FN Archimer Export Format PT J TI "Choppy wave" model for nonlinear gravity waves BT AF NOUGUIER, Frederic GUERIN, Charles-Antoine CHAPRON, Bertrand AS 1:1;2:2;3:3; FF 1:PDG-ODE-LOPS-SIAM;2:;3:PDG-DOP-DCB-OPS-LOS; C1 Univ Paul Cezanne, Fac St Jerome, Inst Fresnel, UMR 6133,CNRS, F-13397 Marseille 20, France. Univ Sud Toulon Var, LSEET, UMR 6017, CNRS, F-83957 La Garde, France. IFREMER, Lab Oceanog Spatiale, F-29280 Plouzane, France. C2 UNIV AIX MARSEILLE, FRANCE UNIV TOULON, FRANCE IFREMER, FRANCE SI BREST SE PDG-ODE-LOPS-SIAM PDG-DOP-DCB-OPS-LOS IN WOS Ifremer jusqu'en 2018 copubli-france copubli-univ-france IF 3.082 TC 45 UR https://archimer.ifremer.fr/doc/2009/publication-6832.pdf LA English DT Article DE ;sea surface statistics;nonlinear gravity waves AB We investigate the statistical properties of a three-dimensional simple and versatile model for weakly nonlinear gravity waves in infinite depth, referred to as the "choppy wave model" (CWM). This model is analytically tractable, numerically efficient, and robust to the inclusion of high frequencies. It is based on horizontal rather than vertical local displacement of a linear surface and is a priori not restricted to large wavelengths. Under the assumption of space and time stationarity, we establish the complete first- and second-order statistical properties of surface random elevations and slopes for long-crested as well as fully two-dimensional surfaces, and we provide some characteristics of the surface variation rate and frequency spectrum. We establish a relationship between the so-called "dressed spectrum," which is the enriched wave number spectrum of the nonlinear surface, and the "undressed" one, which is the spectrum of the underlying linear surface. The obtained results compare favorably with other classical analytical nonlinear theories. The slope statistics are further found to exhibit non-Gaussian peakedness characteristics. Compared to observations, the measured non-Gaussian omnidirectional slope statistics can only be explained by non-Gaussian effects and are consistently approached by the CWM. PY 2009 PD SEP SO Journal of Geophysical Research ( JGR ) - Oceans SN 0148-0227 PU American Geophysical Union VL 114 IS C09012 UT 000270057000001 BP 1 EP 16 DI 10.1029/2008JC004984 ID 6832 ER EF