica* (respectivement 290 pour 520 et 760). Les groupes plus nombreux sont les décapodes (respectivement 110 pour 50 et 20), et le copépode *Acartia clausi* (respectivement 1300 pour 660 et 130). A noter également la présence de cirripèdes à un stade plus avancé au rejet (*cypris* plus nombreux qu'aux autres points).

Les paramètres pondéraux et quantitatifs globaux sont favorables au point rejet. Seules les espèces fragiles de l'embranchement des cnidaires ou de la classe des appendiculaires semblent impactées. Globalement, le rejet serait plutôt favorable à la faune planctonique en avril 1993, en particulier pour l'ordre des décapodes et l'espèce *Acartia clausi*. Ceci correspondant soit à une accumulation de zooplancton au niveau du rejet, soit à un effet local favorable de la centrale sur le milieu.

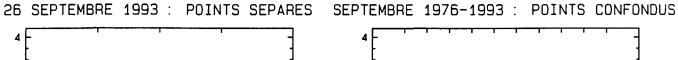
Planche 2.9

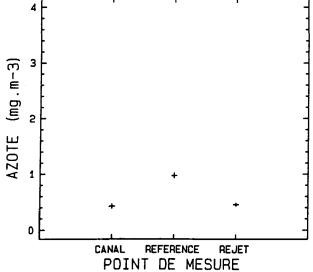
FLAMANVILLE 26 septembre 1993

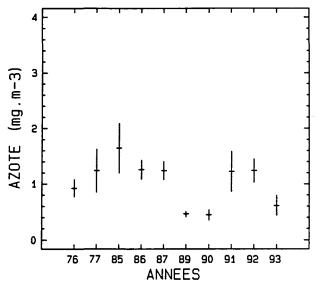
AZOTE

Tableau des statistiques et test de Kruskal-Wallis

Station	N	Moyenne	et Erreur	Rang
		(mg.m-3)	standard	moyen
CANAL	6	0,42	0,04	6,17
REFERENCE	6	0,97	0,04	15,50
REJET	6	0,45	0,03	6,83


Test statistique de Kruskal-Wallis : H = 11,41


Niveau de signification = 3.3 E-3


Test non paramétrique de comparaison multiple

Etape	Station	Qkw	p'	Q0,05; 0; p'	Hypothèse
					d'égalité
1	REFERENCE - CANAL	4,28	3	3,314	REJETEE
2	REFERENCE - REJET	5,89	2	2,772	REJETEE
3	REJET - CANAL	0,45	2	2,772	ACCEPTEE

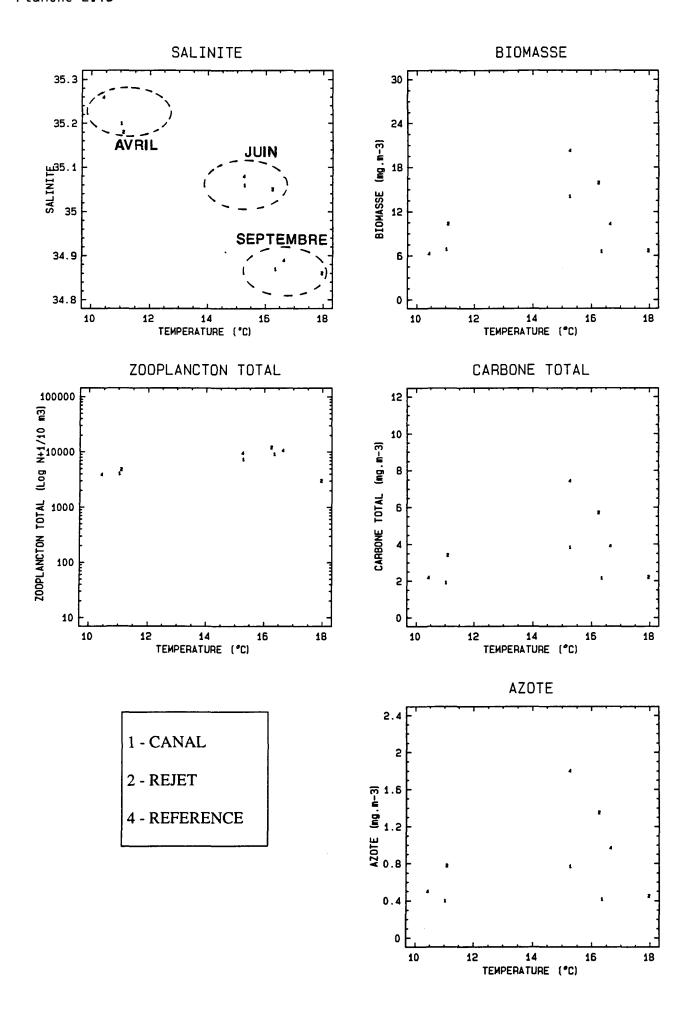
Station	Groupes				
	homogènes				
CANAL	*				
REFERENCE	*				
REJET	*				

2.4.4.2. Juin 1993

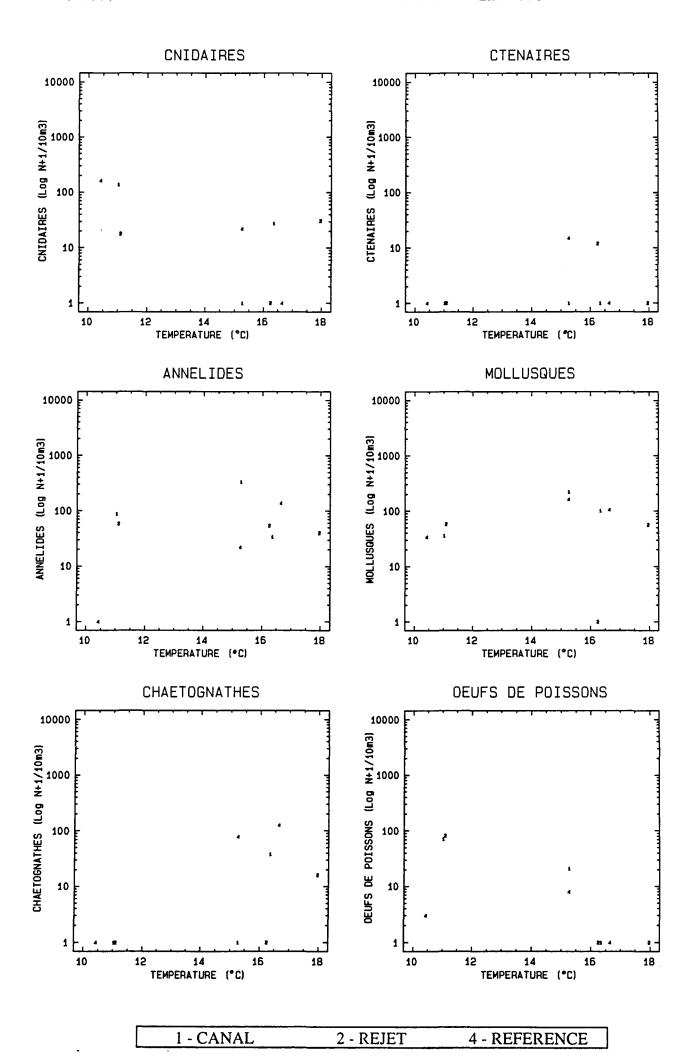
En juin, les paramètres pondéraux globaux ont montré que le point référence se distinguait des points canal et rejet pour le carbone et l'azote. Le point rejet, en position intermédiaire, ne peut pas être mis en cause, d'autant plus que la quantité de zooplancton total y est supérieure aux autres points.

Le point référence se distingue par la présence de cnidaires (20 individus par 10 m3) et de chaetognathes (80 individus par 10 m3) absents aux autres points, de décapodes plus nombreux (410 au point référence, 50 au canal et 110 au rejet). Les *nauplii* de cirripèdes y sont moins nombreux.

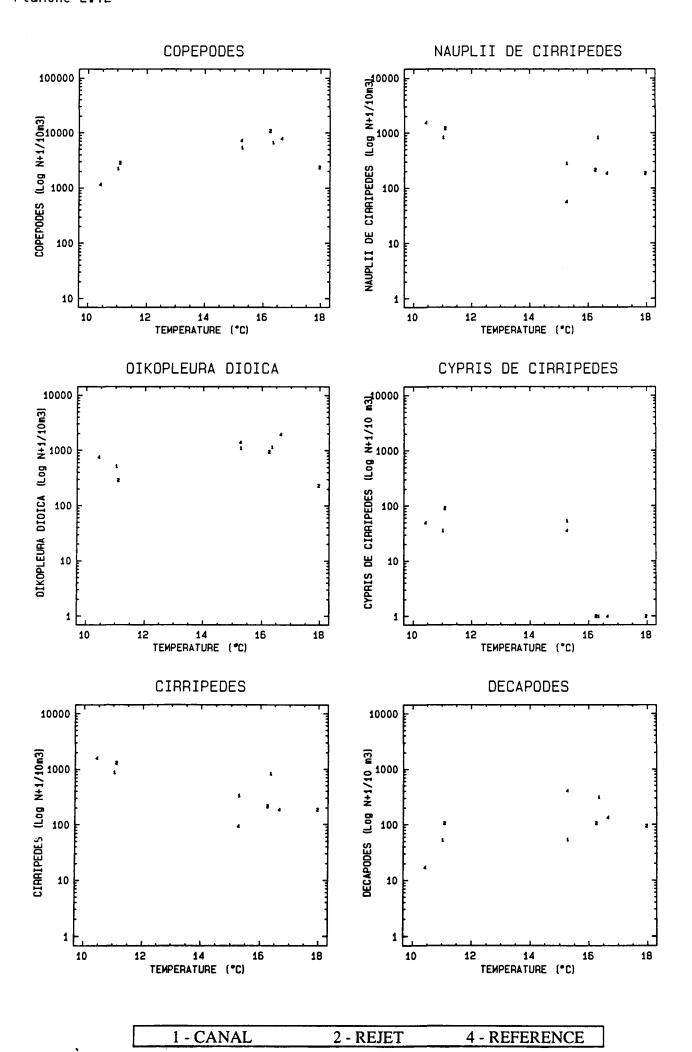
Le point rejet se distingue par l'absence de mollusque et de *cypris* de cirripèdes, mais surtout par une abondance zooplanctonique globale plus forte liée essentiellement à la présence de nombreux copépodes *Acartia clausi* (6100 individus par 10 m3 au rejet, 2800 individus par 10 m3 au canal, 1800 individus par 10 m3 au point référence), *Centropages hamatus* (respectivement 2800, 1800, 1900), l'espèce *Paracalanus parvus* déjà présente uniquement au rejet (53 individus par 10 m3).


Pondéralement, les mesures du point rejet sont en position intermédiaire entre celles du canal et du point référence. Quantitativement, elles sont légèrement supérieures à celles du point référence. Aucun effet néfaste avéré de la centrale sur le milieu n'a été observé.

2.4.4.3. Septembre 1993


En septembre, les paramètres pondéraux globaux ont montré que le point référence se distinguait des points canal et rejet pour la biomasse, le carbone et l'azote. D'un point de vue faunistique, le point référence se distingue par l'absence de cnidaire (pour une trentaines d'individus par 10 m3 au canal et au rejet), de plus nombreux annélides (140 individus par 10 m3, pour 30 à 40 individus par 10 m3 aux points canal et rejet) et chaetognathes (130 individus par 10 m3, pour 40 individus par 10 m3 au canal et 20 individus par 10 m3 au rejet).

Au niveau du rejet, l'abondance générale plus faible en zooplancton total est principalement dûe à l'ensemble des espèces de la sous-classe des copépodes (2400 individus par 10 m3 au rejet, 6700 individus par 10 m3 au canal, 8000 individus par 10 m3 au point référence), et à *Oikopleura dioica* (230 individus par 10 m3 au rejet, 1200 individus par 10 m3 au canal, 2000 individus par 10 m3 au point réference).


DE LA TEMPERATURE - FLAMANVILLE 1993 -

DE LA TEMPERATURE - FLAMANVILLE 1993 -

DE LA TEMPERATURE - FLAMANVILLE 1993 -

Le point rejet présente des valeurs pondérales faibles, semblables à celles du point canal. La quantité de zooplancton total est plus faible au rejet qu'aux autres points. La diversité des espèces, commune aux trois points, n'est pas affectée.

2.5. MICROBIOLOGIE.

2.5.1. MATERIEL ET METHODE.

2.5.1.1. Moyens à la mer.

Les campagnes sont toujours effectuées avec le zodiac de la S.N.S.M. de Diélette depuis 1985. Les points de prélèvements étant désormais les mêmes que ceux de l'étude pélagique, les campagnes se font simultanément avec le navire océanographique THALIA depuis 1987.

2.5.1.2. Analyses.

Les méthodes d'analyse sont les mêmes que celles employées antérieurement.

Le milieu de Zobell-Oppenheimer est préparé avec de la bactopeptone Difco, de l'agar Pasteur A et de l'eau vieillie durant deux semaines (3/4 du mélange).

Le milieu TCBS de Akiyama est également fabriqué au laboratoire en utilisant de la bactopeptone Difco. Une partie est gélosée au moyen d'agar Difco (15 g/dm³).

L'enrichissement, l'isolement, le tri et l'identification des colonies suspectes sont réalisés comme les années précédentes.

2.5.2. RESULTATS (TABLEAU 2.4)

2.5.2.1. Germes aérobies.

Le dénombrement des germes revivifiables en milieu de Zobell fournit des valeurs moyennes par cm³ comprises entre 139 germes au point référence en septembre et 861 au point canal d'amenée en juin.

Sur la période 1987-1993 (fig. 2.2), le principal constat effectué sur l'abondance des germes aérobies porte sur la présence d'un gradient large-côte, généralement plus évident en

		des	ment dans germes tot en Zobell jours à 25	aux		rions haloph ns 1 litre d'o		Dénombrement en épifluorescence des germes colorés à l'acridine dans 1 ml d'eau			
19	93	29-Avr	29-Jun	26-Sep	29-Avr	29-Jun	26-Sep	29-Avr	29-Jun	26-Sep	
	Į.	698	546	406	Abs	Abs	Abs	496 250	906 250	1 090 625	
Canal d'amenée	J	866	1176	474	-	-	-	380 000	1 146 850	968 750	
	Moyenne	782	861	440	0	0	0	438 125	1 026 550	1 029 6881	
	Ecart type	119	445	48		-	-	82 201	170 130	86 179	
	T eau °C	<u> </u>	15.4	14.5		 -					
	H prélèvt		14h30	8h00		l					
	K	522	578	232	Abs	Abs	Abs	485 600	1 034 400	896 875	
Point Rejet	L	604	706	248	٠	-	-	357 500	1 131 250	1 093 750	
	Moyenne	563	642	240	0	1 0	o	421 550	1 082 825	995 313	
	Ecart type	58	91	11				90 580	68 483	139 212	
	T eau °C		16.1	17.1							
	H prélèvt	-	14h10	8h30							
	E	282	254	104	Abs	Abs	Abs	862 500	968 750	903 125	
Point	F	210	288	196	-	-	-	425 600	1 418 750	721 875	
Référence	G	140	280	130	-	-	-	410 000	946 900	825 000	
	Н	258	344	126	-	-	-	374 370	1 037 500	784 375	
	Moyenne	223	292	139	0	0	0	518 118	1 092 975	808 594	
	Ecart type	63	38	40				230 587	220 588	75 965	
	Teau °C		14.2	14.5		 					
	H prélèvt	-	13h20	9h30							

Tableau 2.4: Analyses microbiologiques réalisées en 1993 sur le site de Flamanville

fin d'hiver et en fin d'été. La plus grande richesse du canal d'amenée en toute saison pourrait être attribuée à la position de ce point dans une zone d'influence du fond et des berges.

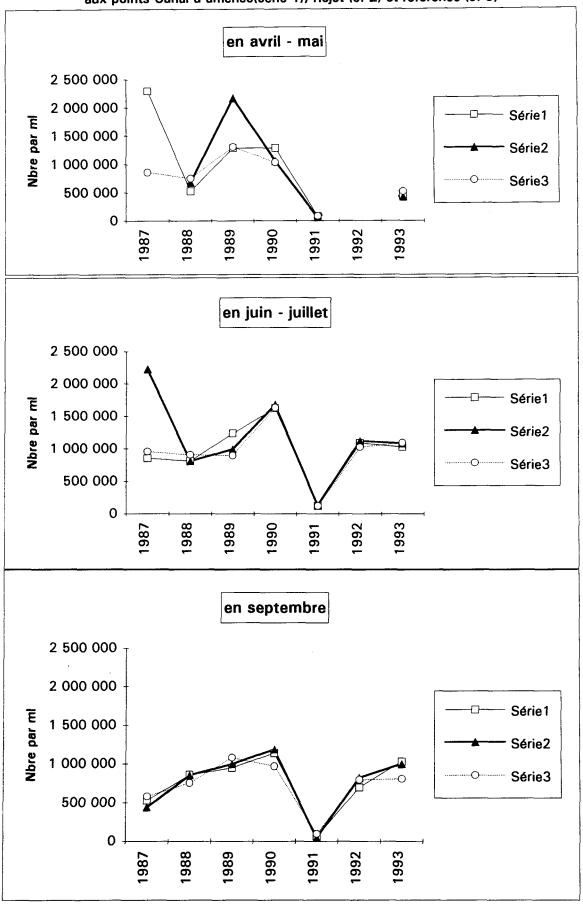
Une évolution significative de ce paramètre sur le site n'est cependant pas observée.

2.5.2.2. Germes totaux.

Le dénombrement microscopique des germes colorés à l'acridine orange donne des valeurs moyennes par cm³ de 460 000 en avril, 1 067 450 en juillet et 944 530 en septembre sur l'ensemble des trois points visités en 1993. Les valeurs sont quasiment semblables aux trois points enndébut de printemps et d'été. En septembre, le point référence se distingue des deux autres par des valeurs légèrement plus faibles.

L'examen de l'évolution de ce paramètre de 1987 à 1993 (fig. 2.3) met en évidence :

- la particularité de l'année 1991, où de très faibles densités (< 10⁵ . cm⁻³) sont notées aux trois points et aux trois périodes ;
- une certaine uniformité dans le temps et dans l'espace de la masse d'eau devant le cap de Flamanville, un gradient côte-large n'étant pas nettement détectable.


