Sound production mechanism in carapid fish: first example with a slow sonic muscle

Fish sonic swimbladder muscles are the fastest muscles in vertebrates and have fibers with numerous biochemical and structural adaptations for speed. Carapid fishes produce sounds with a complex swimbladder mechanism, including skeletal components and extrinsic sonic muscle fibers with an exceptional helical myofibrillar structure. To study this system we stimulated the sonic muscles, described their insertion and action and generated sounds by slowly pulling the sonic muscles. We find the sonic muscles contract slowly, pulling the anterior bladder and thereby stretching a thin fenestra. Sound is generated when the tension trips a release system that causes the fenestra to snap back to its resting position. The sound frequency does not correspond to the calculated resonant frequency of the bladder, and we hypothesize that it is determined by the snapping fenestra interacting with an overlying bony swimbladder plate. To our knowledge this tension release mechanism is unique in animal sound generation.

Keyword(s)

Swimbladder, Sonic mechanism, Sonic muscle, Sound production, Carapidae

Full Text

FilePagesSizeAccess
6536.pdf
9763 Ko
How to cite
Parmentier E, Lagardere Jean-Paul, Braquegnier J, Vandewalle P, Fine M (2006). Sound production mechanism in carapid fish: first example with a slow sonic muscle. Journal of Experimental Biology. 209 (15). 2952-2960. https://doi.org/10.1242/jeb.02350, https://archimer.ifremer.fr/doc/00000/7353/

Copy this text