Optimal laminations of thin underwater composite cylindrical vessels

Type Article
Date 2002-12
Language English
Author(s) Messager Tanguy, Pyrz Mariusz, Gineste Bernard, Chauchot Pierre
Affiliation(s) Ecole Cent Nanates, UPRESEA 2166, Lab Mecan & Mat, F-44321 Nantes 3, France.
CNRS, URA 1441, Lab Mecan Lille, F-59655 Villeneuve Dascq, France.
Univ Bretagne Occidentale, EA 940, Lab Rheol & Mecan Struct, F-29285 Brest, France.
IFREMER, Serv Mat & Struct, F-29280 Plouzane, France.
Source Composite Structures (0263-8223) (Elsevier), 2002-12 , Vol. 58 , N. 4 , P. 529-537
DOI 10.1016/S0263-8223(02)00162-9
WOS© Times Cited 78
Keyword(s) Experimental results, Optimal design, Buckling, Lamination, Cylinder, Composite
Abstract This paper deals with the optimal design of deep submarine exploration housings and autonomous underwater vehicles. The structures under investigation are thin-walled laminated composite unstiffened vessels. Structural buckling failure due to the high external hydrostatic pressure is the dominant risk factor at exploitation conditions. The search of fiber orientations of the composite cylinders that maximize the stability limits is investigated. A genetic algorithm procedure coupled with an analytical model of shell buckling has been developed to determine numerically optimized stacking sequences. Characteristic lamination patterns have been obtained. FEM analyses have confirmed the corresponding significant increases of buckling pressures with respect to initial design solutions. Experiments on thin glass/epoxy and carbon/epoxy cylinders have been performed. The measured buckling pressures appear to be in good agreement with numerical results and demonstrate the gains due to the optimized laminations.
Full Text
File Pages Size Access
publication-759.pdf 26 306 KB Open access
Top of the page