2.5.2.3. Vibrions halophiles.

L'absence de vibrions halophiles est, à l'instar des années précédentes (à l'exception de septembre 1992), notée quel que soit le point ou la période.

en avril - mai 900 800 700 600 500 400 300 200 100 Série1 Nbre par ml Série2 Série3 en juin - juillet Série1 Nbre par ml Série2 Série3 en septembre Série1 Nbre par ml Série2 Série3

FIG. 2.2 : Evolution des germes totaux de 1987 à 1993 aux points Canal d'amenée (série 1), Rejet (s. 2), et Référence (s. 3)

FIG. 2.3 : Evolution des germes colorés à l'acridine de 1987 à 1993 aux points Canal d'amenée(série 1), Rejet (s. 2) et référence (s. 3)

2.6. CONCLUSION

A quelques faibles différences près, les résultats obtenus en hydrobiologie sont comparables à ceux des années précédentes. Les quelques variations mises en évidence sont essentiellement à relier aux fluctuations climatiques de l'année 1993.

Globalement aucune variation significative due à l'échauffement de la masse d'eau par la centrale n'est observée. Les seuls déficits calculés ont été relevés en avril (37.9 %) et en juillet (19.2 %) pour la chlorophylle, mais ces déficits ne sont aucunement corrélés au microplancton. Pour d'aussi faibles valeurs, les variations dues à l'échantillonnage ou bien aux conditions naturelles interfèrent sur toute signification d'impact.

L'étude statistique des variations spatiales en 1993 pour les paramètres pondéraux globaux du zooplancton a montré :

- une hétérogénéité spatiale en avril, juin et septembre 1993 pour le carbone et l'azote, et uniquement en septembre pour la biomasse.
- ces hétérogénéités spatiales sont dûes au point rejet en avril et essentiellement au point référence en juin et septembre, mais les valeurs sont alors globalement situées dans la gamme des valeurs antérieures au fonctionnement de la centrale, ou assez proche de celles-ci.

En ce qui concerne les populations zooplanctoniques, nous pouvons noter pour 1993 :

- En avril, soit une accumulation de zooplancton au niveau du rejet, soit un effet local favorable de la centrale sur le milieu.
 - En juin, aucun effet néfaste avéré de la centrale sur le milieu.
- En septembre, les appendiculaires et les copépodes présentent une nette diminution quantitative au rejet par rapport aux autres points, période où pondéralement le point rejet n'est pas impacté comparativement au point canal.

Le paramètre microbiologique présente une relative stabilité.

Annexe 2.1 : Analyses microbiologiques - Site de Flamanville

Point Canal d'amenée Valeur moyenne	de e	nombreme jermes to lobell, dar ours à 25	tau 1s '	l mi			orions hal ons 1 litre	•	Dénombrement en épifluorescence des germes colorés à l'acridine dans 1 ml d'eau			
Mois Année	Juin 3 Nois Avril 1 Juillet 4 Septembre 6 Mai 2 Août 5 Novembre 7					Avril Mai	Juin Juillet Août	Sept Nove	Avril Mai	Juin Juillet Août	Septembre Novembre	
1987	706	2	66	4	438	6	_	-	V.a.	2 296 875	854 375	531 250
1988	139	2	119	5	162	7	-	-	-	529 650	812 500	859 600
1989	386	1	165	4	681	6	-	-	-	1 287 000	1 234 250	950 500
1990	250	1	243	4	412	6	-	-	-	1 285 800	1 624 650	1 137 500
1991	25	2	165	4	145	6	-	-	-	83 435	122 187	59 375
1992	23	1	134	4	298	6	-	-	V.a.	*	1 090 600	696 875
1993	782	1	861	3	440	6		-	-	438 125	1 026 550	1 029 688
Moyenne	330	ヿ	250		368		-	-	~	986 814	966 445	752 113
Ecart type	311		275		186					802 735	460 617	367 015

Point Rejet Valeur moyenne	Dénombrement des germes totaux en Zobell, dans 1 ml 9 jours à 25 °C							brions hal ans 1 litre	•	Dénombrement en épifluorescence des germes colorés à l'acridine dans 1 ml d'eau			
Mois Année	Juin 3 Avril 1 Juillet 4 Septembre 6 Mai 2 Août 5 Novembre 7					Avril Mai	Juin Juillet Août	Sept Nove	Avril Mai	Juin Juillet Août	Septembre Novembre		
1987	*	2	51	4	664	6	-	-	V.a.	*	2 221 875	440 625	
1988	61	2	164	5	51	7	-	-	-	677 625	809 375	852 950	
1989	345	1	42	4	572	6	-	-	-	2 170 000	991 000	994 500	
1990	100	1	290	4	284	6	-	- '	-	1 060 950	1 681 450	1 184 375	
1991	22	2	96	4	95	6	-	-	-	60 935	127 812	46 875	
1992	99	1	83	4	212	6	-	-	V.a.	*	1 117 200	818 750	
1993	563 1 642 3 240 6					6	-	-	-	421 550	1 082 825	995 313	
Moyenne	198		195		303		-	-	~	878 212	1 147 362	761 913	
Ecart type	212		215	Ì	232					809 139	661 195	390 100	

Point Référence Valeur moyenne	Référence des germes totaux en Zobell, dans 1 ml							brions hal ans 1 litre	•	Dénombrement en épifluorescence des germes colorés à l'acridine dans 1 ml d'eau			
Mois Année	Avril Mai	1 2	Juin Juillet Août		Septembre Novembre	6 7	Avril Mai	Juin Juillet Août	Sept Nove	Avril Mai	Juin Juillet Août	Septembre Novembre	
1987	209	2	37	4	472	6	-	-	V.a.	863 290	957 810	582 810	
1988	7	2	146	5	74	7	-	-	-	754 688	909 438	758 775	
1989	104	1	85	4	572	6	-	-	-	1 303 400	899 000	1 078 900	
1990	35	1	65	4	229	6	-	-	-	1 039 050	1 636 375	971 875	
1991	15	2	69	4	50	6	-	-	-	84 842	122 969	95 469	
1992	305	1	24	4	46	6	-	-	V.a.	•	1 028 100	792 969	
1993	223	1	292	3	139	6	-	-	-	518 118	1 092 975	808 594	
Moyenne	128		103		226		-	-	~	760 565	949 524	727 056	
Ecart type	118	ŀ	92		214					423 838	444 586	320 270	

^{* =} absence de dénombrement

3.LE DOMAINE BENTHIQUE

Etude et rapport réalisés :

au Centre IFREMER de BREST par :

Luc DREVES (Phytobenthos et Zoobenthos)

Jean-Yves PIRIOU (Phytobenthos)

avec la collaboration de :

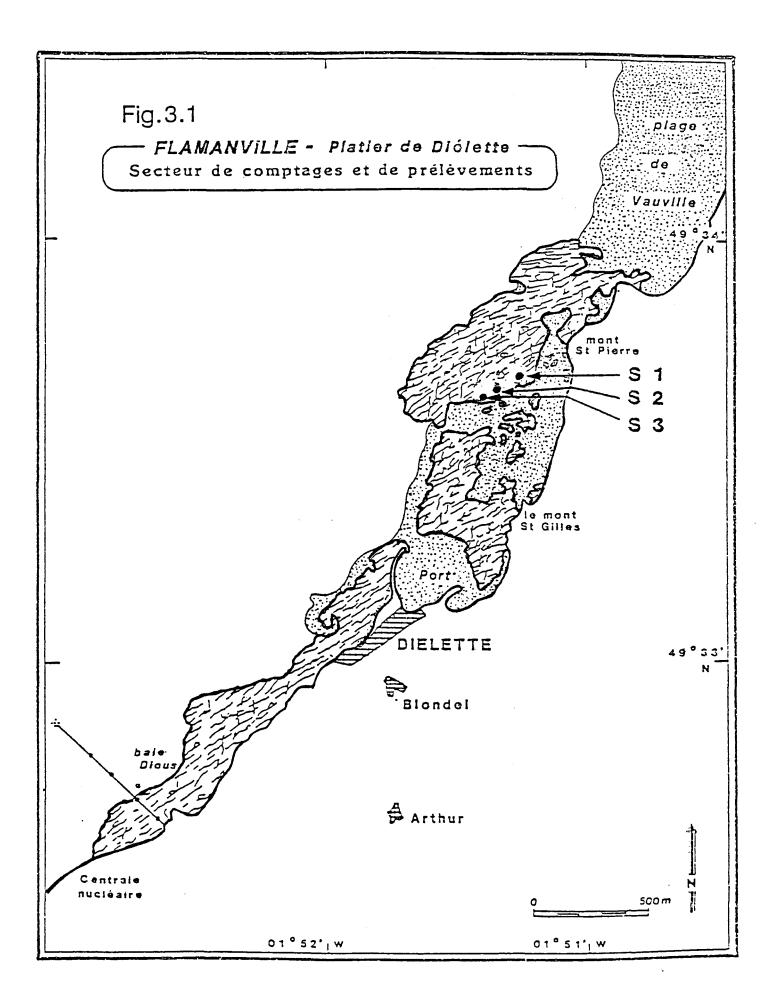
Jean-Pierre ANNEZO, Pierre BODENES et Jean-Dominique GAFFET pour les missions de prélèvements

3.1. PHYTOBENTHOS INTERTIDAL

Le peuplement de Fucus serratus du platier de Diélette (fig.3.1), situé au nord de la Centrale électronucléaire de Flamanville dans la zone d'influence de la tache thermique, fait l'objet d'une surveillance depuis 1977. Etudié une première fois d'août 1977 à août 1978, il est suivi en continu depuis mars 1983.

L'espèce Fucus serratus devrait être un indicateur des perturbations éventuelles induites par les rejets de la Centrale sur le macrophytobenthos local. Celles-ci pourraient être de plusieurs ordres : évolutions différées de la croissance estivale et de la dépopulation hivernale, déplacement saisonnier et quantitatif de la fertilité des pieds, évolution géographique du peuplement.

3.1.1. METHODOLOGIE


3.1.1.1. Evolution du stock

Des prélèvements réguliers sont effectués depuis septembre 1983 dans trois secteurs de référence du peuplement de Fucus serratus sur le platier de Diélette. Ces secteurs, très proches les uns des autres mais situés à des niveaux bathymétriques légèrement différents, ont été choisis dans des zones à densité algale faible (secteur 1), forte (secteur 2), et moyenne (secteur 3). La moyenne de dix quadrats de 0,50 m x 0,50 m prélevés au hasard dans chaque secteur fournit ainsi une estimation de la biomasse algale locale.

3.1.1.2. Baguages sur radiales

Une bague numérotée est fixée sur chaque pied de *Fucus serratus* grâce à un collier de couleur blanche serré entre le disque basal et la première dichotomie. En mars 1983, 394 pieds de *Fucus serratus* ont ainsi été bagués. Parmi ceux-ci, 21 seulement ont été retrouvés en mars 1985.

Deux nouvelles radiales ont été tracées en mars 1985 dans une zone centrale plus végétative. 286 pieds ont été bagués à raison de 10 pieds parmi les plus proches autour d'un point mesuré tous les 10 mètres sur la radiale.

Seuls les pieds pouvant soutenir une bague sont considérés. C'est pourquoi toute une catégorie parmi les plus jeunes n'est pas prise en compte dans ces mesures.

La méthodologie est ensuite la même pour le baguage de 300 pieds en 1987, de 287 en 1989, de 248 en mars 1991, et enfin de 250 nouveaux stipes en mars 1993. Pour chaque série de baguages, le suivi dure deux ans, au bout desquels la population étudiée disparait en quasitotalité.

3.1.1.3. Paramètres mesurés

Au cours de chaque mission, quatre paramètres sont mesurés sur chaque individu de Fucus serratus:

- la longueur (L) exprimée en cm et mesurée du disque basal au sommet de la dernière dichotomie,
- le nombre de dichotomie (D) : les dichotomies principales sont comptées, de la première rencontrée en partant de la base jusqu'à la dernière avant l'extrêmité supérieure de l'individu,
- le diamètre (ø) en cm : le diamètre maximal est mesuré à la base, juste au-dessus de l'épatement formé par le système de fixation,
 - la fertilité : présence ou non de conceptacles.

3.1.2. RESULTATS

3.1.2.1. Evaluation du stock de Fucus serratus

(Fig. 3.2 et 3.3; annexe 3.1)

L'examen du stock de Fucus serratus montre, pour l'année 1993 :

- un accroissement normal des biomasses de mars à septembre, quadruplement au niveau bathymétrique le plus élevé (secteur 1), doublement dans les deux autres secteurs ;

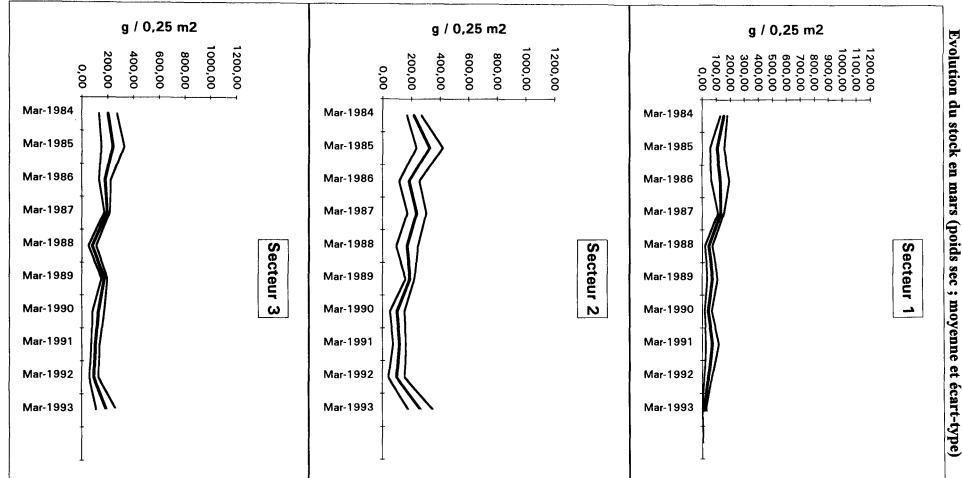
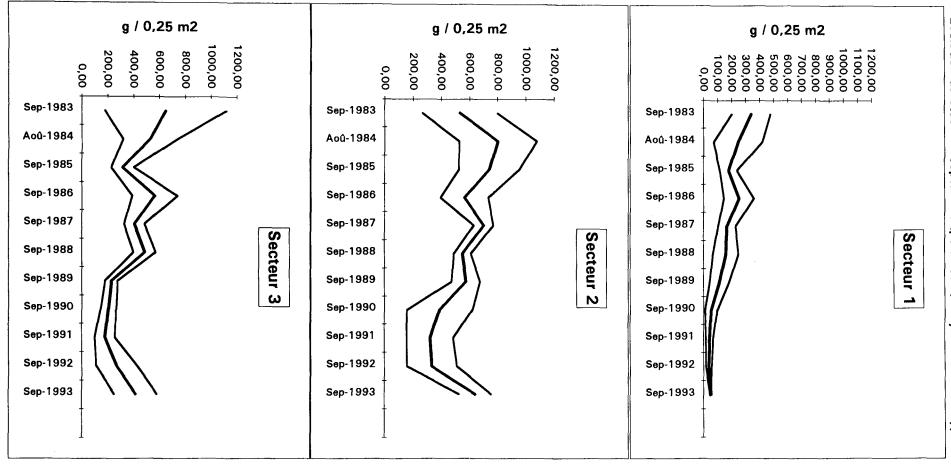



Fig. 3.2 : Fucus serratus - Platier de Diélette olution du stock en mars (poids sec ; moyenne et écart-ty]

Evolution du stock en septembre (poids sec ; moyenne et écart-type) Fig. 3.3 : Fucus serratus - Platier de Diélette

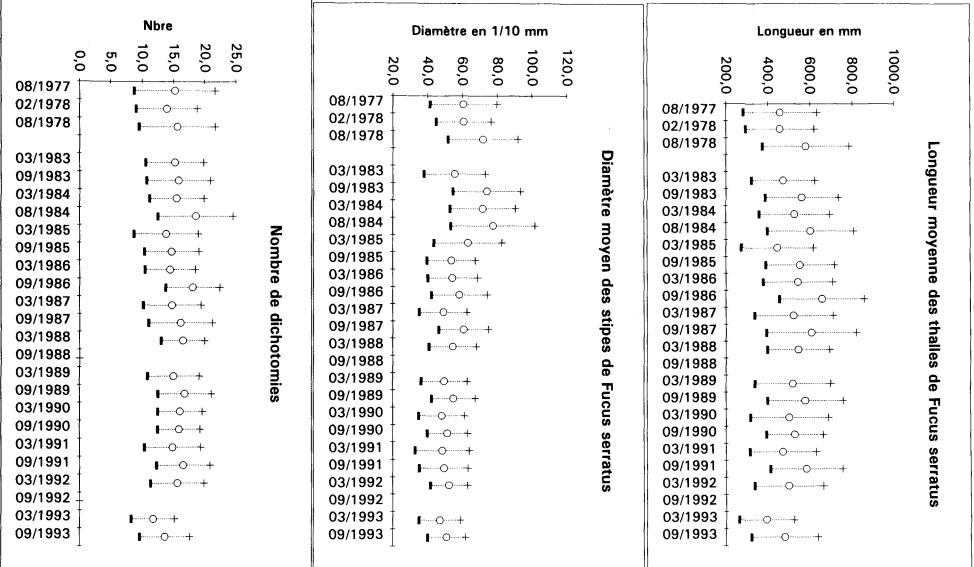


Fig. 3.4 : Evolution saisonnière des paramètres mesurés chez Fucus serratus du platier de Diélette

- la plus grande richesse du secteur 2, situé en milieu de zone d'étude, aux deux saisons (respectivement 265 et 642 g.m-2), en opposition à la pauvreté du secteur 1 (12 et 49 g.m-2);

La comparaison de ces données avec celles déjà notées sur ce site de Diélette depuis 1983 conduit à modérer le constat de baisse du stock de cette espèce algale fait les années précédentes.

Ainsi, une augmentation de la biomasse est observée en mars et en septembre tant au secteur 2 qu'au secteur 3, avec des valeurs bien supérieures en 1993 à la moyenne calculée sur la période 1983-1993.

