FN Archimer Export Format PT J TI Chalcogenide Glass Optical Waveguides for Infrared Biosensing BT AF ANNE, Marie-Laure KEIRSSE, Julie NAZABAL, Virginie HYODO, Koji INOUE, Satoru BOUSSARD-PLEDEL, Catherine LHERMITE, Herve CHARRIER, Joel YANAKATA, Kiyoyuki LOREAL, Olivier LE PERSON, Jenny COLAS, Florent COMPERE, Chantal BUREAU, Bruno AS 1:1;2:1;3:1;4:2;5:3;6:1;7:4;8:5;9:6;10:7;11:8;12:8;13:8;14:1; FF 1:;2:;3:;4:;5:;6:;7:;8:;9:;10:;11:;12:PDG-DOP-DCB-RDT-IC;13:PDG-DOP-DCB-RDT-IC;14:; C1 Univ Rennes 1, UMR 6226, F-35042 Rennes, France. AIST, Natl Inst Adv Ind Sci & Technol, Inst Human Sci & Biomed Engn, Biomed Sensing & Imaging Grp, Tsukuba, Ibaraki, Japan. Natl Inst Mat Sci, Tsukuba, Ibaraki 3050041, Japan. Univ Rennes 1, Inst Elect & Telecommun Rennes Microelect, F-35042 Rennes, France. Univ Rennes 1, ENSSAT, UMR 6082, FOTON CCLO, F-22305 Lannion, France. Univ Tsukuba, Inst Clin Med, Dept Neurosurg, Tsukuba, Ibaraki 305, Japan. Univ Rennes 1, INSERM, IFR 140, U522, F-35042 Rennes, France. IFREMER, ERT, Serv Interfaces & Capteurs, F-29280 Plouzane, France. C2 UNIV RENNES, FRANCE AIST, JAPAN NATL INST MAT SCI, JAPAN UNIV RENNES, FRANCE UNIV RENNES, FRANCE UNIV TSUKUBA, JAPAN UNIV RENNES, FRANCE IFREMER, FRANCE SI BREST SE PDG-DOP-DCB-RDT-IC IN WOS Ifremer jusqu'en 2018 copubli-france copubli-univ-france copubli-int-hors-europe IF 1.821 TC 108 UR https://archimer.ifremer.fr/doc/2009/publication-6851.pdf LA English DT Article DE ;Planar waveguide;Fibre;Optical sensor;Chalcogenide AB Due to the remarkable properties of chalcogenide (Chg) glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 mu m wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (bio) sensors. PY 2009 PD SEP SO Sensors SN 1424-8220 PU Molecular Diversity Preservation International-MDPI VL 9 IS 9 UT 000270213300048 BP 7398 EP 7411 DI 10.3390/s90907398 ID 6851 ER EF