Au secteur 1, la hausse de la biomasse n'est notée qu'en septembre, avec cependant une valeur inférieure à la moyenne calculée sur la période pré-citée. La faible biomasse notée dans ce secteur 1 est la résultante d'une diminution conjuguée des densités et de la surface occupée par cette espèce. Aucune espèce de remplacement n'y est observée.

Les fluctuations du stock de *Fucus serratus* sont plus perceptibles en septembre qu'en mars. Sur la période 1983-1993, la dépopulation du secteur 1 peut être affirmée. Pour les secteurs 2 et 3, on peut s'interroger sur la faiblesse du stock enregistrée sur la période 1990-1992.

Les paramètres connus comme pouvant influencer la vigueur de l'espèce Fucus serratus sont la température, la lumière, la qualité et la quantité des apports nutritifs, le vent et la houle. Un apport nutritif plus important provoqué par la forte pluviométrie notée à partir du second semestre de l'année 1992 pourrait être un élément d'explication ponctuelle à ces valeurs à la hausse des biomasses de Fucus serratus en 1993.

3.1.2.2. Dénombrement des algues baguées

Sur les 250 pieds de *Fucus serratus* bagués en mars 1993, 171 sont retrouvés en septembre suivant. Cette perte estivale, de l'ordre de 32 %, au niveau du lot sélectionné en fin d'hiver est relativement faible comparée à celles enregistrées les années précédentes depuis 1987 (92 % de mars à septembre 1992 par exemple).

La dépopulation a commencé à croitre à partir de 1985, en particulier en période automno-hivernale pour atteindre un niveau très fort dans les années 1990-1992. Ceci est à rapprocher de la diminution régulière du stock observée sur ce site durant la même période.

3.1.2.3. Biométrie des algues baguées (Fig. 3.4 et annexe 3.2)

* Longueur des thalles.

Les pieds les plus grands, qui sont également les plus fertiles, sont aussi les plus fragiles. Arrachés facilement en période hivernale, ils procurent une baisse de la longueur moyenne des thalles en mars de chaque année. La croissance des algues se fait entre mars et septembre ; ceci explique l'augmentation de la longueur moyenne à cette période, confirmée par les mesures effectuées en 1993 (392 mm en mars et 479 mm en septembre). La faible longueur moyenne des thalles notée en mars 1993 est le résultat du baguage d'une population plus jeune que les années précédentes, rendant toute comparaison avec les données antérieures délicate.

L'observation des données de longueurs moyennes depuis 1983 ne permet pas pour l'instant de conclure à une évolution nettement visible à ce niveau.

* Diamètre des stipes.

A l'exception des diamètres moyens notés en 1983 et 1984 (7 mm et plus), ceux-ci se situent depuis 1985 aux alentours de 5 mm.

A noter la valeur moyenne relevée en mars 1993 (4.7 mm) similaire à celle de mars 1990 (4.8 mm) alors que les deux populations baguées sont différentes en âge.

* Nombre de dichotomies.

Le nombre moyen de ramifications des pieds de *Fucus serratus* est de 14 ou 15 en mars, et 16 en septembre, valeurs conformes aux données précédentes, montrant ainsi une certaine stabilité de ce paramètre.

La jeunesse du peuplement bagué 1993 est confirmée par le nombre moyen de dichotomies noté tant en mars (11.7) qu'en septembre (13,6).

3.1.2.4. Fertilité (fig.3.5 et annexe 3.2)

En 1993, le pourcentage de thalles fertiles de *Fucus serratus* du platier de Diélette est de 32 % en mars et de 89 % en septembre. La variation importante de ce paramètre entre ces deux mois est en conformité avec celle notée en 1983 et 1984. Le faible taux de fertilité observé en mars 1993 est cependant logique en regard des jeunes individus bagués.

L'évolution du taux de fertilité de l'espèce Fucus serratus de 1983 à 1993 amène deux constats :

- le pourcentage de pieds fertiles est quasi-stable en septembre, oscillant de 87 % à 96 %,
- une hausse importante de ce taux en fin d'hiver est notée, passant de 12 % en 1983 à près de 90 % en 1986, suivie d'une certaine stabilité à ce niveau important jusqu'en 1992.

L'accroissement hivernal du taux de fertilité de cette espèce sur le platier de Diélette pourrait être liée à une augmentation (naturelle ou non) de la température du milieu en cette saison. Les importantes variations naturelles de ce taux, observées entre mars et septembre de 1983 à 1985, ne sont plus notées de 1986 jusqu'à 1992.

Incriminer les seuls rejets thermiques n'est cependant pas acceptable à ce jour, la Centrale n'ayant été mise en service qu'en décembre 1985 alors que l'augmentation de la fertilité est nettement décelable dès mars 1985.

L'étude similaire lancée à partir de 1994 sur l'autre site électronucléaire de Paluel devrait permettre une comparaison inter-site de cette espèce, une meilleure compréhension de ce phénomène observé et une quantification de la part des différents facteurs influençant la fertilité.

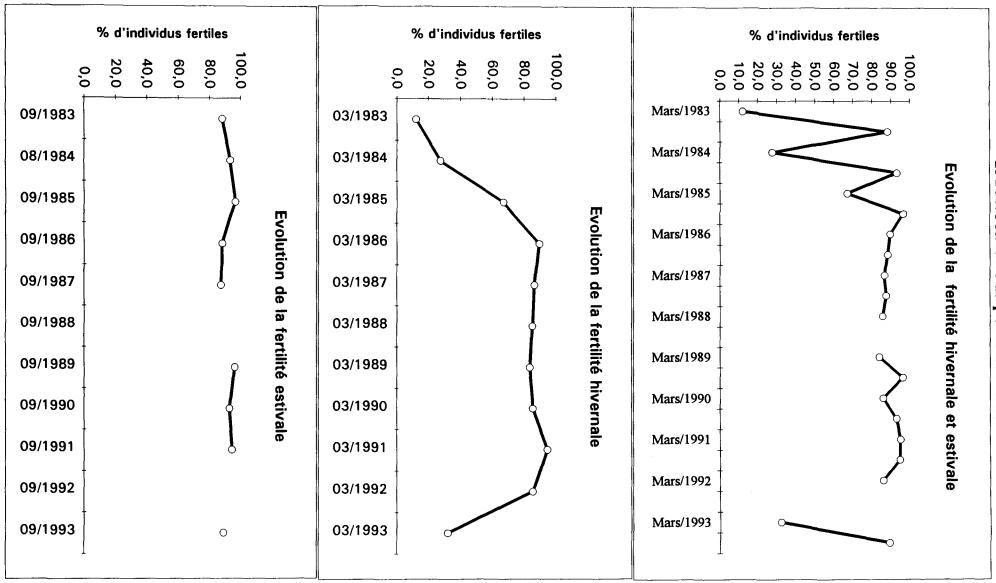
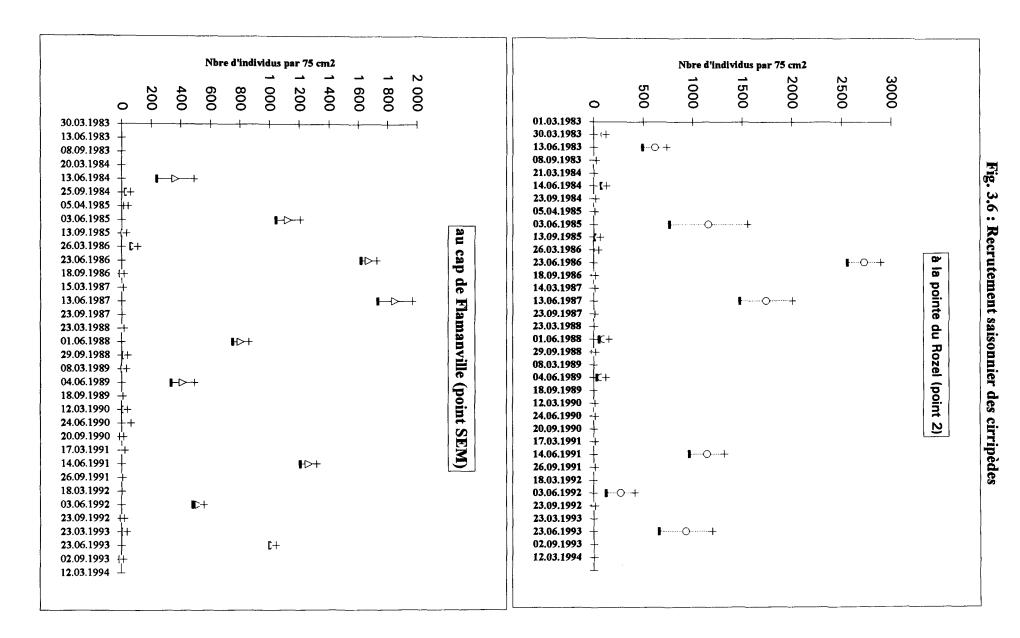


Fig. 3.5 : Evolution du pourcentage moyen de Fertilité du peuplement ad de Fucus serratus du platier de Diélette

3.2. ZOOBENTHOS INTERTIDAL - SUBSTRAT DUR

Le développement des peuplements animaux de mode battu traduit la forte intensité des actions hydrodynamiques de ce secteur côtier. Au cap de Flamanville, constitué d'une succession d'éperons rocheux granitiques, les peuplements sont essentiellement représentés par une ceinture à Balanus balanoides. A la pointe du Rozel, constituée d'un vaste platier de dalles de schistes, les peuplements sont représentés par une ceinture (largeur : 200 m) à Balanus balanoides prolongée en bas niveaux par une ceinture (largeur : 50 m) à Balanus perforatus.

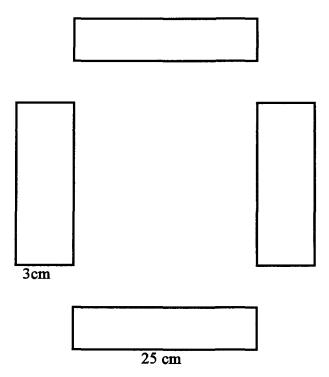
L'étude de Surveillance, menée depuis 1983, a pour objectif de contrôler les variations d'abondance des principales espèces de cirripèdes de la ceinture à *Balanus balanoides* à la pointe du Rozel (radiale R4; voir carte en préambule) ainsi qu'au droit du sémaphore du cap de Flamanville (point SEM); cette étude est complétée par une évaluation sommaire des densités des principales espèces accompagnatrices et par une expérience de recolonisation du substrat par les cirripèdes.


A partir de 1993, deux points de mesures sont ajoutés aux précédents, à savoir un dans l'anse de Quedoy située immédiatement au sud de la centrale, et un autre dans le port de Diélette (platier rocheux au nord de la sortie du port).

3.3.1. METHODOLOGIE

A la pointe du Rozel, quatre points de la radiale R4 sont échantillonnés dans la ceinture à Balanus balanoides à raison d'un point par strate. Au cap de Flamanville, les trois points "sémaphore" (ou SEM; depuis 1983), "Quedoy" et "Diélette" (à partir de 1993) sont retenus comme représentatifs de l'ensemble de la ceinture à l'exception de la frange supérieure.

En septembre, la densité de cirripèdes est évaluée à l'aide de quadrats 0,05 m x 0,05 m (8 quadrats par point) ; le pourcentage de recouvrement du substrat par ces crustacés est noté. L'échantillonnage est stratifié pour tenir compte de l'hétérogénéité de colonisation (zone à forte densité, faible densité, absence totale de cirripèdes), phénomène constaté essentiellement aux limites de la ceinture. Des échantillons de substrat sont rapportés au laboratoire pour l'évaluation des pourcentages des différentes espèces.

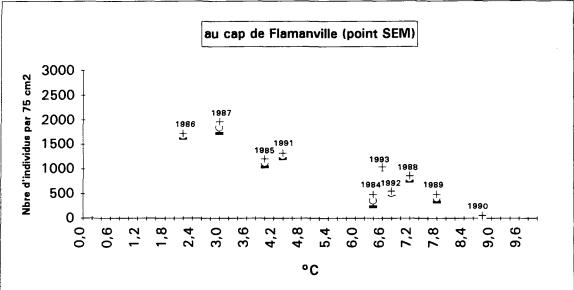

Les densités des principales espèces accompagnatrices sont évaluées à chaque point à partir d'une surface unitaire de 1/16 m² (quadrat 0,25 m x 0,25 m); les patelles sont dénombrées sur le

terrain à raison de 12 comptages par point alors que les autres espèces sont récoltées par grattage (4 par point), puis déterminées et comptées au laboratoire.

Les points 2 de la pointe du Rozel, SEM, QUEDOY et DIELETTE servent également à une étude de recolonisation du substrat par les cirripèdes.

Dans ce but, des comptages puis des grattages sont réalisés sur les mêmes séries de quadrats à trois périodes de l'année, en fin d'hiver (mars-avril), fin de printemps (juin) et fin d'été (septembre). Ceci permet de cerner l'importance de la fixation des recrues selon les saisons et d'établir le bilan global de recolonisation annuelle. Afin de limiter l'invasion des surfaces mises à nu par les espèces d'épifaune vagile (patelles, littorines) les quadrats rectangulaires sont de faible largeur.


3.3.2. RESULTATS


3.3.2.1. Etude de recolonisation par les cirripèdes

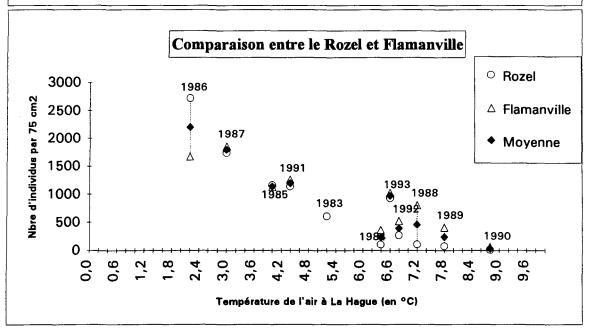

La figure 3.6 montre les variations moyennes de recolonisation observées sur 75 cm² à la pointe du Rozel et au cap de Flamanville. La recolonisation notée lors d'une mission donnée est le résultat du recrutement en cours, diminué d'une mortalité (non quantifiée) intervenue entre la date de fixation des cypris sur le substrat et la date d'observation.

Fig. 3.7 : Recrutement printanier des cirripèdes en fonction de la rigueur de l'hiver

(Température moyenne mensuelle minimale de l'air à La Hague)

Le recrutement annuel des cirripèdes enregistré de mars 1993 à mars 1994 est, en nombre d'individus par m², de 124 000 à la pointe du Rozel, 138 000 au bas du sémaphore, 75 300 dans l'anse de Quedoy et 29 000 à Diélette. Pour les deux premiers points cités, les valeurs sont légèrement supérieures aux moyennes calculées sur l'ensemble de la période 1983-1993, à savoir 111 100 (± 113 900) au Rozel sur 11 ans, 126 300 (± 76 800) à Flamanville sur 10 ans.

Les fluctuations sont plus importantes à la pointe du Rozel, oscillant entre 2 500 ind. par m² en 1990 et 366 000 en 1986 (soit un facteur multiplicatif de l'ordre de 150), qu'au cap de Flamanville, entre 11 000 en 1990 et 250 000 en 1987 (soit un facteur avoisinant 20).

Ces variations importantes du recrutement annuel des cirripèdes s'expliquent par l'importance même du recrutement printanier. Ce dernier représente en effet, selon les années, de 77 % à 99.6 % du phénomène annuel, à l'exception toutefois du printemps 1990 où il n'atteint que 48 % à la pointe du Rozel et 61 % au cap de Flamanville.

En 1993, la part du recrutement printanier est très importante, que ce soit au Rozel (99,4 %) ou à Flamanville (99,1 %).

Le corollaire de l'ampleur de la recolonisation printanière est la faiblesse aux deux points des deux autres recrutements, tant en période estivale qu'automno-hivernale.

L'importance numérique du recrutement printanier (923 individus par 75 cm² au Rozel, 1024 à Flamanville), comparée à celle des années antérieures, confirme la relation entre l'importance du recrutement printanier et la rigueur de l'hiver (température moyenne de l'air et/ou de l'eau du mois le plus froid de l'année).

La ponte planctonique étant hivernale, l'intérêt s'est porté sur la température moyenne mensuelle la plus froide de l'année. La relation ainsi mise en évidence (Fig. 3.7) montre une importance du recrutement printanier inversement proportionnelle à celle de la température minimale hivernale. Ceci peut s'expliquer par le fait que le peuplement des cirripèdes sur ce site est dominé par *Balanus balanoïdes*, espèce boréale. Les deux points de mesures étant situés en zone intertidale au niveau de la mi-marée, la rigueur de l'hiver agirait donc comme stimulus sur la reproduction de ces cirripèdes.

		S.O.	D/S	D	S.O.	D/S	D	S.O.	D/S	D
		DE	CEMBRE	1977		Juin 19				
Rozel	Pt 1 a	15	68 880		15	68 880				
Rozel	Pt 1 b	15	17 800	13 002		14 800	12 552			
Rozel	Pt 2	100	62 4	70	100		430			
Rozel	Pt 3	100	68 1	170	100	i	930			
Rozel	Pt 4	80	52 450	41 960	80	47 890	38 312			
		Se	eptembre	1983	Se	ptembre	1984	Se	ptembre	1985
Rozel	Pt 1a	10	49 200		10	37 700				
Rozel	Pt 1b	5	14 500	5 645	5	12 800	4 410	50		20 600
Rozel	Pt 2	100	71 5		100	41	150	100	l .	450
Rozel	Pt 3	100	62 3		100		200	100		550
Rozel	Pt 4	60	56 100	33 660			26 490	100	78	000
Flamanville	Pt SEM	100	66 (000	100	60	100	100	74	400
		Se	eptembre			ptembre	1987	Se	ptembre	1988
Rozel	Pt 1	50	108 942	54 470	60	54 700	32 820	100	35	700
Rozel	Pt 2	100	62 2		100	102	052	100	52	300
Rozel	Pt 3	100	68 9	950	100	124	600	100	47	450
Rozel	Pt 4	100	72 2	200	100	107	252	100	52	000
Flamanville	Pt SEM	100	75 3	300	100	77	000	100	60	000
		Se	eptembre	1989	Se	ptembre	1990	Se	ptembre	1991
Rozel	Pt 1	100	20 8	300	15	15 600	2 340	100	44	356
Rozel	Pt 2	100	49 '	152	90	30 450	27 400	100	100	800
Rozel	Pt 3	100	36 4	152	80	22 900	18 320	100	70	720
Rozel	Pt 4	100	33 9	952	85	29 300	24 900	100	76	668
Flamanville	Pt SEM	100	40 8	368	100	26	800	100	74	800
		Se	eptembre	1992	Se	ptembre	1993			
Rozel	Pt 1	60	48 500	29 100	80	35 300	28 240			
Rozel	Pt 2	100	35 4	450	100	106	500	ľ		
Rozel	Pt 3	100	44 3		100		600			
Rozel	Pt 4	85	51 800	44 030		81 200	73 080			
Flamanville	Pt SEM	100	38 (000	100	76	700			
Flamanville	Quedoy				100	72	300	1		
Flamanville	Remblais				100		400			
Flamanville	Diélette				90	54 400	48 960	1		

S.O. = surface occupée du substrat (en %)

D/S = densité par strate D = densité moyenne

	Rozel	Semaphore	Quedoy	Diélette
1983	43 276	66000		
1984	28 313	60100		
1985	74 650	74400		
1986	64 455	75300		
1987	91 681	77000		
1988	46 863	60000		
1989	35 089	40868		
1990	18 240	26800		
1991	73 136	74800		
1992	38 233	38000		
1993	74 605	76700	72300	48960

Tableau 3. 1 : Comparaison des densités globales de cirripèdes (nbre d'ind./m2)

A la pointe du Rozel, la faiblesse des recrutements observés en 1988, 1989 et 1990 s'expliquerait plus par la douceur climatique de l'hiver que par un impact de la Centrale qui, s'il existe, est indécelable au regard des fluctuations naturelles du recrutement printanier des Balanus balanoïdes.

L'examen de l'importance numérique du recrutement printanier au cours des 10 dernières années d'observations montre une certaine similitude du recrutement aux deux points, à l'exception des années 1986 et 1988, où l'écart est important. La recolonisation est en règle générale légèrement supérieure au cap de Flamanville, hormis 1985 et surtout 1986.

3.3.2.2. Evaluation des densités et des pourcentages des différentes espèces de cirripèdes

L'observation des densités de cirripèdes (tabl 3.1) montre des variations pluriannuelles importantes à la pointe du Rozel, moindres au cap de Flamanville, en fonction de la surface colonisée du substrat rocheux d'une part, de l'importance du recrutement (surtout printanier) d'autre part.

Le substrat rocheux est mieux colonisé en 1993 qu'en 1992. Seuls les points 1 et 4 du Rozel et le point Diélette ne sont pas couverts à 100 %, les deux premiers cités ayant toutefois un pourcentage de recouvrement supérieur à l'année précédente (80 % au lieu de 60 % au point 1 par exemple).

Ce meilleur recouvrement général en septembre associé au recrutement plus important du printemps se traduisent par une hausse des densités relevées sur l'ensemble du domaine intertidal, à l'exception toutefois du point 1.

Sur les deux nouveaux points étudiés en 1993, il est noté la ressemblance de Quedoy avec le sémaphore et le Rozel, alors que le platier de Diélette est moins colonisé par ces crustacés. Ce constat est à rapprocher du recrutement moins important noté en ce point.

Septembre 1993	BA	LA BAL	ELI	MI MOD	CH	TH STE	CH	TH MON
}	%	D	%	D	%	D	%	D
ROZEL 1	98,0	27 675	1,5	424	0,0	0	0,5	141
ROZEL 2	95,4	101 601	4,6	4 899	0,0	0	0,0	0
ROZEL 3	95,7	86 704	4,3	3 896	0,0	0	0,0	0
ROZEL 4	95,8	70 011	4,2	3 069	0,0	0	0,0	0
Flamanville-SEM	*	*	*	*	*	*	*	*
Flamanville-Quedoy	*	*	*	#	*	*	*	*
Flamanville-Remblais	*	*	*	*	*	*	*	*
Flamanville-Diélette	92,2	45 141	4,6	2 252	1,8	881	1,4	685

BALA BAL = Balanus balanoïdes

ELMI MOD = Elminius modestus

CHTH STE = Chthamalus stellatus

CHTH MON = Chthamalus montagui

* mesures non effectuées

					CH	ITH STE
	BA	LA BAL	ELI	MI MOD		+
						TH MON
	%	D	%	D	%	D
Rozel - Moy.1-4						
				1		
Décembre 1977	97,5	45 146		1 171	0,1	46
Juin 1978	95,9	46 586	3,9	1 859	0,2	97
			40 -			047
Septembre 1983	86,5	37 999		5 006		347
Septembre 1984	78,0			6 530	-	311
Septembre 1985	89,5	67 002	9,3		1,2	896
Septembre 1986	91,5	59 028		5 075	0,6	387
Septembre 1987	96,1	88 262		3 300		183
Septembre 1988	91,2	42 688	5,9	2 789	2,9	1 358
Septembre 1989	86,6	30 497	10,0	3 417	3,4	1 194
Septembre 1990	77,7	13 786	18,5	3 842	3,8	696
Septembre 1991	90,2	65 864	7,5	5 691	2,3	1 685
Septembre 1992	89,9	34 431	9,1	3 443	1,0	383
Septembre 1993	96,2	71 498	3,7	3 072	0,1	18
Flamanville - SEM						
1						
Septembre 1983	92,4	60 984	4,3	2 838	3,3	2 178
Septembre 1984	76,4	45 916	14,7	8 835	8,9	5 349
Septembre 1985	85,4	63 538	5,2	3 869	9,4	6 993
Septembre 1986	91,5	68 900	4	3 012	4,5	3 388
Septembre 1987	88,7	68 299	2	1 532	9,3	7 161
Septembre 1988	82,4	49 440	4,1	2 460	13,5	8 100
Septembre 1989	79,5	32 490	2,3	940	18,2	7 438
Septembre 1990	67,9	18 197	13	3 484	19,1	5 119
Septembre 1991	90,2	67 470	-	-	9,8	7 330
Septembre 1992	83,7	31 806	4,1	1 558	12,2	4 636
Septembre 1993	*	*_	*	*	*	*

Tableau 3.2 : Comparaison des pourcentages et des densités des différentes espèces de cirripèdes (D exprimée en nombre d'individus par m2)

Les proportions des différentes espèces de cirripèdes sont calculées à chaque point (tabl. 3.2). Quatre espèces sont en compétition pour l'espace, à savoir : Balanus balanoïdes, Elminius modestus, Chthamalus stellatus et Chthamalus montagui.

Les variations des densités totales des individus d'une année à l'autre se répercutent principalement sur *Balanus balanoïdes*. Cette espèce domine largement le peuplement des cirripèdes tant en 1993, représentant plus de 96 % des individus à la pointe du Rozel et 92 % sur le platier de Diélette, que sur l'ensemble des années d'étude. Un problème de prélèvement du substrat s'est posé tant au bas du sémaphore qu'à Quédoy, empêchant ainsi la détermination des espèces présentes en ces points.

L'espèce *Elminius modestus* est moins bien représentée au Rozel en 1993 (3,7 %) que les années précédentes. Elle représente 4,6 % à Diélette. Originaire d'Australie et de Nouvelle-Zélande, introduite en Europe vers 1940, le poids de cette espèce semble s'être stabilisé sur ce site aux alentours des 10 % (± 5 %), les variations constatées des pourcentages et de ses effectifs étant surtout liées à celles observées chez *Balanus balanoïdes*.

La représentativité globale des deux espèces de chthamales demeure faible à la pointe du Rozel (0,1 % en 1993, $1.4 \% \pm 1.3 \%$ de moyenne depuis 1977). Elle est de 3,2 % à Diélette, où le substrat est de même nature.

3.3.2.3. Evaluation des densités des principales espèces accompagnatrices

Seuls sont pris en compte pour cette étude les espèces ou groupes d'espèces appartenant à l'embranchement des mollusques (tabl. 3.3). Selon l'espèce et le point considérés, la fluctuation des effectifs par rapport à l'année antérieure peut différer.

La plus grande richesse faunistique du point du sémaphore par rapport au Rozel, mentionnée en 1992, se confirme en 1993 : plus grande importance des patelles et des littorines. La pointe du Rozel se caractérise par la présence des gibbules et des modioles. Aux deux points, les densités de *Patella sp* et de *Littorina saxatilis* sont par ailleurs en augmentation par rapport à 1992. Notons par contre la diminution des effectifs de *Littorina neritoïdes* et de *Modiolus barbatus*. L'échantillonnage effectué sur le remblais de la Centrale (substrat artificiel) se caractérise par sa forte densité de patelles (306 par m²) et par la pauvreté de sa diversité faunistique : seules des *Littorina saxatilis* se joignent aux patelles.

Septembre	PATE	LITT	LITT	GIBB	GIBB	THAI	OCEN	LASE	MODI
1993	sp_	SAX	NER	UMB	PEN	LAP	ERI	RUB	BAR
ROZEL 1	50	276	16	0	13	0	0	0	0
ROZEL 2	40	688	12	0	13	0	0	+	55
ROZEL 3	62	264	32	1	13	0	0	+	16
ROZEL 4	100	140	28	2	11	0	0	+	26
Moy. 1-4	63	342	22	1	13	0	0	+	24
Semaphore	129	3600	40	0	0	80	0	+	0
Quedoy	27	576	219	0	0	0	0	+	0
Remblais	306	400	0	0	0	0	0	0	0
Diélette	87	784	36	20	3	0	0	+	0

LITT SAX Littorina saxatilis PATE sp Patella sp LITT NER Littorina neritoïdes GIBB UMB Gibbula umbilicalis GIBB PEN Thaïs lapillus Gibbula pennanti THAI LAP OCEN ERI Ocenebra erinaceus LASE RUB Lasea rubra MODI BAR Modiolus barbatus

	PATE	LITT	LITT	GIBB	GIBB	THAI	OCEN	LASE	MODI
	sp	SAX	NER	UMB	PEN	LAP	ERI	RUB	BAR
ROZEL (moy)									
Décembre 1977	123	1105	*	33	0	46	0	*	0
Juin 1978	111	1721	*	7	5	5	0	*	0
Septembre 1983	62	694	216	0	0	0	0	480	0
Septembre 1984	66	786	44	0	5	0	0	620	0
Septembre 1985	61	872	157	0	1	0	4	265	5
Septembre 1986	59	678	518	4	15	0	14	1387	9
Septembre 1987	45	474	292	3	1	0	0	376	5
Septembre 1988	69	807	162	4	8	11	0	683	8
Septembre 1989	78	789	41	12	8	0	0	362	3
Septembre 1990	44	298	24	2	8	0	0	231	2
Septembre 1991	41	514	118	1	11	0	0	178	353
Septembre 1992	37	203	230	11	21	0	1	768	50
Septembre 1993	63	342	22	1	13	0	0	+	24
SEMAPHORE									
Septembre 1983	190	4976	384	0	0	0	0	1576	0
Septembre 1984	208	6680	72	0	0	0	0	528	0
Septembre 1985	98	9920	432	0	0	0	0	256	0
Septembre 1986	84	6536	512	0	0	0	0	344	24
Septembre 1987	120	3200	416	0	0	0	0	2800	16
Septembre 1988	139	3856	160	0	0	0	32	896	8
Septembre 1989	140	1736	56	0	0	0	0	880	0
Septembre 1990	147	1600	248	0	0	0	0	144	8
Septembre 1991	64	5440	1040	0	0	0	0	800	64
Septembre 1992	77	3040	640	0	57	0	0	800	0
Septembre 1993	129	3600	40	0	0	80	0	+	0

Tableau 3.3 : Comparaison des densités moyennes des différentes espèces de mollusques (nbre d'individus par m2)

3.3. CONCLUSION

Les principales caractéristiques du domaine benthique intertidal observées en 1993 sont :

* au niveau du phytobenthos

- une augmentation générale de la biomasse en mars et en septembre, avec une valeur supérieure à la moyenne calculée sur la période 1983 1993 ;
 - une dépopulation estivale relativement faible ;
 - un diamètre moyen des stipes faible, conforme à ceux observés depuis 1985 ;
- un pourcentage de thalles fertiles en conformité à la moyenne en septembre, qui oscille de 87 % à 96 %;
- une baisse significative, par contre, de la fertilité hivernale (32 %) en partie liée à la jeunesse des individus bagués en mars, sans toutefois retrouver les valeurs plus faibles enregistrées en 1983 et 1984.

L'importante fertilité hivernale notée de 1985 à 1992 n'a pas, à ce jour, trouvé d'explication sûre. L'hypothèse d'une relation entre la hausse de la fertilité de cette espèce et l'augmentation de la température de l'eau est émise. L'étude similaire commencée en 1994 sur l'autre site électronucléaire de Paluel et la poursuite de la surveillance de ce paramètre sur le site de Flamanville devraient permettre une meilleure compréhension du phénomène observé.

* au niveau de la faune des substrats durs

- un recrutement printanier sensiblement plus important au cap de Flamanville qu'à la pointe du Rozel, confirmant la relation mise en évidence entre son importance et la température minimale hivernale :
- des densités totales de cirripèdes en augmentation, conséquence d'un recrutement plus important ;
 - une mortalité estivale de ces crustacés plus importante ;
 - une relative stabilité dans la composition de la faune associée aux cirripèdes.

Annexe 3.1 : Evolution des biomasses de Fucus serratus (poids sec) du platier de Diélette

(g/m2)	SECT	EUR 1	SECT	EUR 2	SECT	EUR 3
	Biomasse	Ecart-type	Biomasse	Ecart-type	Biomasse	Ecart-type
Mar-1984	155,00	25,07	219,38	49,74	202,50	69,64
Mar-1985	105,00	51,37	326,50	91,77	240,00	89,47
Mar-1986	130,00	63,68	186,00	70,70	179,50	45,79
Mar-1987	132,50	19,61	237,50	66,30	194,50	20,54
Mar-1988	45,00	26,35	169,50	76,03	80,00	29,91
Mar-1989	72,00	36,53	191,50	31,98	175,50	22,29
Mar-1990	40,50	25,43	101,00	50,21	128,00	44,86
Mar-1991	71,00	45,75	118,00	45,22	105,00	31,62
Mar-1992	42,00	27,50	98,00	57,16	93,00	36,07
Mar-1993	12,50	13,39	265,50	84,57	190,50	77,73
moyenne	80,55		191,29		158,85	

(g/m2)	SECT	EUR 1	SECT	EUR 2	SECT	EUR 3
	Biomasse	Ecart-type	Biomasse	Ecart-type	Biomasse	Ecart-type
Sep-1983	341,25	138,10	532,50	267,38	648,75	470,99
Aoû-1984	245,00	173,43	801,00	276,18	528,00	210,49
Sep-1985	178,00	60,65	743,00	214,37	316,00	87,93
Sep-1986	252,00	106,70	564,00	168,78	563,50	174,98
Sep-1987	165,50	61,17	700,50	70,33	405,00	78,95
Sep-1988	157,50	90,53	551,00	59,24	486,00	86,60
Sep-1989	112,50	68,12	576,00	99,27	229,50	48,16
Sep-1990	53,00	43,40	390,00	230,50	206,00	59,30
Sep-1991	44,00	25,36	322,00	165,28	178,00	77,75
Sep-1992	36,00	20,24	335,50	176,67	268,50	156,76
Sep-1993	48,60	5,65	641,70	114,60	416,70	164,38
moyenne	148,49		559,75	- -	386,00	

Annexe 3.2 : Evolution saisonnière des paramètres mesurés chez Fucus serratus du platier de Diélette

	Longueur	Ecart type	Dichotomies	Ecart type	Diamètre	Ecart type	Fertilité
	(mm)		(nbre)		(1/10 mm)		%
Août/1977	458,1	175,8	15,2	6,5	60,6	19,3	
fevrier 1978	457,4	163,3	13,9	4,9			
Août/1978	578,6	205,4	15,6	6,1	71,8	20,2	
Mars/1983	471,9	150,7			55,5		
Septembre/1983	560,1	173,4	15,8	•	73,9		
Mars/1984	526,3	167,2	15,5	4,4		1	
Août/1984	602,2	205,2	18,5	6,0			
Mars/1985	444,9	172,0	13,8	5,2	63,1	19,6	
Septembre/1985	553,1	163,1	14,7	4,4	53,6	14,0	
Mars/1986	541,5	163,6	14,4	4,0	54,3	14,4	89,5
Septembre/1986	656,0	201,4	18,1	4,4	58,4	16,1	88,0
Mars/1987	522,1	185,7	14,8	4,6	49,0	13,7	86,4
Septembre/1987	605,4	213,0	16,1	5,1	60,6	14,3	87,4
Mars/1988	544,5	147,8	16,5	3,5	54,5	13,7	85,3
Septembre/1988]]		}]
Mars/1989	517,6	179,3	15,0	4,2	49,7	13,3	83,6
Septembre/1989	577,2	178,3	16,8	4,3	54,9	12,8	96,2
Mars/1990	501,1	184,5	16,0	3,6	48,1	13,3	85,7
Septembre/1990	527,1	134,6	15,9	3,4	51,5	11,6	92,8
Mars/1991	470,2	156,8	14,8	4,5	48,4	15,6	94,8
Septembre/1991	580,9	169,9	16,5	4,3	49,3	14,0	94,5
Mars/1992	498,6	162,2	15,6	4,3	52,4	10,7	85,7
Septembre/1992							
Mars/1993	392,0	131,0	11,7	3,5	47,0	12,0	32,0
Septembre/1993	479,0	158,0	13,6	4,0	51,0	11,0	89,0

•

.

4. LE DOMAINE HALIEUTIQUE

Etude et rapport réalisés:

au Centre IFREMER de Nantes par :

Jocelyne MARTIN

avec la collaboration de:

Daniel GUERAULT, Daniel HALGAND, Jérôme HUET, Nathalie RETIERE, pour les missions en mer,

Jean d'ELBEE du Laboratoire d' Analyses de Prélèvements hydrologiques (LAPHY) pour le tri et l'identification du plancton,

-à la Station IFREMER de Port en Bessin par :

Dominique MIOSSEC

avec la collaboration de:

Liliane FIANT et Joël VIGNEAU

pour les missions en mer.

4.1. LARVES DE CRUSTACES

4.1.1. MATERIEL ET METHODES

4.1.1.1. Nature et fréquence des observations - Localisation des points de mesures

Comme pour les autres sites étudiés indiqués en couverture, les observations effectuées à Flamanville comprennent des pêches de zooplancton auxquelles sont associés des relevés hydrologiques. Le calendrier des missions est donné dans la première partie du rapport (tabl. 1.2) : les quatre missions prévues au contrat ont été réalisées de juin à août à bord du chalutier artisanal " le Cap de Carteret " ; quelques prélèvements ont été effectués, en plus, au point du large le 29 juin à bord du Thalia, ceci afin de mieux suivre les éclosions d'araignées.

L'échantillonnage du zooplancton et les relevés hydrologiques sont, depuis 1988, réalisés en 4 points : le point canal d'amenée, le point rejet et deux points hors tache thermique (le point 3 étudié depuis le début des études et le point 11, dit " point référence ", plus côtier). La position de ces points est indiquée sur la carte figurant dans le préambule de ce rapport.

Dans la mesure du possible, les mesures sont faites à la renverse de courant (renverse de flot environ trois heures après la pleine mer, pour les trois premières missions, renverse de jusant pour la dernière) et la date des campagnes est choisie en fonction des coefficients de marée les plus bas (annexe 4.1).

4.1.1.2. Paramètres hydrologiques

Depuis 1984, deux paramètres seulement sont mesurés à chaque point (correspondant à un traict de zooplancton): température de l'eau et salinité. Les relevés sont faits à deux niveaux: subsurface et voisinage du fond, à l'aide d'une sonde VALEPORT, modèle CTDS 600; la précision des mesures est toujours de 10⁻¹°C pour la température et 50.10⁻²g.kg⁻¹ pour la salinité exprimée en grammes par kilogramme d'eau de mer.

4.1.1.3. Zooplancton

L'appareil utilisé pour les pêches de larves d'araignée est un échantillonneur de type Bongo grand modèle conçu pour l'échantillonnage de l'ichtyoplancton. Ses caractéristiques et ses performances ont été notamment décrites par SHERMAN et HONEY (1971), SMITH (1974), SCHNACK (1974), ALDEBERT (1975), ARBAULT et LACROIX (1975).

Pour les pêches de larves de homard un échantillonneur neustonique d'ouverture plus large et de maillage supérieur a été utilisé au cours de l'ensemble des missions.

4.1.1.3.1. Description des échantillonneurs

Bongo grand modèle

L'échantillonneur Bongo grand modèle utilisé pour les études de sites comporte deux filets de maillage 505 µm montés sur une même armature et pêchant simultanément. Chaque filet a un diamètre d'ouverture de 0,61 m, mesure 3 m de longueur et présente une partie cylindrique à l'avant du cône de filtration terminal. A chaque embouchure du couple de filets est fixé un volucompteur (2030 "Digital Flowmeter" 10 à 500 cm.s⁻¹ de General Oceanics) permettant le calcul des volumes filtrés. Un dépresseur en V de 40 kg environ assure la plongée et la stabilité de l'engin de pêche. Chaque filet se termine par un collecteur à oreilles où les organismes se rassemblent dans un volume d'environ 2 litres empêchant leur détérioration.

Neuston

Cet engin, utilisé par NICHOLS et coll. (1980), se compose d'un cadre en tube d'aluminium (2 m x 0,80 m) sur lequel est monté un filet de forme conique ayant une longueur de 3 m; le filet se termine par un collecteur à oreilles. La maille utilisée, tant sur le filet que sur les oreilles du collecteur, est de $1\,250\,\mu m$. Comme le Bongo, l'ouverture du Neuston est équipée d'un volucompteur ("Digital Flowmeter") afin de calculer le volume d'eau filtrée.

4.1.1.3.2. Méthode d'échantillonnage

La méthodologie d'échantillonnage du Bongo s'inspire du manuel de standardisation des méthodes (JOSSI et coll., 1975) édité par le service des pêches des Etats-Unis ; les modalités d'utilisation décrites par HERAL et coll. (1976) pour adapter cet engin aux études de sites effectuées en eau côtières peu profondes, ont été abandonnées en 1984.

Depuis 1984, la pêche se fait donc en traict réellement oblique, depuis le fond jusqu'en surface à une vitesse de 2 noeuds environ (1 m.s⁻¹). Le volume filtré au cours d'un simple traict oblique (comprenant la descente puis la remontée du filet) a varié cette année entre 52 m³ et 272 m³. Les données concernant chaque traict (sonde, durée, volume filtré) sont indiquées dans l'annexe 4.1.

Le Neuston, utilisé à partir de 1983 en traict de surface, est totalement immergé depuis 1984, ceci afin d'obtenir des volumes filtrés plus justes (par mer agitée, même faiblement, l'immersion aux 2/3 n'était que "théorique").

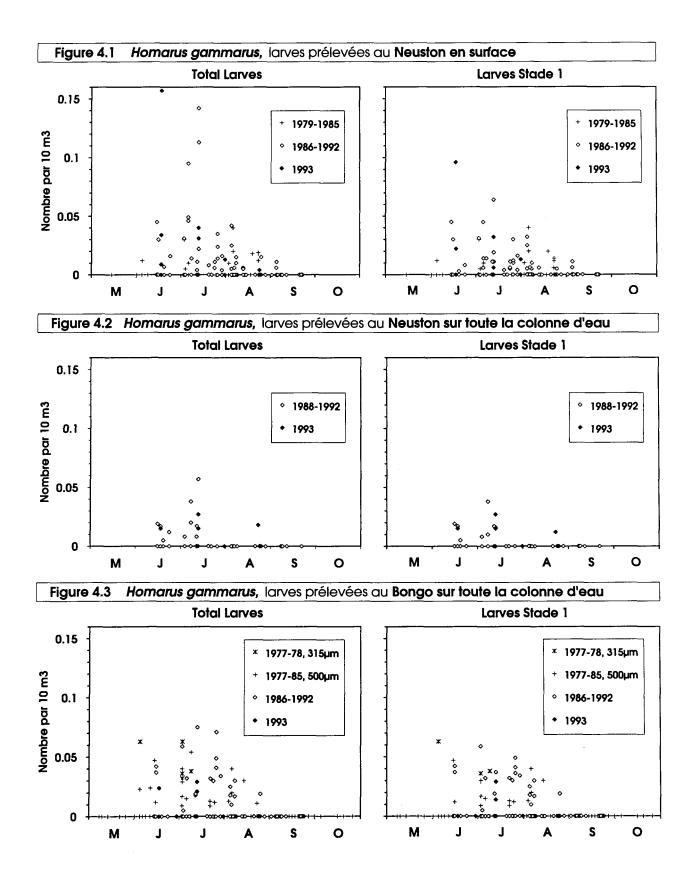
Depuis 1988, un deuxième Neuston est utilisé simultanément pour étudier l'ensemble de la colonne d'eau ; selon la profondeur, 2 ou 3 traicts obliques sont réalisés à la suite de façon à réaliser un traict de durée suffisante (environ 15 minutes) et similaire à celle du traict de surface.

Il est à noter que les prélèvements sont toujours effectués de jour (annexe 4.1.) ce qui s'avère important, surtout pour les prélèvements effectués en surface.

Après chaque traict, les filets sont rincés à l'eau de mer afin de rassembler les planctontes dans les collecteurs ; le contenu de chaque collecteur est recueilli dans des bocaux de 2 litres.

4.1.1.3.3. Conservation des échantillons

Les échantillons sont fixés à l'aide de la solution décrite par MASTAIL et BATTAGLIA (1978) légèrement modifiée (BIGOT, 1979). Ce liquide conservateur est réalisé à base de formol (solution saturée de formaldéhyde à 36 % environ en masse) neutralisé et dilué à 3 % en volume dans de l'eau de mer additionnée d'agents antioxydants et complexants.


4.1.1.3.4. Dépouillement des échantillons

Comme le prévoit le contrat depuis 1986, l'étude halieutique (partie oeufs et larves) ne porte plus que sur le homard et l'araignée.

Les larves de ces deux espèces sont comptées sur la totalité des échantillons et leur stade est identifié.

4.1.1.4. Saisie, stockage et traitement des données

Les données brutes du comptage sont saisies au Centre IFREMER de Nantes sur microordinateur où les effectifs, par espèce et stade de développement, sont ramenés à l'unité de volume filtrée (10 m³). L'ensemble des données est archivé à Nantes sur la mini base créée spécialement pour les études de sites EDF.

4.1.2. RESULTATS

Les résultats des paramètres hydrologiques (température et salinité), mesurés dans le cadre de l'étude halieutique, figurent annexe 4.2. et la température, étroitement liée à l'étude des larves d'araignée, est illustrée dans la figure 4.10.

4.1.2.1. Larves de homard, Homarus gammarus L. (annexe 4.3)

Les figures 4.1 à 4.3 permettent de situer les résultats obtenus depuis 1986 par rapport aux résultats antérieurs correspondant à la période avant fonctionnement (1977-85). Toutes les densités observées y figurent, sans distinction du point où elles ont été trouvées.

La figure 4.1 présente les densités obtenues par prélèvement en sub-surface au moyen du neuston, tandis que les deux autres montrent les résultats des prélèvements effectués sur toute la colonne d'eau, au moyen du même échantillonneur (figure 4.2) ou au moyen du Bongo (figure 4.3). Chaque figure montre les densités de l'ensemble des quatre stades larvaires (à gauche) et les densités de larves au premier stade (à droite).

En observant ces figures, il apparaît cette année qu'une densité importante (0,16 par 10m³), supérieure aux densités exceptionnelles relevées en 1986 et 1988, ait été trouvée à nouveau en surface. Mais, à la différence des années antérieures, cette densité est constituée par une quantité importante de jeunes stades (stades 1 et 2 essentiellement).

En 1993 (figures 4.4 à 4.6 ci-après), des larves de homard ont été récoltées du 17 juin, date de la première mission, au 23 août. L'évolution des densités de larves au stade 1 (figures 4.7 à 4.9) suggère que le pic d'éclosion se situe vers la mi-juin, voire un peu avant, compte tenu des densités de larves au stade 2 et de la présence de larves aux stades 3 et 4 à cette date. Ainsi, l'année 1993 se montre précoce tout comme l'année 1990 et, probablement, l'année 1989 (précocité non réellement mise en évidence du fait de l'absence de prélèvement en juin).

Comme chaque année depuis 1989, aucune larve n'a été récoltée dans le canal d'amenée. Aux environs du rejet, en revanche, quelques larves ont été pêchées, comme en 1987, 1988 et 1991; cette année, celles-ci ont toutes été trouvées en surface.

Lors de la récolte maximale de larves, le 17 juin, la couverture nuageuse était assez importante (6), ce qui pourrait expliquer la forte proportion de larves pêchées en surface (36 sur 41).

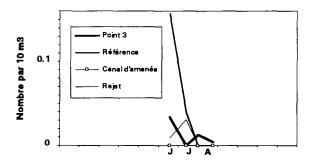


Figure 4.4 Homarus gammarus, Total Larves
Prélèvement en surface au Neuston

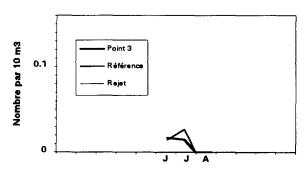


Figure 4.5 Homarus gammarus, Total Larves
Prélèvement sur toute la colonne d'eau, auNeuston

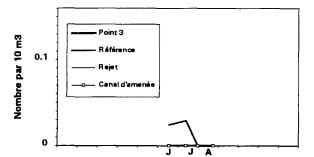


Figure 4.6 Homarus gammarus, Total Larves Prélèvement sur toute la colonne d'eau, au Bongo

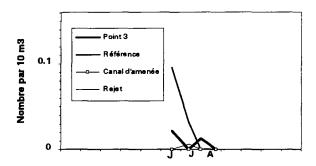


Figure 4.7 *Homarus gammarus*, Larves stade 1 Prélèvement en surface au Neuston

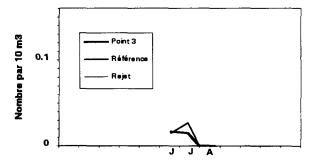


Figure 4.8 Homerus gammerus, Larves stade 1 Prélèvement sur toute la colonne d'eau, auNeuston

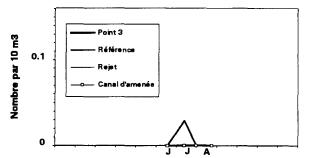


Figure 4.9 Homarus gammarus, Larves stade 1 Prélèvement sur toute la colonne d'eau, au Bongo

4.1.2.2. Larves d'araignée, Maja squinado Herbst (annexe 4.4)

La figure 4.10 montre, pour chaque année étudiée depuis la mise en fonctionnement de la Centrale, l'évolution saisonnière des zoés d'araignée au point 3 et de la température de l'eau mesurée en ce point (grisé foncé) et, en complément, à l'entrée de la Centrale (mesure E.D.F. "source amont site", en grisé clair). Les années de Projet et de Surveillance 1ère phase ne sont pas reprises dans la figure en raison du manque de données relatives à la fois aux zoés (prélèvements trop espacés au cours de l'étude de Projet) et à la température de l'eau (pas de mesure Centrale avant 1986).

La surveillance de ce point 3, riche en zoés d'araignée et situé en dehors de la tache thermique, est le reflet de l'influence du climat sur la période d'éclosion de cette espèce.

C'est ainsi qu'il se détache des années plus précoces que les autres (1988, 1989, 1990 et 1992), où des zoés d'araignée au stade 1 sont présentes bien avant la fin du mois de juillet (elles sont observées dès le mois de juin en 1990) et, plus particulièrement l'année 1989, où la densité maximale de stades 1 se situe début juillet. Parallèlement à cette précocité d'éclosion des zoés, il apparait que la température de l'eau (courbes en grisé) soit plus élevé au cours du printemps de ces années précoces. Le calcul plus précis du nombre de degrés-jours au cours de la période précédent l'éclosion des zoés a montré (MARTIN, 1993) qu'il existait une relation entre ceux-ci et la date d'apparition des zoés 1, la période prise en compte (21 avril-15 juin) étant celle qui donnait le coefficient de corrélation le plus fort. La droite de régression figurée ci-contre a été actualisée avec les résultats 1993.

Le schéma de l'année 1993 avec, d'une part, la présence de zoés dès le mois de juin et un pic d'abondance se situant entre le 12 et le 30 juillet et, d'autre part, un nombre de degrés-jour particulièrement élevé au cours du printemps, rejoint tout à fait celui des années précoces.

La densité maximale de zoés relevée en 1993 (3,6 par 10 m³) est de l'ordre des moins élevées. L'année 1983 demeure donc exceptionnelle avec 61 zoés par 10 m³.

Les figures 4.11 à 4.14 ci-après confirment pour l'année 1993 :

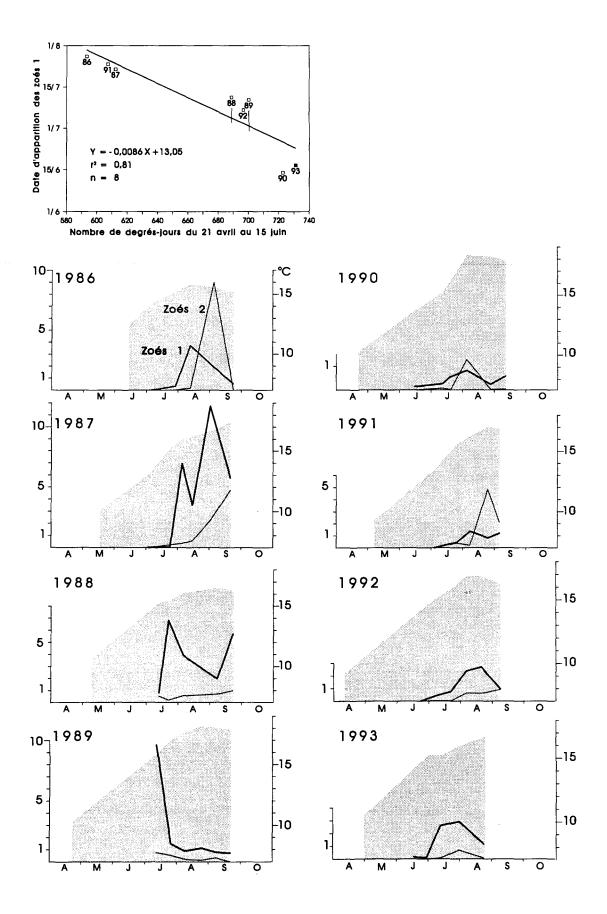


Figure 4.10 Zoés d'araignée de mer (stades 1 et 2) récoltées au point 3 depuis le début du fonctionnement de la Centrale et température de l'eau mesurée en ce point (grisé foncé) et à l'entrée de la Centrale (grisé clair).

En haut, à gauche : relation entre le nombre de degrés-jours et la date d'apparition des zoés 1.

- la relative richesse en zoés du point 3 comparé aux autres points, malgré une densité maximale se situant cette année parmi les plus faibles; les densités de mégalopes observées aux points 3 et référence sont généralement assez proches et, cette année, la répartition est en faveur du point 3;
- une abondance en zoés nettement plus faible au point référence qu'au point 3 ; seule l'année 1991 se caractérisait par une abondance en zoés au point référence presqu'identique à celle du point 3 ;
- la quasi-absence de larves d'araignée dans le canal d'amenée : aucune larve n'y a été pêchée cette année ;
- le peu de larves récoltées aux alentours des bouches de rejet : quelques zoés (1 et 2) et quelques mégalopes en juillet et août au moment de l'abondance maximale ; l'effectif maximum de zoés (0,3 par 10 m³) et celui de mégalopes (0,1 par 10 m³) se situent dans la fourchette des valeurs observées les années antérieures, à savoir respectivement 0,07 à 1,7 par 10 m³ pour les zoés et 0,04 à 0,19 par 10 m³ pour les mégalopes.

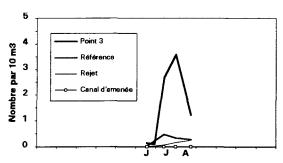


Figure 4.11 Maia squinado, Total Zoés

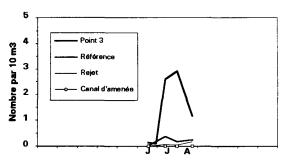


Figure 4.13 Maia squinado, Total Zoés

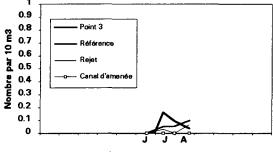


Figure 4.12 Maia squinado, Mégalopes

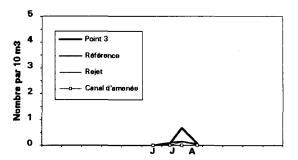


Figure 4.14 Maia squinado, Zoés stade 2

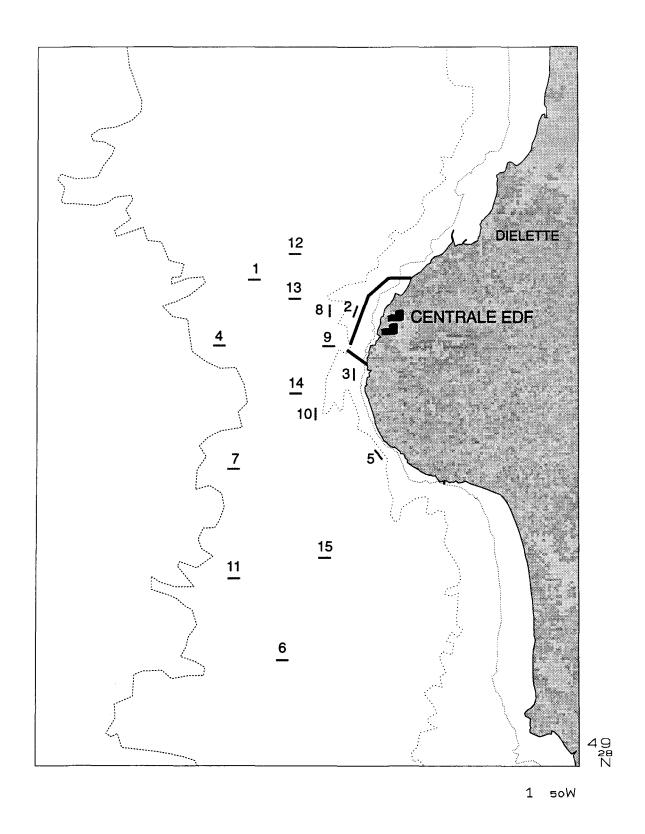


Figure 4.15 - Carte de positionnement des filières

4.2. SURVEILLANCE DE LA PECHE COTIERE DES CRUSTACES

L'étude de Projet relative aux ressources halieutiques du site de Flamanville a mis en évidence l'intérêt de la pêcherie de crustacés du nord-ouest Cotentin pour la flottille artisanale travaillant au casier dans ce secteur. Les observations se sont donc poursuivies depuis 1980.

4.2.1.PECHE PROFESSIONNELLE

4.2.1.1.Flottille (annexe 4.5)

En 1992 la flottille du secteur nord ouest Cotentin est constituée de 34 navires armés à la pêche. Le port de Carteret compte 22 unités, les ports de Goury et de Dielette 12. Ces navires sont pour la plupart polyvalents et agés en moyenne d'une douzaine d'années. Il n'y a pas d'évolution notable de l'effort de pêche déployé par cette flottille depuis 3 ans.

4.2.1.2. Activité

Seule une partie de cette flottille est armée toute l'année, un tiers environ des bateaux ne travaillant que d'avril à octobre.

En période estivale (période d'activité maximum de la flottille), environ 80 marins sont embarqués.

Les activités principales des navires du secteur sont la pêche aux casiers (crustacés), les palangres de fond ou "cordes" (raies, congre). Trois unités importantes basées à Carteret pratiquent le chalutage toute l'année (poissons de fond). La pêche du bar, pratiquée en période hivernale sur l'estran à l'aide de palangres unitaires ou "baho", est une activité de substitution pour les marins des petites unités.

4.2.1.3. Production

Seule la mise en place de déclarations mensuelles de captures conjointement par le comité régional des pêches et l'administration des pêches maritimes permettra l'amélioration du suivi de la production, des crustacés notamment.

Figure 4.16 - Rendements en nombre d'individus pour 10 casiers

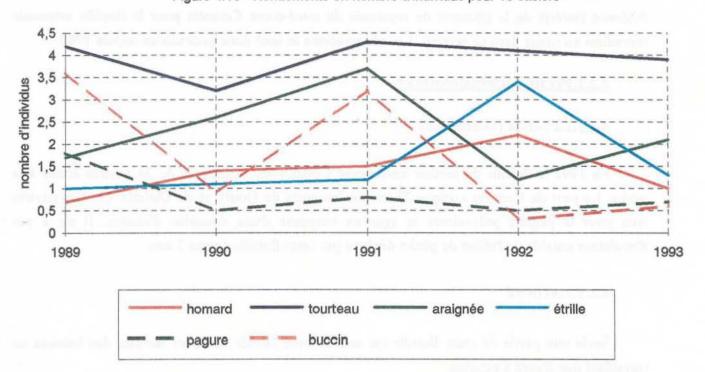
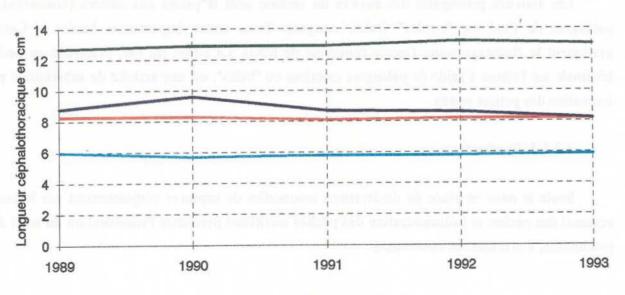



Figure 4.17 - Evolution des tailles moyennes

missions des mois de juin et septembre

^{*} largeur céphalothoracique pour le tourteau

4.2.2. PECHES EXPERIMENTALES

En 1993, les pêches expérimentales aux casiers n'ont été réalisées qu'au cours des mois de juin et septembre selon la réduction de programme décidée en début d'année.

4.2.2.1. Matériel et méthode

Le principe de 15 points définis dans le secteur proche du site de la Centrale a été conservé (figure 4.15).

Chaque campagne comporte 4 jours de pêche consécutifs (sauf conditions météorologiques défavorables) au cours d'une marrée de mortes-eaux. Les 15 filières de 20 casiers sont relevées, si possible, à chaque sortie.

Les casiers utilisés sont identiques à ceux employés les années précédentes. L'appât utilisé est essentiellement du grondin rouge décongelé.

4.2.2.1.1. Chronologie des embarquements:

MISSIONS	JOURS	NB DE FILIERES
	14	1
JUIN	15	9
	16	3
	17	7
	18	3
	20	9
SEPTEMBRE	21	3
	22	13
	23	14
	24	14

4.2.2.1.2. Observations réalisées

Les observations réalisées en 1993 reposent sur 1371 casiers relevés (annexe 4.10). Le nombre d'individus capturés par casier est noté pour les espèces suivantes: homard, tourteau, araignée, étrille, buccin et pagure. Les données biologiques prises en compte pour les crustacés (excepté les paguridés) concernent la taille, le sexe, la dureté de la carapace, la présence éventuelle d'oeufs et la maturité (pour l'araignée).

4.2.2.1.3. Traitement des données

Les données, recueillies sur bordereaux "pré-codés" au cours des pêches expérimentales, ont été retranscrites et stockées sur support informatique puis traitées suivant la procédure employée lors des années antérieures à la station IFREMER de Port en Bessin.

4.2.2.2. Principaux résultats

Les résultats de l'année 1993 présentés ci-aprés concernent les paramètres biologiques définis au cours des années 1980 à 1985, années de référence avant la mise en service de la Centrale EDF. Ils sont comparés aux résultats des missions de juin et septembre des années antérieures.

4.2.2.2.1. Homard (annexe 4.6)

- Rendements (figure 4.16)

Les rendements mensuels (nombre d'individus pêchés pour 10 casiers relevés) calculés pour l'année 1993 sont inférieurs à ceux observés au cours des années précédentes et le rendement moyen calculé pour l'ensemble de la saison de pêche est aussi plus faible: 0,96 individu pour 10 casiers contre 2,2 en 1992.

- Répartition des tailles (figure 4.17)

La taille moyenne des homards capturés en 1993 est de 8,2 cm (longueur céphalothoracique). C'est une valeur stable depuis 1990 mais plus faible que celles observées pendant les années de références. Il faut remarquer que 45 % des captures ne font pas la taille

marchande minimum. Comme les années précédentes un gradient de taillle, croissant de la côte vers le large, est nettement marqué.

- Poids individuel

Le poids individuel est calculé à partir de la relation taille-poids élaborée en 1983 par les biologistes travaillant sur cette espèce du Comité Régional des pêches et cultures marines de Bretagne, du Comité Local des Pêches de Blainville, des stations I.S.T.P.M. de Roscoff et de Ouistreham et utilisée depuis pour l'ensemble de la Manche Ouest:

$$W = a L b$$

W: poids en g

L: longueur céphalothoracique en mm

pour les mâles : a = 187.10-6 et b = 3,289 pour les femelles : a = 371.10-6 et b = 3,122

Le poids individuel moyen calculé sur l'ensemble des captures de l'année 1993 est de 372 g. Comme la taille moyenne, cette valeur est stable par rapport aux trois années précédentes mais plus faible que pendant les années de références parce que le pourcentage d'immatures pêchés est plus important .

- Proportion des sexes

La moyenne saisonnière du pourcentage de mâles sur le nombre total des captures est très proche de celle observée lors des années de référence: 53 % des individus sont de sexe mâle.

4.2.2.2. Tourteau (annexe 4.7)

Le rendement moyen en tourteaux est de 3,9 pour 10 casiers, valeur qui se situe en dessous de celles de 1992 et 1991 (figure 4.16).

La taille moyenne des individus capturés est stable par rapport aux années précédentes. Elle est de 13 cm en 1993 (largeur du céphalothorax)(figure 4.17).

Le sex-ratio annuel des captures est proche de celui de l'année passée: plus de 60 % des individus sont de sexe mâle.

4.2.2.3. Araignée (annexe 4.8)

Le rendement moyen est faible: 2,1 araignées pour 10 casiers mais les missions ont lieu avant et après la période d'abondance maximum observée pendant les années précédentes (figure 4.16).

La taille moyenne des captures est de 8,2 cm contre 8,6 cm en 1992, ce qui confirme la tendance à la légère diminution de taille observée depuis 1985 (figure 4.17).

L'évolution mensuelle du rapport des sexes est toujours dans les limites de celles déjà observées que ce soit pour la population adulte ou celle immature.

4.2.2.2.4. Etrille (annexe 4.9)

Après les rendements exceptionnels de l'année dernière, le rendement moyen est revenu au niveau des années 1990 et 1991, soit 1,3 individu pour 10 casiers (figure 4.16).

La taille moyenne est de 5,9 cm donc trés voisine de celle observée en 1991 et 1992 (5,8 cm)(figure 4.17).

En 1993, comme les années précédentes, le sex-ratio est déséquilibré: plus de 80 % des individus sont des mâles.

4.2.2.2.5. Buccin et Paguridés (annexe 4.10 et figure 4.16)

Depuis trois ans, les captures de pagures sont particulièrement stables et faibles: 0,7 individus pour 10 casiersen 1993, 0,5 en 1992.

Par contre, les rendements de bulots varient fortement au cours de la saison et d'une année sur l'autre: 0,1 individus pour 10 casiers au mois de juin 1993, 0,8 au mois de septembre et un rendement moyen pour l'année 1993 de 0,6 à comparer aux rendements de plus de 3 en 1989 et 1991 pour les mêmes mois.

4.3. CONCLUSION

L'évolution de la température de l'eau au cours du printemps 1993 est proche de celle des années 1988 à 1990, dites précoces.

Parallèlement, le début des éclosions de larves d'araignées (Maia squinado, HERBST) se situe dès le mois de juin et le pic d'abondance est observé entre mi-juillet et fin juillet.

La densité maximale observée fin juillet au point 3 (3,6 zoés par 10 m³⁾, est de l'ordre des moins élevées.

La répartition des zoés selon les points reste identique : le point 3 est toujours le plus riche ; le point référence reste aussi peu riche que l'année précédente après une augmentation en 1991 ; aucune zoé n'a été pêchée dans le canal d'amenée où les récoltes sont sporadiques et très peu aux environs des bouches de rejet.

Les larves de homard (*Homarus gammarus*, L.) présentent à nouveau une abondance exceptionnelle dans une pêche de surface au point référence et cette apparition est relativement précoce.

Depuis 1989, aucune larve de homard n'a été pêchée dans le canal d'amenée ; de même que certaines années, quelques larves ont été pêchées aux environs des bouches de rejet.

Si la composition de la flottille du nord ouest Cotentin n'évolue guère, son effort de pêche a tendance à se concentrer dans la bande cotière française vu les problèmes de cohabitation avec les pêcheurs anglo-normands.

Les résultats obtenus ont été comparés à ceux qui avaient été observés aux mêmes mois lors des années précédentes. Malgré la diminution du nombre de campagnes, on retrouve une stabilité des paramètres biologiques voisine de celle observée pendant les années de référence. Par contre, la variabilité des rendements de pêche étant importante, la diminution du nombre d' observations entraîne une plus grande dispersion des résultats.

BIBLIOGRAPHIE

ALDEBERT (Y.), 1975.- Comparaison des rendements du "Bongo".- Rapport FAO - ISTPM.

ARBAULT (S.) et LACROIX (N.), 1975.- Essais comparatifs des pouvoirs de capture de deux filets à plancton (GULF III encased et Bongo).- Cons. int. Explor. Mer, Comité des poissons pélagiques (sud), J:8.

BIGOT (J.L.), 1979.- Identification des zoés de tourteau (Cancer pagurus, L.) et d'étrille (Macropipus puber, L.).- Comparaison avec d'autres zoés de morphologie très voisine.- Cons. int. Explor. Mer, Comité de l'océanographie biologique, L:17.

HERAL (M.), WOEHRLING (D.), HALGAND (D.) et LASSUS (P.), 1976.- Utilisation du filet à plancton du type "Bongo".- Cons. int. Explor. Mer, Comité du Plancton, L:19.

JOSSI (J.W.), MARAK (R.R.) et PETERSON (H.), 1975.- At-sea data collection and laboratory procedures.- Marmap survey I manual, Marmap Programm Office, National Marine Fisheries Service édit., Washington.

MARTIN (J.), 1993.- Période d'éclosion des larves d'araignée de mer *Maja squinado* Herbst en Manche et température de l'eau au printemps.- *Cons. int. Explor. Mer*, Comité des mollusques et crustacés CM 1993/K: 50.

MASTAIL (M.) et BATTAGLIA (A.), 1978. Amélioration de la conservation des pigments du zooplancton. - Cons. int. Explor. Mer, Comité de l'Océanographie biologique, L:20.

NICHOLS (J.H.), BENNET (D.B.) et LAWRENCE (A.), 1980.- A study of some problems relating to quantitative sampling of lobster larvae, *Homarus gammarus* (L.) - *Cons. int. Explor. Mer*, Comité des Crustacés, L:14.

SCHNACK (D.), 1974.- On the reliability of methods for quantitative surveys of fish larvae.- In: The Early life history of Fish, BLAXTER J.H.S. rédacteur, Springer-Verlag, Berlin, Heidelberg, New-York.

SHERMAN (K.) et HONEY (A.), 1971.- Size selectivity of the Gulf III and Bongo zooplankton Samplers.- icnaf, research bulletin, n°8: 45-48.

SMITH (E.), 1974.- Manual of methods for fisheries ressource survey and appraisal.- Part 4, Standard techniques for pelagic fish eggs and larvae surveys.- National Marine Fisheries Service édit., Washington.

Annexe 4.1. Caractéristiques des prélèvements effectués en 1993.

Mission	Date	Coefficient	Point	Nuages	Sonde	Engin	Heure début	Durée	Temps	Volume
TATI STROIT	D	marée	1 53345		(m)		(T.U.)		après PM	m ³
		111111			()		(===)		-	
112	17 Juin	55	Point 3	6	25	Bongo 1	10 h	? mn	6 h 8	186
						Bongo 2	10 h 3	4 mm	6 h 11 6 h 20	154
						Neuston Neuston	10 h 12 10 h 13	16 mn 12 mn	6 h 21	1783 1155
			C. Amenée	6	5	Bongo 1	7 h 7	2 mn	3 h 15	144
			(Pt. 6)	1		Bongo 2	7 h 19	3 mn	3 h 27	151
			, ,			Neuston	7 h 32	12 mn	3 h 40	1578
			Rejet	6	16	Bongo 1	8 h 8	4 mn	4 h 16	186
			(Pt. 7)			Bongo 2	8 h 17	3 mn	4 h 25	152
						Neuston Neuston	8 h 27 8 h 28	17 mn 7 mn	4 h 35 4 h 36	2135 880
			Référence	6	22	Bongo 1	9 h l	3 mm	5 h 9	211
			(Pt. 11)			Bongo 2	9 h 8	2 mn	5 h 16	160
			<u> </u>			Neuston	9 h 16	15 mm	5 h 24	1779
						Neuston	9 h 17	12 mn	5 h 25	1340
113	29 Juin	60	Point 3	4	25	Bongo 1	9 h 48	3 mn	5 h 58	154
113	29 3441	00	1 Onto	•	25	Bongo 2	10 h 11	3 mn	5 h 35	52
 										
114	12 Juillet	44	Point 3	3	26	Bongo 1	16 h 35	4 mn	5 h 35	121
						Bongo 2	16 h 45	4 mn	5 h 45	203
						Neuston Neuston	16 h 55 16 h 56	14 mm 9 mm	5 h 55 5 h 56	? 648
			C. Amenée	3	7	Bongo 1	13 h 50	4 mn	2 h 50	160
		ļ	(Pt. 6)]	'	Bongo 2	14 h	3 mn	3 h	137
			` ´			Neuston	14 h 10	14 mn	3 h 10	1628
		Ĭ	Rejet	3	16	Bongo 1	14 h 40	3 mm	3 h 40	152
			(Pt. 7)			Bongo 2	14 h 45	2 mm 30	3 h 45	155
						Neuston Neuston	15 h 15 h l	14 mm 10 mm	4 h 4 h l	1611 856
			Référence	3	24	Bongo 1	15 h 58	3 mm	4 h 58	204
			(Pt. 11)	_	-	Bongo 2	16 h 5	3 mn	5 h 5	170
			`			Neuston	15 h 35	15 mm.	4 h 35	1250
						Neuston	15 h 36	12 mn	4 h 36	746
115	30 Juillet	56	Point 3	5	26	Bongo 1	8 h 41	3 mm 20	5 h 20	188
113	JO Junet	30	1 Ollit 3		20	Bongo 2	8 h 52	3 mn 35	5 h 31	212
						Neuston	9 h 4	12 mn	5 h 43	1563
						Neuston	9 h 5	? mn	5 h 44	1026
			C. Amenée	6	6	Bongo 1	5 h 53	1 mn 35	2 h 32	87
			(Pt. 6)			Bongo 2 Neuston	6 h 2 6 h 12	2 mm 15	2 h 41 2 h 51	101 1360
			Rejet	6	18	Bongo 1	6 h 12 6 h 45	11 mm 4 mm	3 h 24	118
			(Pt. 7)	[••	Bongo 2	6 h 54	3 mm	3 h 33	158
			` ′			Neuston	7 h 12	9 mm	3 h 51	1281
						Neuston	7 h 13	? mn	3 h 52	795
			Référence	5	22	Bongo 1	8 h 10	3 mm 30	4 h 49	207
			(Pt. 11)			Bongo 2 Neuston	8 h 16 7 h 39	4 mn 21 mn	4 h 55 4 h 18	179 2038
		·				Neuston	7 h 40	15 mm	4 h 19	1481
				_						T
116	23 Août	80	Point 3	7	24	Bongo 1	4 h 30	5 mn	5 h 16	272
						Bongo 2 Neuston	4 h 40 4 h 50	5 mn ? mn	5 h 6 4 h 56	217 2393
			,			Neuston	4 h 51	? mn	4 h 55	1899
			C. Amenée	8	6	Bongo 1	7 h 40	2 mm	2 h 6	107
			(Pt. 6)			Bongo 2	7 h 45	2 mm	2 h l	137
						Neuston	7 h 15	?mn	2 h 31	1313
			Rejet	8	15	Bongo 1	6 h 30	3 mn	3 h 16	115
			(Pt. 7)			Bongo 2	6 h 37	? mn	3 h 9	144
						Neuston Neuston	? h ? h	? mn ? mn	9 h 46 9 h 46	1935 1368
l	:		Référence	8	20	Bongo 1	6 h 3	5 mm	3 h 43	199
			(Pt. 11)			Bongo 2	6 h 12	5 mm	3 h 34	190
			` ′			Neuston	5 h 36	? mn	4 h 10	2119
i						Neuston	? h	? mn	9 h 46	1877

Annexe 4.2. Résultats des mesures hydrologiques effectuées en 1993.

Mission	Date	Point	_	érature °C	Sali 10	nité -3	Den	sité
			Surface	Fond	Surface	Fond	Surface	Fond
112	17 Juin	Point 3	14,22	14,20	35,06	35,10	26,20	26,24
		C. Amenée (Pt. 6)	14,07	14,04	34,88	34,94	26,10	26,15
		Rejet (Pt. 7)	16,90	15,20	35,35	35,00	25,82	25,95
		Référence (Pt. 11)	14,05	14,00	34,90	34,96	26,12	26,17
113	29 Juin	Point 3	15,45	15,12				
114	12 Juillet	Point 3	15,24	15,15	35,01	35,04	25,94	25,99
		C. Amenée (Pt. 6)	15,90	15,83	34,48	34,51	25,39	25,43
		Rejet (Pt. 7)	18,20	16,60	34,79	34,87	25,08	25,53
		Référence (Pt. 11)	15,50	15,34	34,84	34,92	25,76	25,85
115	30 Juillet	Point 3	15,92	15,90	35,04	35,07	25,81	25,84
		C. Amenée (Pt. 6)	16,30	16,30	34,85	34,89	25,58	25,61
		Rejet (Pt. 7)	19,17	16,92	35,14	35,00	25,10	25,55
		Référence (Pt. 11)	16,13	16,10	35,02	35,03	25,75	25,77
116	23 Août	Point 3	16,55	16,57	35,13	35,08	25,74	25,69
		C. Amenée (Pt. 6)	16,72	16,67	35,30	35,35	25,83	25,88
		Rejet (Pt. 7)	18,75	19,33	35,10	34,50	25,18	24,57
:		Référence (Pt. 11)	16,50	16,50	35,18	35,23	25,79	25,83

Annexe 4.3. Densités de larves de homard récoltées en 1993 (nombre par 10 m3).

Mission	Date	Point	Nuages	Engin	Total	Larves	Larves	Larves Stade 3	Larves Stade 4
		ļ		ļ	Larves	Stade 1	Stade 2	State 3	State 4
112	17 Juin	Point 3	6	Bongo 1					
112	1 / Juiii	romes	U	Bongo 2					
				Neuston S	0,034	0,022	0,011		
				Neuston W		0,017	.,		
ļ		C. Amené	6	Bongo 1	-,	",			
		(Pt. 6)		Bongo 2					
		(2)		Neuston S					
		Rejet	6	Bongo 1				ŀ	
		(Pt. 7)		Bongo 2					Į.
	ı			Neuston S	0,009		0,005		0,005
				Neuston W					
		Référence	6	Bongo 1	0,047		0,047		ŀ
		(Pt. 11)		Bongo 2	0,000	1	0,000		
				Moyenne	0,024		0,024	0,006	
				Neuston S	0,157	0,096	0,056	0,000	
		ļ		Neuston W	0,015	0,015			
113	29 Juin	Point 3	4	Bongo 1			1		
				Bongo 2			_		
		_							
114	12 Juillet	Point 3	3	Bongo 1		1			
				Bongo 2					
				Neuston S	0.01#	0.018		,	
			3	Neuston W Bongo 1	0,015	0,015			
		C. Amené (Pt. 6)	3	Bongo 2					
		(11.6)		Neuston S		Ì]	
		Rejet	3	Bongo 1			ŀ		ļ
		(Pt. 7)		Bongo 2					
		(/		Neuston S	0,031	0,006	0,006	0,012	0,006
				Neuston W					1
		Référence	3	Bongo 1	0,000	0,000			
		(Pt. 11)		Bongo 2	0,059	0,059			1
				Moyenne	0,030	0,030			
				Neuston S	0,040	0,032	0,008		ļ
				Neuston W	0,027	0,027		<u> </u>	<u> </u>
115	30 Juillet	Point 3	5	Bongo 1				1	i
***	30 Junio	Tonico		Bongo 2]	
		į		Neuston S	0,013	0,013			
				Neuston W		.,			
		C. Amené	6	Bongo 1			•		
		(Pt. 6)		Bongo 2					
				Neuston S					
		Rejet	6	Bongo 1				1	
ļ		(Pt. 7)		Bongo 2					1
				Neuston S				1	
		D. (5)	_	Neuston W				1	
		Référence	5	Bongo 1					1
		(Pt. 11)		Bongo 2					
				Neuston S Neuston W	}	1	}	1	1
		 		TACABETE AA		 	 	 	<u> </u>
116	23 Août	Point 3	7	Bongo 1					1
				Bongo 2					
				Neuston S	0,004		0,004		1
				Neuston W					
		C. Amené	8	Bongo 1					
		(Pt. 6)		Bongo 2					
			_	Neuston S					
		Rejet	8	Bongo 1					
		(Pt. 7)		Bongo 2					1
				Neuston S Neuston W]		-	1
- 1		D.664	8						
		Référence	5	Bongo 1 Bongo 2			1		
		(Pt. 11)		Neuston S					
		1		Neuston W					
					•				

Annexe 4.4. Densités de zoés et mégalopes d'araignées récoltées en 1993.

(nombre par 10 m3)

	(nombre par 10 m3)									
Mission	Date	Point	Engin	Mégalopes	Total Zoés	Zoés Stade 1	Zoés Stade 2			
						0.16				
112	17 Juin	Point 3	Bongo 1		0,16	0,16	l			
		<u> </u>	Bongo 2		0,13	0,13	1			
	1	1	Moyenne		0,15	0,15				
		C. Amenée	Bongo 1]					
	1	(Pt. 6)	Bongo 2				i			
	ł	1	Moyenne				<u> </u>			
		Rejet	Bongo 1	l						
		(Pt. 7)	Bongo 2							
		·	Moyenne							
	{	Référence	Bongo 1	İ		0.06				
		(Pt. 11)	Bongo 2		0,06	0,06				
			Moyenne		0,03	0,03				
113	29 Juin	Point 3	Bongo 1]					
			Bongo 2		0,19	0,19	 			
			Moyenne		0,10	0,10	_			
114	12 Juillet	Point 3	Bongo 1	0,08	3,80	3,72	0,08			
			Bongo 2	0,25	1,53	1,48	0,05			
			Moyenne	0,16	2,66	2,60	0,07			
	1	C. Amenée	Bongo 1			i				
		(Pt. 6)	Bongo 2							
	ł		Moyenne	l			1			
		Rejet	Bongo 1		0,07	0,07				
	İ	(Pt. 7)	Bongo 2	0,07	0,07	0,07				
	l		Moyeme	0,03	0,07	0,07				
	ł	Référence	Bongo 1	0,05	0,49	0,34	0,15			
		(Pt. 11)	Bongo 2	0,06	0,47	0,41	0,06			
		<u> </u>	Moyenne	0,05	0,48	0,38	0,10			
115	30 Juillet	D-in4 2	D 1	0,05	3,78	3,03	0,75			
115	30 Juillet	Point 3	Bongo 1	1 '	1		0,73			
			Bongo 2 Moyenne	0,14 0,10	3,40 3,59	2,78 2,91	0,68			
		C. Amenée	Bongo l	0,10	3,39	4,51	0,00			
	ļ	(Pt. 6)	Bongo 2							
	ĺ	(FLO)	Moyenne	İ		l	Ì			
		Rejet	Bongo 1		0,34	0,09	0,25			
		(Pt. 7)	Bongo 2		٠,5٠٠	0,05	1 0,23			
		(16.7)	Moyenne		0,17	0,04	0,13			
	j	Référence	Bongo 1		0,24	0,15	0,10			
		(Pt. 11)	Bongo 2	0,11	0,45	0,22	0,22			
		(111)	Moyenne	0,06	0,34	0,18	0,16			
116	23 Août	Point 3	Bongo 1	0,07	1,07	1,07				
			Bongo 2		1,38	1,24	0,14			
			Moyenne	0,04	1,22	1,16	0,07			
		C. Amenée	Bongo 1							
	l	(Pt. 6)	Bongo 2							
			Moyenne			0.00	0.00			
		Rejet	Bongo 1	 	0,17	0,09	0,09			
		(Pt. 7)	Bongo 2	0,14	0,35	0,28	0,07			
į		2.0	Moyenne	0,07	0,26	0,18	0,08			
		Référence	Bongo 1	0,15	0,45	0,40	0,05			
		(Pt. 11)	Bongo 2	0,05	0,11	0,11	0.00			
		L	Moyenne	0,10	0,28	0,25	0,03			

	longueur	jauge	année lancement	puissance
GOURY	6,9	4	78	32
	7,5	2	83	58
(4 bateaux)	8,5	6	70	59
, , , , , , , , , , , , , , , , , , , ,	7,2	5	86	95
	·			
mayenne	7,53 m	4,25 tx	79	61 kw
		_	•	
DIELETTE	7,3	4	90	55
	7,1	2	87	29
	8,7	8	76	79
(8 bateaux)	7,9	5	69	40
	7,3	6	90	85
	7,1	5	87	92
	6,6	3	88	29
	6,8	4	85	29
moyenne	7,35 m	4,63 tx	84	55 kw
CARTERET	10	8	66	81
	12,5	10	73	162
	14,4	27	69	152
	9,3	8	76	59
(22 bateaux)	11,9	21	91	220
•————	9,5	6	78	103
	8,8	5	79	59
	15,2	28	81	195
	7,7	3	81	88
	7,7	3	83	46
	7,7	4	84	53
	8,7	8	84	88
	7	3	87	13
	12	10	89	155
	8,6	5	88	66
	8,4	4	77	103
	9,8	6	90	162
	10,5	10	77	82
	11,9	11	88	221
	10,4	10	91	110
	8,5	3	68	54
	9,6	8	88	110
	4.0			
mayenne	10 m	9 tx	81	108 kw

Annexe 4.5 - Caractéristiques de la flottille de pêche du Nord Ouest Cotentin en 1993

JUIN 93	nb total	nb måles	nb femelles	nb femelles	longueur céphal.	poids moyen	sex-ratio
				oeuvées	moyenne		(% de mâles)
filière 1	8	3	5		8,4	411	38%
filière 2	1	1			7,3	251	100%
filière 3							
filière 4							
filière 5	1		1		9,1	485	0%
filière 6	4	1	3		9	488	25%
filière 7							
filière 8							
filière 9							
filière 10	5	2	3		8,1	345	40%
filière 11	4	3	1		7,7	307	75%
filière 12	1	1			8,9	482	100%
filière 13	4	4			10,2	778	100%
filière 14							
filière 15							
TOTAL	28	15	13	0	8,6 cm	447 g	54%
CEDT 02				· · · · · ·	 	· · · · · · · · · · · · · · · · · · ·	
SEPT. 93	nb total	nb måles	nb femelles		longueur céphal.	poids moyen	sex-ratio
				nb femelles oeuvées	moyenne		(% de mâles)
filière 1	5	nb måles	4		moyenne 8,5	417	(% de mâles) 20%
filière 1	5 3	1	4 3		moyenne 8,5 7,5	417 263	(% de mâles) 20% 0%
filière 1 filière 2 filière 3	5 3 4	1 2	4 3 2		moyenne 8,5 7,5 7,8	417 263 309	(% de mâles) 20% 0% 50%
filière 1 filière 2 filière 3 filière 4	5 3 4 6	1 2 3	4 3 2 3		moyenne 8,5 7,5 7,8 9,2	417 263 309 558	(% de mâles) 20% 0% 50% 50%
filière 1 filière 2 filière 3 filière 4 filière 5	5 3 4 6 23	1 2 3 10	4 3 2 3 13		moyenne 8,5 7,5 7,8 9,2 7,5	417 263 309 558 275	(% de mâles) 20% 0% 50% 50% 43%
filière 1 filière 2 filière 3 filière 4 filière 5 filière 6	5 3 4 6 23 20	1 2 3 10 12	4 3 2 3 13 8	oeuvées	moyenne 8,5 7,5 7,8 9,2 7,5	417 263 309 558 275 354	(% de mâles) 20% 0% 50% 50% 43% 60%
filière 1 filière 2 filière 3 filière 4 filière 5 filière 6 filière 7	5 3 4 6 23 20 9	1 2 3 10 12 4	4 3 2 3 13 8 5		moyenne 8,5 7,5 7,8 9,2 7,5 8 8	417 263 309 558 275 354 343	(% de mâles) 20% 0% 50% 50% 43% 60% 44%
filière 1 filière 2 filière 3 filière 4 filière 5 filière 6 filière 7 filière 8	5 3 4 6 23 20 9	1 2 3 10 12 4 7	4 3 2 3 13 8 5	oeuvées	moyenne 8,5 7,5 7,8 9,2 7,5 8 8	417 263 309 558 275 354 343 361	(% de mâles) 20% 0% 50% 50% 43% 60% 44% 79%
filière 1 filière 2 filière 3 filière 4 filière 5 filière 6 filière 7 filière 8 filière 9	5 3 4 6 23 20 9 9	1 2 3 10 12 4 7	4 3 2 3 13 8 5 2	oeuvées	moyenne 8,5 7,5 7,8 9,2 7,5 8 8 8 8,3	417 263 309 558 275 354 343 361 373	(% de mâles) 20% 0% 50% 50% 43% 60% 44% 79% 50%
filière 1 filière 2 filière 3 filière 4 filière 5 filière 6 filière 7 filière 8 filière 9	5 3 4 6 23 20 9 9	1 2 3 10 12 4 7 1 2	4 3 2 3 13 8 5 2 1	oeuvées	moyenne 8,5 7,5 7,8 9,2 7,5 8 8 8 8,3 8,3	417 263 309 558 275 354 343 361 373 380	(% de mâles) 20% 0% 50% 50% 43% 60% 44% 79% 50% 33%
filière 1 filière 2 filière 3 filière 4 filière 5 filière 6 filière 7 filière 8 filière 9 filière 10	5 3 4 6 23 20 9 9 9 2 6 3	1 2 3 10 12 4 7 1 2 1	4 3 2 3 13 8 5 2	oeuvées	moyenne 8,5 7,5 7,8 9,2 7,5 8 8 8 8,3 8,3 8,3 8,5	417 263 309 558 275 354 343 361 373 380 411	(% de mâles) 20% 0% 50% 50% 43% 60% 44% 79% 50% 33% 33%
filière 1 filière 2 filière 3 filière 4 filière 5 filière 6 filière 7 filière 8 filière 9 filière 10 filière 11 filière 12	5 3 4 6 23 20 9 9 2 6 3 2	1 2 3 10 12 4 7 1 2 1 2	4 3 2 3 13 8 5 2 1 4 2	oeuvées	moyenne 8,5 7,5 7,8 9,2 7,5 8 8 8 8,3 8,3 8,5 8,7	417 263 309 558 275 354 343 361 373 380 411 448	(% de mâles) 20% 0% 50% 50% 43% 60% 44% 79% 50% 33% 100%
filière 1 filière 2 filière 3 filière 4 filière 5 filière 6 filière 7 filière 8 filière 9 filière 10 filière 11 filière 12 filière 13	5 3 4 6 23 20 9 9 9 2 6 3	1 2 3 10 12 4 7 1 2 1	4 3 2 3 13 8 5 2 1	oeuvées	moyenne 8,5 7,5 7,8 9,2 7,5 8 8 8 8,3 8,3 8,3 8,5	417 263 309 558 275 354 343 361 373 380 411	(% de mâles) 20% 0% 50% 50% 43% 60% 44% 79% 50% 33% 33%
filière 1 filière 2 filière 3 filière 4 filière 5 filière 6 filière 7 filière 8 filière 10 filière 11 filière 12 filière 13 filière 14	5 3 4 6 23 20 9 9 2 6 3 2	1 2 3 10 12 4 7 1 2 1 2 2	4 3 2 3 13 8 5 2 1 4 2	oeuvées	moyenne 8,5 7,5 7,8 9,2 7,5 8 8 8 8,3 8,3 8,3 8,7 8	417 263 309 558 275 354 343 361 373 380 411 448 337	(% de mâles) 20% 0% 50% 50% 43% 60% 44% 79% 50% 33% 100% 67%
filière 1 filière 2 filière 3 filière 4 filière 5 filière 6 filière 7 filière 8 filière 9 filière 10 filière 11 filière 12 filière 13	5 3 4 6 23 20 9 9 2 6 3 2	1 2 3 10 12 4 7 1 2 1 2	4 3 2 3 13 8 5 2 1 4 2	oeuvées	moyenne 8,5 7,5 7,8 9,2 7,5 8 8 8 8,3 8,3 8,5 8,7	417 263 309 558 275 354 343 361 373 380 411 448	(% de mâles) 20% 0% 50% 50% 43% 60% 44% 79% 50% 33% 100%
filière 1 filière 2 filière 3 filière 4 filière 5 filière 6 filière 7 filière 8 filière 10 filière 11 filière 12 filière 13 filière 14	5 3 4 6 23 20 9 9 2 6 3 2	1 2 3 10 12 4 7 1 2 1 2 2	4 3 2 3 13 8 5 2 1 4 2	oeuvées	moyenne 8,5 7,5 7,8 9,2 7,5 8 8 8 8,3 8,3 8,3 8,7 8	417 263 309 558 275 354 343 361 373 380 411 448 337	(% de mâles) 20% 0% 50% 50% 43% 60% 44% 79% 50% 33% 100% 67%

Annexe 4.6 - Résultats des pêches expérimentales de homard en 1993

JUIN 93	nb total	nb måles	nb femelles	largeur céphal.	sex-ratio
				moyenne	(% de mâles)
filière 1	24	12	12	12,9	50%
filière 2					
filière 3					
filière 4					
filière 5	2	2		13,6	100%
filière 6	4	3	1	13,4	75%
filière 7					
filière 8					
filière 9					
filière 10	11	9	2	12,9	82%
filière 11	3	3		12,8	100%
filière 12	19	14	5	13,7	74%
filière 13	21	10	11	13,6	48%
filière 14					
filière 15	5	1	4	13	20%
TOTAL	89	54	35	13,3 cm	61%

SEPT. 93	nb total	nb måles	nb femelles	largeur céphal.	sex-ratio
				moyenne	(% de mâles)
filière 1	39	22	17	14,4	56%
filière 2	30	20	10	11,6	67%
filière 3	15	12	3	10,2	80%
filière 4	31	20	11	14,1	64%
filière 5	21	20	1	12,5	95%
filière 6	38	27	11	12,5	71%
filière 7	50	40	10	13,3	80%
filière 8	33	24	9	11,7	73%
filière 9	29	14	15	11,7	48%
filière 10	43	27	16	11,8	63%
filière 11	13	6	7	14,5	46%
filière 12	33	20	13	13,8	61%
filière 13	53	25	28	13,6	47%
filière 14					
filière 15	19	11	8	14,3	58%
TOTAL	447	288	159	12,9	64%

Annexe 4.7 - Résultats des pêches expérimentales de tourteau en 1993

JUIN 93	nb total	nb måles	nb femelles	nb femelles	longueur céph.		sex-ratio
				oeuvées	moyenne	long. > 12cm	(% de mâles)
filière 1	12	11	1		12	50%	92%
filière 2	11	9	2		10,1	0%	82%
filière 3							
filière 4	1	1			8	0%	100%
filière 5	1	1			10,2	0%	100%
filière 6	14	13	1		9,4	21%	93%
filière 7							
filière 8							
filière 9							
filière 10							
filière 11	18	12	6	1	7,8	0%	67%
filière 12	5		5		5,7	0%	0%
filière 13	13	9	4		9	31%	69%
filière 14							
filière 15	120	80	40	1	7,2	4%	67%
TOTAL	195	136	59	2	8 cm	9%	70%
SEPT. 93	nb total	nb måles	nb femelles	1	•	% d'individus	ľ
	1-10			oeuvées	moyenne	long. > 12cm	
filière 1							
C:1: > O	12	7	5		9,3	0%	58%
filière 2	12	/	5		9,3	0 %	36%
filière 3							
filière 3 filière 4	9	4	5		11,9	56%	44%
filière 3 filière 4 filière 5	9	4	5		11,9	56%	44%
filière 3 filière 4 filière 5 filière 6	9	4 3	5		11,9 7,5	56%	44% 75%
filière 3 filière 4 filière 5 filière 6 filière 7	9 4 3	4	5 1 2		11,9 7,5 8,3	56% 0% 0%	75% 33%
filière 3 filière 4 filière 5 filière 6 filière 7 filière 8	9 4 3 1	3	5		7,5 8,3 7,3	56% 0% 0% 0%	75% 33% 0%
filière 3 filière 4 filière 5 filière 6 filière 7 filière 8 filière 9	9 4 3 1 2	3 1	5 1 2		7,5 8,3 7,3 10,3	56% 0% 0% 0% 50%	75% 33% 0% 100%
filière 3 filière 4 filière 5 filière 6 filière 7 filière 8 filière 9 filière 10	9 4 3 1 2 2	3 1 2	5 1 2 1		7,5 8,3 7,3 10,3 6,8	56% 0% 0% 0% 50% 0%	75% 33% 0% 100% 50%
filière 3 filière 4 filière 5 filière 6 filière 7 filière 8 filière 9 filière 10 filière 11	9 4 3 1 2 2 17	4 3 1 2 1 8	5 1 2 1 1		7,5 8,3 7,3 10,3 6,8 7,9	56% 0% 0% 0% 50% 0%	75% 33% 0% 100% 50% 47%
filière 3 filière 4 filière 5 filière 6 filière 7 filière 8 filière 9 filière 10 filière 11 filière 12	9 4 3 1 2 2 17 16	4 3 1 2 1 8 7	5 1 2 1 1 9		7,5 8,3 7,3 10,3 6,8 7,9 8,7	56% 0% 0% 0% 50% 0% 0% 0%	75% 33% 0% 100% 50% 47% 44%
filière 3 filière 4 filière 5 filière 6 filière 7 filière 8 filière 9 filière 10 filière 11 filière 12 filière 13	9 4 3 1 2 2 17	4 3 1 2 1 8	5 1 2 1 1		7,5 8,3 7,3 10,3 6,8 7,9	56% 0% 0% 0% 50% 0%	75% 33% 0% 100% 50% 47%
filière 3 filière 4 filière 5 filière 6 filière 7 filière 8 filière 9 filière 10 filière 11 filière 12 filière 13 filière 14	9 4 3 1 2 2 17 16 7	3 1 2 1 8 7 4	5 1 2 1 1 9 9		7,5 8,3 7,3 10,3 6,8 7,9 8,7 9,9	56% 0% 0% 0% 50% 0% 0% 0% 0%	75% 33% 0% 100% 50% 47% 44% 57%
filière 3 filière 4 filière 5 filière 6 filière 7 filière 8 filière 9 filière 10 filière 11 filière 12 filière 13	9 4 3 1 2 2 17 16	4 3 1 2 1 8 7	5 1 2 1 1 9		7,5 8,3 7,3 10,3 6,8 7,9 8,7	56% 0% 0% 0% 50% 0% 0% 0%	75% 33% 0% 100% 50% 47% 44%
filière 3 filière 4 filière 5 filière 6 filière 7 filière 8 filière 9 filière 10 filière 11 filière 12 filière 13 filière 14	9 4 3 1 2 2 17 16 7	3 1 2 1 8 7 4	5 1 2 1 1 9 9		7,5 8,3 7,3 10,3 6,8 7,9 8,7 9,9	56% 0% 0% 0% 50% 0% 0% 0% 0%	75% 33% 0% 100% 50% 47% 44% 57%

Annexe 4.8 - Résultats des pêches expérimentales d'araignée en 1993

JUIN 93	nb total	nb måles	nb femelles	nb femelles	longueur céph.	% de mâles mous	sex-ratio
				oeuvées	moyenne	(/ total de mâles)	(% de mâles)
filière 1	12	11	1		5,9	18%	92%
filière 2							
filière 3							
filière 4							
filière 5							
filière 6	8	8			5,7	37%	100%
filière 7							
filière 8							
filière 9							
filière 10	6	6			5,7	0%	100%
filière 11	1	1			5,9	0%	100%
filière 12	3	3			6	33%	100%
filière 13	8	8			5,9	37%	100%
filière 14							
filière 15	7	7			5,9	43%	100%
TOTAL	45	44	1	0	5,8 cm	27%	98%
SEPT. 93	nb total	nb måles	nb femelles	nb femelles	longueur céph.	% de mâles mous	sex-ratio
				oeuvées	moyenne	(/ total de mâles)	(% de mâles)
filière 1	5	5			6,1	0%	100%
filière 2	6	5	1		5,9	0%	83%
filière 3	10	10			5,8	0%	100%
filière 4	11	4	7		5,7	0%	36%
filière 5	19	17	1		5,8	0%	89%
filière 6	18	16	2		6	6%	89%
filière 7	7	7			5,7	0%	100%
filière 8	20	18	2		5,7	0%	90%
filière 9	8	7	1		5,9	0%	87%
filière 10	17	16	1		5,8	0%	94%
filière 11	1	1			6,1	0%	100%
filière 12	6	5	1		6	0%	83%
filière 13	6	6			6	17%	100%
filière 14							
filière 15	6	5	1		6,1	0%	83%

Annexe 4.9 - Résultats des pêches expérimentales d'étrille en 1993

0

5,9 cm

2%

87%

TOTAL

140

122

18

	nb de casiers relevés		nb de buc	cins pêchés	nb de pagures pêchés	
	Jun-93	Sep-93	Jun-93	Sep-93	Jun-93	Sep-93
filière 1	60	80				4
filière 2	20	60				
filière 3		42				
filière 4	15	80		3		11
filière 5	11	60				
filière 6	36	80	1	2	7	1
filière 7		80		1		9
filière 8		60				
filière 9		45				1
filière 10	40	60				
filière 11	40	80		44		35
filière 12	60	67				1
filière 13	98	77	1		2	
filière 14						
filière 15	40	80	3	25	12	13
				·		<u> </u>
TOTAL	420	951	5	75	21	75

Annexe 4.10 - Résultats des pêches expérimentales autre que crustacés

Conclusion générale

(Résumé des conclusions figurant pages 47, 71 et 93 de ce rapport)

La météorologie de l'année 1993 se caractérise, par rapport aux moyennes saisonnières obtenues depuis 1977, par un premier semestre doux et sec, puis un second semestre plus frais et très humide. L'observation faite sur la température de l'eau de mer à proximité immédiate de la côte est identique à celle de l'air. La quantité de chlore injectée dans le circuit de refroidissement de la Centrale est de 209 tonnes, le quart de celle relevée en 1990.

Les résultats de la Surveillance biologique des trois domaines pélagique, benthique et halieutique du site de Flamanville montrent, à quelques variations près s'expliquant par les fluctuations climatiques mentionnées plus haut, une stabilité des différents paramètres mesurés (hydrobiologie, phytoplancton, zooplancton, bactériologie, phytobenthos, zoobenthos). Un effet avéré des rejets thermiques et chlorés n'est donc pas décelé.

Les observations suivantes méritent d'être mentionnées :

- au niveau du phytobenthos intertidal, la baisse du stock de *Fucus serratus*, mentionnée les années antérieures, est arrêté en 1993 ; une augmentation générale de la biomasse est même enregistrée en mars et en septembre (avec une valeur supérieure à la moyenne calculée sur la période 1983 - 1993). Le fort pourcentage de thalles fertiles en septembre est en conformité à la moyenne saisonnière (de 87 % à 96 %) ; une baisse significative de la fertilité hivernale (32 %) est par contre enregistrée, s'expliquant en partie par la jeunesse des individus bagués en mars.

L'importante fertilité hivernale notée de 1985 à 1992 intrigue et n'a pas à ce jour trouvé d'explication sûre. L'étude similaire commencée en 1994 sur l'autre site électronucléaire de Paluel et la poursuite de la surveillance sur le site de Flamanville devraient permettre une meilleure compréhension du phénomène de dépopulation observé.

- au niveau du domaine halieutique, les larves de homard (*Homarus gammarus*, L.) présentent à nouveau une abondance exceptionnelle dans une pêche de surface au point référence et cette apparition est relativement précoce.

Depuis 1989, aucune larve de homard n'a été pêchée dans le canal d'amenée.

La variabilité des rendements de pêche est importante. Elle s'explique par la diminution du nombre d' observations qui entraîne une plus grande dispersion des résultats.

RAPPORTS DE SURVEILLANCE DU DOMAINE MARIN DU SITE ELECTRONUCLEAIRE DE FLAMANVILLE

- LEAUTE J.P. et C. LE BEC, 1984.- Etude de Surveillance écologique des ressources halieutiques, Site de Flamanville, Zooplanctonologie, ANNEE 1983.- Institut Scientifique et Technique des Pêches Maritimes, édit., Nantes, mai 1984, 182 p.
- VERON G., D. MIOSSEC et P. NOEL, 1985.- Etude de Surveillance écologique des ressources halieutiques, Site de Flamanville, Surveillance de la pêche côtière des crustacés, ANNEE 1983.- Institut Scientifique et Technique des Pêches Maritimes, édit., Nantes, janvier 1985, 151p.
- ARNAL O, T. BELSHER, C. CHEVALIER, L. DREVES, E. ERARD, P. GENTIEN, F. GRESSELIN, B. GUILLAUMONT, D. HAMON, R. LOARER, M. OBATON, J.Y. PIRIOU, J.Y. QUINTIN et P. WALKER, 1985.- Etude de Surveillance écologique sur le site de Flamanville, ANNEE 1983.- Rapp. CNEXO/COB/DELGMM, mars 1985, 124 p.
- GENTIEN P., L. DREVES, E. ERARD-LE DENN, B. GUILLAUMONT, R. LOARER, A. MENESGUEN, J.Y. PIRIOU et J.Y. QUINTIN, 1986.- Surveillance écologique sur le site de Flamanville, ANNEE 1984.- Rapp. IFREMER DERO-86.12 EL, 131 p.
- GUILLAUMONT B., J.P. AUFFRET, S. BERNE, F. GRESSELIN et P. WALKER, 1987.- Surveillance écologique, Site de Flamanville, Le domainr benthique, Etude par sonar latéral et prises de vue sous-marines, 1983-1984.- Rapp. IFREMER DERO-87.05-EL, 35 p. + 14 cartes.
- MARTIN J. et D. HALGAND, 1986.- Etude de surveillance des ressources halieutiques, Site de Flamanville, Zooplantonologie, avril-octobre 1984.- Rapp. interne IFREMER DRV-86.008-RH, décembre 1986, 286 p.
- VERON G.et D. MIOSSEC, 1987.- Etude de Surveillance écologique des ressources halieutiques, Site de Flamanville, Surveillance de la pêche côtière des crustacés, ANNEE 1984.- Rapp. interne IFREMER DRV-86.008-RH, mai 1987.
- MARTIN J., L. DREVES, E. ERARD-LE DENN, P. GENTIEN, J.Y. PIRIOU, J.Y QUINTIN et G. VERON, 1988.-Surveillance écologique et halieutique, Site de Flamanville, ANNEE 1985. Rapp. IFREMER DRV-87.19-RH, DERO-87.28-EL, décembre 1988, 311p.
- MARTIN J., G. ARZUL, L. DREVES, E. ERARD-LE DENN, J.Y QUINTIN et G. VERON, 1988.- Surveillance écologique et halieutique, Site de Flamanville, ANNEE 1986. Rapp. IFREMER DRV-88.06-RH, DERO-88.14-EL, novembre 1990, 136 p.
- MARTIN J., G. ARZUL, L. DREVES, E. ERARD-LE DENN, D. MIOSSEC, J.Y. PIRIOU et J.Y QUINTIN, 1989. Surveillance écologique et halieutique, Site de Flamanville, ANNEE 1987. Rapp. IFREMER DRV-89.017-RH, DERO-89.12-EL, novembre 1990, 182 p.
- MARTIN J., G. ARZUL, L. DREVES, E. ERARD-LE DENN, D. MIOSSEC, J.Y. PIRIOU et J.Y QUINTIN, 1991.-Surveillance écologique et halieutique, Site de Flamanville, ANNEE 1988. Rapp. IFREMER RIDRV-90.46-RH, RIDRO-90.14-EL, mai 1991, 134 p.
- MARTIN J., G. ARZUL, L. DREVES, E. ERARD-LE DENN, D. MIOSSEC, J.Y. PIRIOU et J.Y QUINTIN, 1991.-Surveillance écologique et halieutique, Site de Flamanville, ANNEE 1989. Rapp. IFREMER RIDRV-90.47-RH, RIDRO-90.15-EL, septembre 1991, 148 p.
- DREVES L., G. ARZUL, E. ERARD-LE DENN, J. MARTIN, D. MIOSSEC et J.Y QUINTIN, 1991.- Surveillance écologique et halieutique, Site de Flamanville, ANNEE 1990. Rapp. IFREMER DRO.EL-91.15, juillet 1991, 122 p.
- DREVES L., G. ARZUL, E. ERARD-LE DENN, J. MARTIN, D. MIOSSEC, J.Y. PIRIOU et J.Y QUINTIN, 1992.-Surveillance écologique et halieutique du Site de Flamanville, ANNEE 1991. Rapp. IFREMER DEL/Brest-92.23, juin 1992, 161 p.
- DREVES L., G. ARZUL, E. ERARD-LE DENN, J. MARTIN, D. MIOSSEC, J.Y. PIRIOU et J.Y QUINTIN, 1993.-Surveillance écologique et halieutique du Site de Flamanville, ANNEE 1992. Rapp. IFREMER DEL/Brest-93.14, juillet 1993, 146 p.
- DREVES L., E. ERARD-LE DENN, M. LUNVEN, J. MARTIN, D. MIOSSEC, J.Y. PIRIOU et J.Y QUINTIN, 1994.-Surveillance écologique et halieutique du Site de Flamanville, ANNEE 1993. Rapp. IFREMER DEL/Brest-94.09, juin 1994, 105 p.